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Abstract— In this study, we address the inverse kinemat-
ics problem for an upper-limb exoskeleton by presenting a
novel method that guarantees the satisfaction of joint-space
constraints, and solves closed-chain mechanisms in a serial
robot configuration. Starting from the conventional differential
kinematics method based on the inversion of the Jacobian
matrix, we describe and test two improved algorithms based on
the Projected-Gradient method, that take into account joint-
space equality constraints. We use the Harmony exoskeleton
as a platform to demonstrate the method. Specifically, we
address the joint constraints that the robot maintains in order
to match anatomical shoulder movement and the closed-chain
mechanisms used for the robot’s joint control. Results show
good performances of the proposed algorithms, which are
confirmed by the ability of the robot to follow the desired task-
space trajectory while ensuring the fulfilment of joint-space
constraints, with a maximum error of about 0.05 degrees.

I. INTRODUCTION

Humans have the remarkable ability to plan and perform
motion in both the task space (“Where is my hand?”),
as well as the joint space (“How much should I bend
my elbow?”) [1]. The ability to switch between these two
planning strategies allows humans to perform a variety of
complex motions towards the accomplishment of a wide
array of functional goals. At the same time, thanks to
the intrinsic kinematic redundancy of the arm, humans are
able to overcome physical constraints by re-configuring the
position of the arm. Robots have been developed with the aim
of accomplishing similar functional tasks, but with higher
levels of accuracy and repeatability. Joint space control is
the most common approach in controlling robots, with single
motor coupled to each degree of freedom. Inverse kinematics
methods help bridge the gap between motor control and
end-effector motion by transforming the motion from the
task space to the joint space [2]. This conversion allows for
seamless control of robots in the task space. Unfortunately,
traditional inverse kinematics approaches are still unable to
solve complex constraints in the task space and joint space
simultaneously [3]. This need for complex simultaneous con-
trol is most apparent when robots are designed to cooperate
with human users, as in the case of wearable exoskeletons.

The Harmony exoskeleton [4] (Fig. 1) is an upper body
rehabilitation robot, and is thus required to maintain a
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(a) Physical prototype. (b) Kinematic model.

Fig. 1: The Harmony exoskeleton [4] is a bi-manual upper body
exoskeleton with 7 degrees of freedom in each arm.

high level of coordination with the wearer. An important
characteristic of the robot is its ability to maintain healthy
coordinated shoulder motion as described by the Scapu-
lohumeral Rhythm (SHR) [4], [5]. However, maintaining
this coordination becomes non-trivial when the goal of the
motion is a functional task. As the robot uses parallelograms
and virtual joints to ensure that the robot remains out of
the wearer’s way, standard methods of inverse kinematics
adopted for serial manipulators are not directly applicable
[6], [7]. The Harmony exoskeleton thus offers two chal-
lenges, 1) Joint-coordination constraints, and 2) Complex
closed-chain internal mechanisms, that take the robot beyond
the application of traditional inverse kinematics methods
for serial manipulators. Being over-actuated in the task
space (7 degrees of freedom in each arm), the Harmony
exoskeleton benefits from the existence of a large set of
possible solutions, referred to as the kinematic null space [8],
which may be exploited based on a variety of performance
metrics. Kinematic redundancy has been studied in litera-
ture for applications such as multi-level minimization [9]
and redundant manipulator control similar to the Harmony
exoskeleton [10]. However, the redundancy in manipulator
task space has not been exploited to simultaneously solve
for multiple cost functions under conflicting dynamic and
kinematic constraints. We address this gap in the current
work by presenting and validating a set of novel methods that
exploit the kinematic null space to solve inverse kinematics
problems under joint-coordination constraints.

