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Abstract— Wheeled-legged robots combine the efficiency of
wheeled robots when driving on suitably flat surfaces and
versatility of legged robots when stepping over or around
obstacles. This paper introduces a planning and control frame-
work to realise dynamic locomotion for wheeled biped robots.
We propose the Cart-Linear Inverted Pendulum Model (Cart-
LIPM) as a template model for the rolling motion and the
under-actuated LIPM for contact changes while walking. The
generated motion is then tracked by an inverse dynamic whole-
body controller which coordinates all joints, including the
wheels. The framework has a hierarchical structure and is
implemented in a model predictive control (MPC) fashion. To
validate the proposed approach for hybrid motion generation,
two scenarios involving different types of obstacles are designed
in simulation. To the best of our knowledge, this is the first
time that such online dynamic hybrid locomotion has been
demonstrated on wheeled biped robots.

I. INTRODUCTION

Wheeled robots move faster and more efficiently than

legged robots on flat ground. However, legged robots are

more capable at traversing challenging terrains such as

stairs and narrow trenches. Wheeled-legged robots have the

potential to combine the best of both worlds. In this paper,

we will focus on hybrid locomotion for wheeled biped

robots. Hybrid locomotion refers to simultaneous rolling and

walking motion as shown in Fig. 1. It can help the robot

stepping over or around obstacles. Such motion is difficult

to realise on wheeled biped robots since the robot needs to

balance in both forward and lateral directions simultaneously.

The balancing problem in the forward direction has been

studied extensively on two-wheeled self-balancing robots.

The balancing issue in the lateral direction is similar to

the walking problem where discrete contacts are utilised to

achieve the longer term cyclic balance. We unify the two in

this paper to realise hybrid locomotion.

A. Literature Review

For two-wheeled robots, the control problem mainly fo-

cuses on balancing in the sagittal plane (pitch motion) [1].

The most commonly used template model is the Wheeled

Inverted Pendulum Model (WIPM) [2]. Linearization of this

non-linear model around its upright stable equilibrium con-

figuration is needed to enable linear state feedback control

[3]. Alternatively, a non-linear approach can be directly
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Fig. 1: Wheeled biped robot in hybrid locomotion.

applied. In [4] differential dynamic programming (DDP)

and model predictive control (MPC) are applied to generate

whole body motion for a wheeled humanoid robot. However,

the computation complexity of these approaches are not

discussed. In this paper, we propose the new Cart-LIPM

model for controlling the motion in the saggital plane. It

remains linear in a large range of motion compared to the

WIPM linearized around a fixed point. Due to its linearity,

it enables a much higher MPC update frequency comparing

to the non-linear MPC.

LIPM has been widely used to generate walking motion

for biped robots [5] [6]. An important consideration when us-

ing this model for walking motion generation is the actuation

type associated with the foot. Fully-actuated LIPM assumes

planar feet and ankle torques actuation, as a result, the zero

moment point (ZMP) can be modulated inside the supporting

area. In contrast, the under-actuated LIPM assumes point

feet and therefore it has no insole ZMP modulation capa-

bility at all. If treating the walking motion generation as

a footstep optimization problem, different formulations exist

based on the model that has been used. Considering the fully-

actuated LIPM, automatic footstep placement [7] is proposed

to simultaneously optimize footstep placements and ZMP

trajectories. Formulations considering under-actuated LIPM
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are also proposed [8] [9]. In those formulations, only footstep

locations are optimized. These works introduce a similarity

regularization term to penalize the deviation of the optimized

footsteps from the referenced ones. In our previous work

[10], we replaced the absolute similarity minimization term

with a relative one which removes the requirement of the

reference footsteps generation plan and makes the footstep

optimization truly autonomous. In this paper, we adopt the

same formulation for lateral stepping motion generation.

For wheeled-legged systems, kinematic motion planning

has been demonstrated in [11] [12] [13]. These robots use

the legs only as an active suspension system while driving

around. Furthermore, the authors impose a quasi-static as-

sumption which limits the type of motion the robot is able

to achieve. The work presented in [14] and [15] exploits

the full robot dynamics of a wheeled humanoid robot which

allows for generating joint torque commands and to achieve

compliant interaction. However, the large mobile base of the

robot makes it difficult to deal with obstacles or uneven

terrain.