II. BACKGROUND

A. The Inverse Kinematic Approach

In this section, we briefly introduce conventional inverse
kinematics to motivate the need for novelty. In particular,
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one of the most common approaches relies on differential
kinematics, which gives the relationship between the joint
velocities and the end-effector linear and angular velocities.
In particular, such a mapping is described by the Jacobian
matrix, which depends on the robot’s configuration and is
given in the well-known form:

ẋ = J(θ) θ̇ (1)

where ẋ is an m × 1 vector representing three linear and
three rotational velocities of the end-effector; θ̇ is an n× 1
vector consisting of the joint velocities; and J(θ) is an m×n
Jacobian matrix. When dealing with kinematically redundant
robots m < n, thus the Jacobian matrix becomes a non-
square matrix and the right pseudo-inverse solution is needed
to solve the inverse problem of (1):

θ̇ = J† ẋ (2)

where J† is the Moore-Penrose right pseudo-inverse. This
approach gives the best possible solution that minimizes
the norm of the joint velocities, but is still unstable near
singularities. Thus, in certain configurations, the robot is
rendered unable to move the end-effector in a certain way.
This is because the Jacobian matrix becomes ill-conditioned,
and the pseudo-inverse method results in very large joint
velocities that tend to explode. The damped least squares
method, introduced by Nakamura et al. [11], can be used to
avoid such instability by adding a damping term λ to the
solution of Equation 1:

J†λ = JT (JJT + λI)−1 (3)

Several variations of this approach have been proposed in lit-
erature in past decades [12]–[14]. However, these approaches
do not explicitly consider additional constraints to the inverse
kinematics problem. The human arm, and consequently any
arm exoskeleton, such as Harmony, is characterized by a
kinematic redundancy that can be exploited to fulfill addi-
tional requirements. Fortunately, the solution of the inverse
kinematics problem for highly redundant robots permits the
existence of a subspace N(J) of joint velocities, called
the Null-space, characterized by joint velocities that do not
produce any end-effector movement, at the given config-
uration. To exploit this subspace of internal motions, the
previously defined solution (2), called the particular solution,
can be extended to include an additional term, called the
homogeneous solution. This term explores the Null-space to
find a solution that satisfies additional arbitrary constraints,
expressed in joint velocities, and can be formalized as:

θ̇ = J†ẋ+ P q̇ (4)

where q̇ is the joint-space constraint expressed as a pertur-
bation from the particular solution and P is a n× n matrix
defined so that JP q̇ = 0, which means that the perturbation
q̇ doesn’t produce any movement of the end-effector in
the task-space. Liegeois [15] presented one of the possible
implementations of the P matrix, which has been termed
the Null-space Projector, which permits the projection of

the perturbation q̇ into the Null-space generating motions of
the manipulator that do not change position or orientation of
the end-effector. The overall solution becomes:

θ̇ = J†ẋ+ (IN − J†J)q̇ (5)

where IN is an n× n identity matrix.
In general, the choice of q̇ can be determined through a

Projected-Gradient (PG) algorithm that defines it as:

q̇ = k
∂H(θ)

∂θ
(6)

where H(θ) is a differentiable objective function and k > 0
is a weighting factor. Siciliano and colleagues [16] described
different methods to define the optimal H(θ) objective
function given the required constraints. Moreover, Liegeois
presented a cost function that, by minimizing the distance
of joint angles from the center of their ranges, maximizes
the distance of joint variables from mechanical joint limits
[15]. More recent literature also discusses multi-objective
cartesian control [17], and in the context of redundant robots
[9]. However, no objective function has been proposed for
equality constraints in joint-space to guarantee coordinated
motion among joints. In this paper, we approach the problem
of managing the trade-off between task-space motion accu-
racy, and joint space constraint requirements under complex
kinematic constraints by exploring the null subspace. Ulti-
mately, we will present a set of methods that may be used
given varying prioritization of performance criteria.

B. Kinematic Model of the Harmony Exoskeleton

We now introduce the platform used to validate the novel
inverse kinematics method, and which further allows us to
develop an idea regarding the importance of considering
joint-space and kinematic constraints of robots in general.
The Harmony exoskeleton (Fig. 1a) is a bi-manual upper
body rehabilitation robot. It has seven degrees of freedom
(DOF) in each arm (Fig. 1b), of which one joint con-
trols wrist pronation-supination, one controls elbow flexion-
extension, and the remaining five are used to replicate the
anatomical shoulder movement (the shoulder girdle). This is
accomplished by combining a 3 DOF glenohumeral (GH)
ball-and-socket joint and a 2 DOF rotation-translation joint
for the GH joint. The 2 DOF mechanism allows the shoulder
girdle to track the anatomical center of rotation (COR) of the
GH joint. The methods used to maintain this coordination
result in two contrasting constraints on the inverse kinematics
of the robot.

1) Scapulohumeral Rhythm: Upper-arm movement is
characterised by a coordinated motion of the shoulder. As
the humerus of the upper-arm moves, so does the shoulder
complex in such a way that a non-linear relationship is
maintained between the humerothoracic elevation and the
shoulder complex elevation. As a result, the center of rotation
of the glenohumeral joint moves along with the subject, and
must thus be followed accurately by the robot (see Fig. 2a
and Fig. 2b). The nonlinear relationship, also known as the
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(a) Front view. (b) Back view. (c) Top View.

Fig. 2: (a) and (b) show the robot compensating for the movement
of the subject’s glenohumeral as the humerus is elevated. (c) shows
the parallelogram mechanism from a top view.

Scapulohumeral Rhythm (SHR), is defined as [18], [19]:

θ1 = 0.0036β2
h + 0.085βh (7)

where, θ1 is the angle of rotation for the elevation of the
shoulder and βh is the humeral elevation angle that can
be calculated from the translation of the shoulder girdle
mechanism. For more detail, refer to Kim and colleagues
[18] where the authors designed and implemented a control
strategy in order to maintain this complex coordination.
As discussed in Section II, this kinematic coupling is not
compatible with conventional inverse kinematics techniques,
and thus cannot be used for task-space motion control.

2) Closed Chain Mechanism: In order to maintain the
SHR coordination of the shoulder complex, the 2 DOF
translation joint was designed as described in Figure 2c.
This mechanism allows the shoulder ball-and-socket joint to
be co-located with the center of rotation of the anatomical
Glenohumeral joint during movement. In particular, the rev-
olute joint θ1 performs shoulder elevation and depression
and the parallelogram represented by θ2 θ′2 θ′′2 θ′′′2 per-
forms shoulder protraction and retraction. Kinematically, the
parallelogram has only one degree of freedom, and can be
treated as a single joint. However, serial chain inverse kine-
matics methods cannot handle parallelogram joints without
simplifying assumptions and modifications. To this end, the
parallelogram structure can be split in two joints by adding
a virtual joint (i.e. θ′2) to the serial chain. The virtual joint
must always match the following relationship to guarantee
the kinematic compatibility:

θ′2 = −θ2 (8)

III. METHODS

In this section we first introduce a cost function to
meet joint-coordination equality constraints, following which
we propose two distinct inverse kinematics algorithms to
be compared with the gold-standard differential kinematics
algorithm. Quantitative metrics and qualitative results are
computed respectively in simulation environment and with
the robot to validate the feasibility and accuracy of the
proposed algorithms.

For the sake of simplicity, as the robot is controlled in
discrete time, from now on we will address the inverse
kinematics problem considering finite differences as shown

in (9):
∆θ = J†∆x+ PN(J)∆q (9)

where ∆θ, ∆x and ∆q represents respectively the differen-
tial value in discrete time of joint angles, cartesian position
and perturbation angles.

A. Objective function for joint-space equality constraints

As mentioned in Section II-B, the kinematic model of
the Harmony exoskeleton is characterized by two critical
issues, that can be both included in the model as joint-
space equality constraints. With reference to the previously
described Projected-Gradient algorithm, we hereby propose
a simple cost function that minimizes the distance between
joint variables and target values, and is iteratively computed
according to each specific constraint. The objective function
can be written as:

H(θ) =
1

2

N∑
i=1

(θi − θi)
2 (10)

where N is the number of active joints, θi is the actual
joint value and θi is the target value imposed by the joint
coordination of the robot. By computing the finite differences
and differentiating the objective function, ∆q becomes:

∆qi = k(θi − θi) (11)

This perturbation, ∆qi, tries to clamp the i-th joint angle
to its target value θi, with a lower-priority compared to the
task-space high-priority objective. In these experiments the
weighting factor is fixed to k = 1, so as to maximize the
accuracy within the null-space. In the following discussion,
we only consider the joint equality constraints due to the
SHR and to the closed-chain parallelogram mechanism, as
anticipated in Section II-B.