More recent results on the wheeled quadrupedal robot

ANYmal demonstrate robust dynamic hybrid locomotion

capability. The authors of [16] [17] [18] proposed different

trajectory optimization (TO) formulations. These formula-

tions integrate the wheels into the control framework so

that the robot is capable of performing walking and driving

simultaneously.

For wheeled humanoid robots, dynamic balance has been

considered by [4] [19] [20]. The common morphology of

these wheeled humanoid robots is that the two wheels are

directly connected to the same base link. In [21], a humanoid

robot is able to drive an off-the-shelf two wheeled mobile

vehicle without being physically attached to it. Despite the

existence of articulated structure, all these robots only use

the wheels for locomotion. In contrast to this, the Ascento

[22] robot from ETH and the Handle robot [23] from Boston

Dynamics have wheels attached to separated extremities.

This makes it possible to potentially use the wheeled leg

for walking. Jumping motions has been implemented to

overcome obstacles for these two robots. Although effective,

it is not always the most efficient way to jump over obstacles.

For example, when the obstacle only blocks part of the way

of the robot, the robot can step over it instead of jumping

over. This motion essentially requires the robot to be able

to balance while it has only one leg on the ground. In this

paper, we will demonstrate how this can be achieved through

our proposed motion synthesis approach.

B. Contribution

• We propose to combine Cart-LIPM and under-actuated

LIPM to generate hybrid motions for wheeled biped

robots. To the best of our knowledge, we are the first

to apply Cart-LIPM for rolling motion generation.

• We propose a two degree of freedoms ankle joint

(roll-pitch) configuration. This enables the decoupling

of rolling and walking motions. It differentiates this

work from many existing wheeled legged robots with
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Fig. 2: Control Framework.

only one pitch joint in the ankle, such as the wheeled

ANYmal [16], Ascento [22] and Handle [23].

• In the whole-body controller, the dynamic nonholo-

nomic constraints on the wheel are defined with re-

spect to the center of the wheel instead of the contact

point which gets rid of the extra wheel orientation

parametrization as needed in [16].

II. CONTROL FRAMEWORK

Our control framework takes a simple user command as

input and automatically generates the whole-body motion

for the robot, including the wheels. The framework has a

hierarchical structure as shown in Fig. 2. The inputs are the

center of mass (CoM) reference velocity v∗
c = [ẋ∗

c , ẏ
∗
c , 0]

T ,

and the contact sequence generated by the state machine.

The contact sequence consists of multiple contact states

which include LS (Left-Support), RS (Right-Support) and

DS (Double-Support). For rolling motion, we only consider

the DS state. For walking and hybrid motions, the contact

sequence are the same as shown in Fig. 3. Given the

desired CoM velocity and the contact sequence, the motion

planner will generate the CoM and end-effector trajectories

in Cartesian space. A whole-body controller is then used to

track these trajectories by finding the optimal joint torques

while considering a set of constraints. Calculated joint torque

commands are sent to the simulated robot and all sensor

readings are collected to ensure full-state feedback. The state

estimator estimates required robot states based on the raw

Ts Ts Ts Ts

LS RSLSRS

Fig. 3: Walking and hybrid locomotion contact sequence. Ts

is the step duration. The contact sequence is defined for the

lateral walking motion, the rolling motion is not affected.
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sensor data and feeds back to the planner and the whole-

body controller for the next loop calculation.

In order to fill the gap between the models used in different

hierarchies (simple model in the motion planner and full

model in the whole-body controller), model predictive con-

trol (MPC) is introduced. Reference trajectory re-planning

is carried out with a defined MPC update frequency in

the motion planner while considering current robot states.

This makes the robot more robust and adaptive to external

disturbances and internal sensor noise.

III. MOTION PLANNER

In this section, we will introduce the motion planner. The

input to this block is the linear reference velocity for the

CoM. No steering control has been assumed to simplify the

problem. Before talking about the problem formulation, we

will start with the models.

A. Hybrid Model

Wheeled robots and legged robots are often treated sepa-

rately due to the different nature of contacts for the rolling

and walking motion. Rolling motion assumes continuous

contact with the ground while walking motion relies on

discrete contact changes. These two types of contacts can

happen on the same wheel that is rolling on the ground

with non-holonomic constraints assumed on it. In its forward

rolling direction, the contact position changes along with

the rotation of the wheel. In its lateral direction, the contact

position stays the same.