B. Proposed Algorithms

Given the highly redundant nature of the human arm,
it is reasonable to expect the existence of a large null-
space for the realization of constraints both in task and joint
space. Slotine and Siciliano [20] first introduced a method
to deal with conflicting task-space constraints, each of them
characterized by a Jacobian matrix. Baerlocher et al. [21] and
other studies in the field of hierarchical inverse kinematics
control [22] proposed methods to extend the problem to
n priority levels, but all are focused on the fulfillment of
task-space problem and do not take into consideration joint-
coordination constraints. For these reasons, such approaches
are not suitable for our application, where the coordinated
motion among the joints is more relevant with respect to
the task-space position of the end-effector of the exoskele-
ton. Here, we restate the current gold-standard algorithm,
followed by the two novel algorithms. Each of these is
compared with the traditional approach, to solve the inverse
kinematics problem of Harmony exoskeleton:

0) Jacobian Inverse Kinematics (J-IK)
The traditional inverse kinematics method exploits the right
pseudo-inverse of the Jacobian to compute a configuration
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Algorithm 1: Projected-Gradient (PG-IK)

do
iteration i;
compute J†(θi),∆xi, θi;
PNJ = (IN − J†J);
∆qi = k(θi − θi);
∆θi = J(θ)†∆x+ PN(J)∆qi;
θi+1 = θi + ∆θi;
compute xi+1;
etask = xi+1 − xi;

while etask > thrtask;

in the joint-space until the cartesian error between desired
and computed positions is below a certain threshold. This
approach has been widely discussed in literature [2].

1) Projected-Gradient (PG-IK):
The Algorithm 1, which can be considered an extension
of the J-IK, is introduced to explore the null-space and
introduce joint-space equality constraints. In particular, the
objective function presented in Equation 10 allows the algo-
rithm to compute the joint perturbation (∆q) to be projected
onto the null-space. By the definition of the PG method (Eq.
5), it should be noted that the constraints introduced by the
PG-IK have a lower priority with respect to the primary
kinematic constraint.

2) Constrained Projected-Gradient (CPG-IK):
We thus propose the Algorithm 2 that not only exploits the
null-space to fulfill additional restrictions, but also adds an
additional convergence condition. Specifically, in order to
exit the convergence loop, the error in joint-space must be
below a desired threshold (thrjoint = 0.05 degrees), so as
to guarantee a good coordination among joints.

Algorithm 2: Constrained Projected-Gradient (CPG-IK)

do
iteration i;
compute J†(θi),∆xi, θi;
PNJ = (IN − J†J);
∆qi = k(θi − θi);
∆θi = J(θ)†∆x+ PN(J)∆qi;
θi+1 = θi + ∆θi;
compute xi+1;
etask = xi+1 − xi;
ejoint = θi+1 − θi;

while etask > thrtask and ejoint > thrjoint;

IV. EXPERIMENTAL DESIGN

The kinematic model of the Harmony exoskeleton, de-
scribed in Section II-B, has been used for the validation of
the above mentioned algorithms. Two experimental methods
have been performed: the first one considers the quantitative
measurement of the performances of the algorithms in the
simulation environment, while the second one qualitatively
assesses the feasibility of the online application with the
robot during more complex movements.

Fig. 3: Experimental trajectories: A square (red) and a circle (blue)
trajectory are shown in the horizontal and frontal plane, respectively.

A. Quantitative Performance Metrics

To validate the performance of the algorithms, the inverse
kinematics problem has been solved both for circular and
square trajectories to be followed by the end-effector (i.e.
the hand) of the exoskeleton. Each circular and squared
trajectory has been performed in the frontal, sagittal and
horizontal planes (Fig. 3), then the results were aggregated.
Circular trajectories in task space have a diameter of 15
cm, while square trajectories are characterized by sides of
15 cm. Circular trajectories have been performed both at
constant and variable speed, square trajectories are tested
only at constant speed. In particular, when variable speed
is considered, we divided the trajectory into intervals and
randomly picked the samples within each interval, so as to
render different speeds of movement.