To simplify the analysis, we assume that the robot does

not steer in the inertial frame and the wheel plane is always

parallel to the x-z plane of the inertial frame. With this

assumption, we can decouple the motion in sagittal plane

and frontal plane. Then we propose to use the Cart-LIPM

model for sagittal plane rolling motion generation and the

under-actuated LIPM for frontal plane walking motion gen-

eration as shown in Fig. 4. These two models are essentially

different variations of the standard LIPM, which makes it

very convenient to compose them. Their dynamics take a

similar form:

ẍc = ω2(xc − xp) (1)

ÿc = ω2(yc − yp) (2)

where xc, yc refers to CoM positions, xp, yp refers to ZMP

positions, w =
√

g/zc is the pendulum frequency with g the

gravitational acceleration and zc the constant CoM height.

The key difference between them is the ZMP property: xp

takes continuous values and yp takes discrete values.

B. Rolling Motion Planning in the Sagittal Plane

The dynamics of Cart-LIPM (1) gives the instantaneous

relationship between CoM and ZMP: the acceleration of

CoM ẍc is proportional to the distance between it and the

ZMP. Therefore, the CoM dynamics can be modulated by

controlling the ZMP position xp. Any higher order derivative

of xp can be chosen as the control input, e.g. ẋp or ẍp

zczc

xp

xc

yp
yc

YX

ZZ

O O

Fig. 4: Cart-LIPM and Under-actuated LIPM.

depending on the actuation type of the wheel. Here, it is

assumed that all joints of the robot are torque controlled, the

acceleration of the ZMP ẍp has been chosen as the control

input ux and the state space model is:

ẋ = Axx+Bxux (3)
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where the state x = [xc, ẋc, xp, ẋp]
T collects the positions

and velocities of CoM and ZMP.

Since the system is linear, we can apply a linear quadratic

regulator (LQR) to stabilize the system. We then compute

an optimal state-feedback control for this continuous-time

system by minimizing the following quadratic cost function:

argmin
ux

∫ ∞

0

xTQx+Ru2
x

s.t.

ẋ = Axx+Bxux

(5)

where Q ∈ R
4×4 and R ∈ R

1×1 are weight matrices

corresponding to states and inputs. A diagonal weight matrix

Q is chosen and each individual component is selected based

on the importance of the corresponding state. Since we are

more interested in tracking the reference CoM velocity, we

will put higher weight on the CoM velocity state. The input

weight matrix R penalizes the control input ẍp. The wheel

acceleration is actually related to the ZMP acceleration ẍp, so

R is indirectly penalizing the wheel actuation. After having

Q and R determined, the optimal gain matrix K can be

calculated from the associated algebraic Riccati equation

[24]. The feedback law which incorporates the reference

velocity is:

ux = −K(x̂− x∗) (6)

where x̂ is the estimated state provided by the state estimator,

x∗ is the reference state to be tracked. In our case, only the

reference CoM velocity ẋ∗
c is included in x∗.

The optimal control problem is solved with LQR but

without considering any hard constraints. Sometimes it is
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necessary to incorporate system constraints in the planning,

such as kinematic limits and friction constraints. Although

the template model is very simple, these constraints can be

enforced effectively. Then, the problem can be reformulated

as a quadratic programming (QP) problem.

C. Walking Motion Planning in the Frontal Plane

In the previous section, we addressed how the Cart-LIPM

can be used to generate the rolling motion. In this section,

we will give details about how the lateral direction walking

motion can be achieved. The under-actuated LIPM is used as

the template model since the contact between the wheel and

the ground is ideally a point. Its dynamics given in equation

(2) can be solved analytically:

y(t) = Ay(t)y0 +By(t)yp (7)

where A(t) and B(t) are time dependent matrices:

Ay(t) =

[

cosh(ωt) ω−1sinh(ωt)
ω sinh(ωt) cosh(ωt)

]

By(t) =

[

1− cosh(ωt)
−ω sinh(ωt)

] (8)

It is also the natural dynamics of the model, i.e., the CoM

state y(t) = [yc(t) ẏc(t)]
T evaluates as a function of time for

a given initial state y0 = [yc(0) ẏc(0)]
T and a fixed support

foot placement yp.