The inverse kinematics problem has been solved offline
in the MATLAB environment and several evaluation metrics
have been computed as described below:

1) Number of iterations (I#): The average number of
iterations needed to exit the convergence loop for each
trajectory point. Results are presented in terms of median
and interquartile values, along all the trajectories.

2) Task-space error (E3D): Euclidean distance between
target and actual task-space positions. Results are presented
in terms of maximum euclidean distance, expressed in mil-
limeters [mm].

3) Joint-space error (Eθ1 , Eθ2): Difference between de-
sired and actual joint angles. In particular we evaluate how
good the inverse kinematics method is to match joint-space
equality constraints. We mainly consider the constraints
related to θ1 (for the Scapulohumeral Rhythm) and to θ′2
(for the closed-chain mechanism), as described in Section
II-B. We present the maximum joint-space error expressed
in degrees [◦].

4) Smoothness (SM ): Movement smoothness is computed
as described in [23], where the metric is defined as the
time integral of absolute value of jerk measures along the
trajectory. Smoothness values are then sum among joint
angles and expressed in arbitrary units.

The objective of these experiments is to provide a quanti-
tative comparison of the performance of each algorithm, with
the aim of identifying the one most suitable for the control
of the exoskeleton’s end-effector position.
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TABLE I: Performance Metrics Results

Circular Shape - Constant Speed
Algorithm Ia# Eb

3D Eθ1 Eθ′
2

Sc
M

J-IK 1 (0) 0.0032 8.100 17.44 0.004
PG-IK 1 (0) 0.0034 0.207 0.387 0.015

CPG-IK 4 (1) 0.0027 0.049 0.050 1.060

Circular Shape - Variable Speed
I# E3D Eθ1 Eθ′

2
SM

J-IK 1 (0) 0.0116 8.140 17.45 9.946
PG-IK 1 (0) 0.0107 0.254 0.494 10.58

CPG-IK 3 (2) 0.0072 0.050 0.049 15.03

Square Shape - Constant Speed
I# E3D Eθ1 Eθ′

2
SM

J-IK 1 (0) 0.0052 9.006 22.13 0.448
PG-IK 1 (0) 0.0063 0.235 0.453 0.555

CPG-IK 4 (3) 0.0001 0.035 0.050 1.827
a Median number of iterations (Interquartile Range)
b Max Euclidean error
c Cumulative Smoothness along joints, in a.u.

B. Qualitative online feasibility assessment

Upon identifying the appropriate algorithm in terms of per-
formance metrics, the feasibility of an online application was
tested both on the Virtual Robot Experimentation Platform
(V-REP) simulator and on the robot.

To validate the entire workspace of the robot and the range
of joint speeds, we included more complex trajectories at
different velocities of execution. This was done in the form
of a spiral in the 3D space, and the drawing of a complex
shape in the frontal plane. The joint profiles were computed
offline in MATLAB, following which the simulator and the
robot performed the same task-space motion. Given that the
exoskeleton uses impedance control and not position control,
the resulting motion was expected to follow the same overall
pattern of the trajectory while allowing for deviations in
the motion, depending on the commanded motor stiffness,
due to the internal friction and weight of the robot. As a
consequence the discussion with respect to the robot data
is qualitative and not quantitative. The V-REP simulations
naturally do not suffer from the same issue.

V. RESULTS AND DISCUSSION

A. Quantitative Performance Metrics

In this section the performances of the three algorithms
J-IK, PG-IK, and CPG-IK, are compared for each trajectory.
Since no significant changes were found among the same tra-
jectory on different planes, we present the results obtained by
aggregating the data of experiments in frontal, horizontal and
sagittal planes. In Table I, performances for constant speed
circular trajectory, randomized speed circular trajectory and
constant speed square trajectory are reported.