Due to the under-actuation of this model, the walking

motion planning problem becomes a foot placement opti-

mization problem. Once future steps have been decided, the

CoM motion is fixed accordingly. Specifically, given current

estimation of the CoM state ŷ0 and support foot placement

ŷp,0, the touchdown moment CoM state can be calculated

as:

y1 = Ay(T0)ŷ0 +By(T0)ŷp,0 (9)

where T0 is the remaining duration of the current step. The

state y1 can not be modified due to fixed ŷp,0. Without

double support, the robot switches support instantaneously

and the final state of the current step becomes the initial

state of the next step. After one more step, the CoM state

becomes:

y2 = Ay(Ts)y1 +By(Ts)yp,1 (10)

where Ts is the fixed step duration, the state y2 is only related

to foot placement yp,1. This process can be repeated:

y3 = Ay(Ts)y2 +By(Ts)yp,2

...

yN+1 = Ay(Ts)yN +By(Ts)yp,N

(11)

where N is the number of steps to be optimized. It can be

concluded that all the future CoM states are a function of

future steps. In order to optimize future CoM states, we could

collect all future step locations as the optimization variable

yp = [yp,1 yp,2 ... yp,N ]T . The primary goal in our case is

to track the reference CoM velocity v∗y . The other important

task is the previously proposed relative distance similarity

regularization [10], which keeps the feet away from each

other to avoid self-collision. The overall cost is defined as:

argmin
yp

N
∑

i=1

Q(ẏc,i+1 − v∗y)
2 +R(∆yp,i −∆y∗p,i)

2 (12)

where ∆yp,i = yp,i − yp,i−1 is the step length between two

adjacent steps, ∆y∗p,i is the desired step length defined as

∆y∗p,i = s·(−1)id, where d is the desired inter-feet clearance,

and s indicates the current support phase (1 for left support

and -1 for right support). The step length similarity cost

term only encourages the feet stay away from each other. In

extreme scenarios such as when the robot has been heavily

disturbed in the lateral direction, hard constraints on the step

length are necessary to prevent feet self-collision or leg over

stretching: dmin < s · (−1)i∆py,i < dmax (i = 1, ..., N).
It is worth mentioning that only the first optimal step

position y∗p,1 will be used to adapt the swing foot trajectory

based on the MPC implementation. The CoM trajectory can

be calculated from (7). The updated CoM trajectory and

swing foot trajectory are sent to the whole-body controller

to track.

IV. WHOLE-BODY CONTROLLER

The whole-body controller is used to track trajectories

given from the motion planner while satisfying specified

constraints. In the case of hybrid locomotion, the targets

which need to be tracked are CoM, support wheel center

position and swing wheel center position. The wheels need to

be coordinated with all other joints to achieve these tracking

tasks. The full dynamic model of the multi-rigid-body system

is thus considered. The equation of motion is:

M(q)q̈ + h(q, q̇) = ST τ + JC(q)
T
λ (13)

where M(q) ∈ R
(n+6)×(n+6), h(q, q̇) ∈ R

n+6 are the

mass matrix and nonlinear term, q ∈ SE(3)×R
n represents

the configuration of the system which includes the pose of

the base link and joint positions of n actuated joints, and

q̇ ∈ R
n+6 and q̈ ∈ R

n+6 are the generalized velocity and

acceleration. The selection matrix S = [0n×6 In×n] selects

the actuated joints. τ ∈ R
n is the actuated joint torques.

JC ∈ R
(3nc)×(n+6) is a concatenated contact Jacobian

JC = [JT
1 JT

2 ... JT
nc
]T and nc is the number of contacts.

λ ∈ R
3nc is the concatenated contact forces corresponding

to the contact Jacobian.

A. Optimization Formulation

The goal of the optimization is to track a set of tasks.

When there is not enough solution space to realise all tasks

at the same time, a mechanism is needed to resolve the

conflicts between tasks. There are two choices: a weighted

approach or a strict hierarchy approach. In fact, the two

can be combined in a general formulation which imposes

strict priorities between different hierarchies while allowing

soft compromises among tasks within the same hierarchy. In

particular, the whole-body control problem is formulated as

a cascade of quadratic programming (QP) problems which

are solved in a strict prioritized order [25]. The optimization
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variable is ξ = [q̈T λT ]T . A task with priority p is defined

as:

Tp :

{

Weq,p (Apξ − bp) = 0

Wineq,p

(

Cpξ − dp

)

≤ 0
(14)

where Ap and bp defines the equality constraints and Cp

and dp defines the inequality constraints – they are concate-

nated from all tasks with the same priority p. Weq,p and

Wineq,p are diagonal weight matrices that weigh tasks in

this hierarchy.