It should be noted that, in all cases, relatively few iter-
ations were needed to converge to a solution that satisfied
the constraints and both PG-IK and CPG-IK were able to
significantly improve the joint-space error (Eθ). Also, since
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Fig. 4: The joint-space constraints error is minimized by the CPG-
IK algorithm, with respect to J-IK and PG-IK.

the CPG-IK required more iterations to find a solution, the
task-space optimization problem was also able to benefit
from the additional computations, leading to a slight decrease
in the cartesian error. Moreover, it appears that the nature of
the equality constraints, i.e. whether they were derived from
a physiological human arm coordination or from a constraint
in the kinematic model, did not influence the performance
of the algorithms. Both the proposed algorithms were able
to exploit the redundancy to meet either restriction.

If the proposed algorithms were able to guarantee joint
coordination, as a consequence, the addition of joint-space
constraints worsened the other performances (Table I). The
effect is especially pronounced for the CPG-IK, indeed more
repetitions were needed to compute a valid solution and the
smoothness of movement was worsened. Fig. 4 shows the
joint constraints errors during a circular trajectory in the task-
space, for both the shoulder-coordination constraint (a) and
the closed-chain constraint (b). It can be noticed that the
errors computed with J-IK are at least one order of magnitude
higher with respect to PG-IK and CPG-IK. Also, the CPG-IK
added some oscillations in the trajectory, leading to a worse
smoothness metric.

B. Qualitative online feasibility assessment

A composite 2-dimensional motion was used to test the
inverse kinematics algorithms in the robot. The same motion
was performed in the V-REP environment as well as by
the Harmony Exoskeleton. The motion was described to be
planar in the frontal plane. A camera was used to help
track the end effector position and visually compare the
resulting motion to the desired one. The comparison shown
in Fig. 5a demonstrates that the robot was able to match the
commanded task space motion well, but with some error as a
consequence of the robot’s impedance control. Depending on
the commanded speed and control stiffness of each motor,
the resulting motion of the robot shows varying levels of
deviation from the desired trajectory. In order to demonstrate
the application of our method to cover 3-dimensional (3D)
motion, we created an additional 3D composite trajectory,
included in the supplementary video as a demonstration.

C. Limitations

The presented algorithms were tested only with the equal-
ity constraints introduced by the Harmony exoskeleton,
while no constraints were put on joint limits or workspace
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(a) Harmony exoskeleton (b) V-REP Simulation

Fig. 5: Complex movements performed by the Harmony exoskele-
ton (a) and by the V-REP Simulation (b).

boundaries. Also, we believe that including additional con-
straints at the velocity level might improve the smoothness
of the movement. Finally, considering the applicability of
this approach on the Harmony exoskeleton, the accuracy
of the motion could be improved by adding a closed-loop
inverse kinematics logic within the real-time control of the
exoskeleton, so as to compensate the task-space error along
the desired trajectory.

VI. CONCLUSION

In this work we presented and compared a set of novel
methods to address the inverse kinematics problem for an
upper-limb exoskeleton such as the Harmony exoskeleton.
The kinematic model of the robot has been described and two
distinct joint-space constraints, prevent the use of traditional
inverse kinematics methods for serial manipulators, have
been introduced into the inverse kinematics problem. The
presented algorithms first apply the conventional differential
kinematics to solve a task-space problem, then the cor-
responding null-space (afforded by the robot’s kinematic
redundancy) is explored to maintain joint-space constraints,
as well as to ensure the kinematic integrity of the robot.

The Projected-Gradient (PG) and the Constrained
Projected-Gradient (CPG) methods have been tested on dif-
ferent trajectories with the kinematic model of the exoskele-
ton. We saw that CPG-IK had the best performances in terms
of joint-space errors, while PG-IK was slightly faster and did
not compromise the smoothness of the movement. It can be
concluded that, if a high-accuracy in joint-space coordination
is required, the CPG-IK algorithm is ideally suited, while the
PG-IK may be preferred if a trade-off among smoothness,
computational demand and joint coordination is desired.

Finally, we showed that the Harmony exoskeleton was able
to follow the desired task-space trajectory with good accu-
racy even when complex shapes were generated. Thus, the
contribution of this study lies in the ability of the proposed
methods to optimize for multiple objectives while adhering
to conflicting kinematic and dynamic constraints. While the
objectives and constraints presented in this work relate to
joint coordination and end effector tracking, the methods
presented here may be further extended. We therefore believe
that this approach could be used for several applications,
especially when robots are expected to interact with humans.
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