B. Tasks

The previous section gives the general optimization for-

mulation (14). In this section, we will highlight tasks that

are important for the hybrid locomotion.

1) Dynamic constraints and torque limits: The system

dynamics equation (13) can be rewritten in two parts [26]:

Mλq̈ + hλ = JT
C,λλ (15a)

Mτ q̈ + hτ = τ + JT
C,τλ (15b)

where the upper six rows corresponds to the floating base

and are used as system dynamic constraints. The lower

actuated part can be used to calculate joint torques from joint

acceleration and contact forces: τ = Mτ q̈ + hτ − JT
C,τλ.

Additionally, torque limit constraints τ ∈ [τ−, τ+] can be

defined with it.

2) Friction constraints and unilateral constraints: The

friction cone is approximated with a friction pyramid and

then enforced on the contact forces λ. In the local frame

of each contact force fi, the constraints can be written as:

|fi,x| ≤ µfi,z , |fi,y| ≤ µfi,z (µ: friction coefficient). The

unilateral constraints requires the z component of the contact

force to be positive fi,z > 0.

3) Nonholonomic constraints: Nonholonomic constraints

ensure pure rolling for the wheel which is in contact with the

ground (no slipping in wheel radial direction and no sliding

in wheel axial direction). Fig. 5 shows our two DoF ankle

joint configuration. Both roll joint and pitch joint are actively

controlled. The roll joint moves in a limited range while the

pitch joint can rotate continuously without limits.

Instead of developing the nonholonomic constraints on the

contact point C, we derive it with respect to the center of

the wheel W . In the inertia frame I, the velocity of point C
can be related to the velocity of the point W through:

vC = vW + ωW × rWC (16)

where vW = JW q̇ is linear velocity of the center of the

wheel (it is not related to the wheel rotation since W locates

on its rotation axis). ωW is the rotational velocity of the

wheel and it can be expressed as ωW = ω̂W · ||ωW || = ŷW ·
q̇W , where ω̂W and ||ωW || refers to the unit vector and norm

of ωW , q̇W refers to the joint velocity of the wheel. rWC is

the vector pointing from W to C. Kinematic nonholonomic

constraints require the velocity of the contact point C to be

equal to zero with respect to the ground, vC = 0. Combining

this with (16), the constraint becomes:

vW + ωW × rWC = 0 (17)

Roll

Pitch

r

C

W

ŷW

x̂W

ẑW

ẑI

x̂I

ŷI

ĥW

I

Fig. 5: The two DoF ankle joints consists of a roll joint and

a pitch joint. I is the origin of the inertia frame I. W stands

for the center of the wheel and it is also the origin of the

wheel link frame W . C is the contact point between the

wheel and the ground. ĥW indicates the heading direction

of the wheel and it is defined from the wheel rotation axis

and the ground norm axis ĥW = ŷW × ẑI . r is the radius

of the wheel.

Differentiating with respect to time gives the acceleration

level nonholonomic constraints:

v̇W + ω̇W × rWC + ωW × (ωW × rWC) = 0 (18)

where v̇W = JW q̈ + J̇W q̇ is the linear acceleration of W ,

ω̇W is the rotational acceleration of the wheel and is related

to the wheel joint acceleration q̈W through ω̇W = ŷW · q̈W .

Substituting these relations into equation (18):

JW q̈ + J̇W q̇ + [ŷW ]×rWC q̈W + [ŷW ]2×rWC q̇
2
W = 0 (19)

where [ ]× is the skew-symmetric cross product operator.

A wheel selection matrix SW can be defined to select out

the wheel joint velocity and acceleration from the general

coordinates: q̇W = SW q̇, q̈W = SW q̈. Finally, equation

(19) becomes:

(JW + [ŷW ]×rWCSW )q̈ = −J̇W q̇ − [ŷW ]2×rWC(SW q̇)2

(20)

which gives the dynamic nonholonomic constraints for the

wheel rolling on the ground.

Although the non-holonomic constraints are defined with

respect to the point W , the location of the contact point C is

needed since rWC has been used in previous derivation. The

contact point is on the edge of the wheel, so the distance from

W to C is a known constant r. Since rWC = r̂WC r, we still

need to find out its unit direction vector r̂WC . The heading

direction of the wheel is defined from the wheel axis ŷW and

the ground norm ẑI : ĥW = ŷW × ẑI . Then, the direction

vector r̂WC can be calculated as r̂WC = ŷW × ĥW =
ŷW × (ŷW × ẑI).

4) Cartesian space motion tracking: The outputs of the

motion planner are Cartesian space trajectories generated
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Fig. 6: Rolling motion on flat ground (top row) and uneven terrain (bottom row).

based on the reduced order template models. The whole-

body controller needs to track them as closely as possible.

The commanded acceleration is defined based on the desired

trajectories:

Ẍc = KPE(X ∗,X ) +KD(Ẋ ∗ − Ẋ ) + Ẍ ∗ (21)

where X ∗, Ẋ ∗, Ẍ ∗ are the desired pose, velocity and

acceleration. X , Ẋ are the current pose and velocity of the

controlled frame. E(X ∗,X ) gives the error between two

poses in SE(3) and the logarithm map has been used to

calculate the error [27]. KP , KD are feedback gain matrices.

The commanded task space acceleration is related to the joint

space acceleration:

Ẍc = JT q̈ + J̇T q̇ (22)

where JT refers to the task jacobian matrix. For the cen-

troidal task, it is the centroidal momentum matrix. For the

swing foot tracking, it becomes the swing foot jacobian

matrix.

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

t (s)

ẋ
(m

/s
)

ẋc

ẋ∗
c

Fig. 7: CoM velocity trajectory of the rolling motion (blue

solid). The green dashed line stands for the desired velocity

that has been given to the planner.

V. SIMULATION

Given the motion planner and whole-body control, we

are ready to generate motions for the wheeled biped robot.

Rolling and walking are first generated separately based

on their respective template models. Hybrid locomotion is

then performed to validate the composition of the two. Two

scenarios have been designed to show the usefulness of

the hybrid locomotion mode. The simulation is conducted

in PyBullet [28], a Python module that extends the Bullet

physics engine. The robot used here is the lower-body of the

humanoid robot COMAN+ [29] with attached wheels.

A. Rolling

Rolling is the most basic locomotion mode of the wheeled

biped robot involving rolling on its wheels. Both wheels stay

on the ground throughout the whole motion. In other words,

the robot only has a double support phase. The obvious

benefit of not having single support is that the robot does

not need to handle lateral balancing. The drawback is that

the robot can only navigate over relatively regular terrain.

When encountering significant obstacles, the robot has to re-

plan its route and drive around.

The simulated motion is demonstrated in the top of the

Fig. 6. The snapshots shows a generated rolling motion that

starts from zero velocity and accelerates to a given desired

velocity 1.0m/s. Here, the weights Q = diag([1 104 1 103])
and R = 10 have been tuned to make the robot perform

more aggressively. This can be seen from the third picture

of the top row in which the robot almost fully extend its legs

to maximize the CoM acceleration. A detailed plot of CoM

velocities in forward direction is given in Fig. 7.
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Fig. 8: Wheeled biped robot goes over obstacle. The size of the obstacle is 0.5×0.5×0.08m and the radius of the wheel is

0.08m. The current speed of the robot is around 4.5m/s.

Fig. 9: Wheeled biped robot goes around barrier without steering.

To further test the robustness of the control system, we

repeated the same motion with uneven terrain added to the

scene as shown in the bottom of the Fig. 6. The terrain is

generated with Perlin noise with the maximum height of

0.08m. The robot has no knowledge of the terrain but is

still able to traverse.

B. Walking

Fig. 10: Walking motion.

Walking mode is another basic locomotion mode of the

robot. The walking mode described here is a mode in which

both wheels of the robot are locked and treated as point feet.

Besides that, only single support has been considered for

walking as suggested in section III-C. The walking motion is

shown in Fig. 10. Despite the fact that we are demonstrating

motion in the lateral direction only, we do need to take care

of balance in the forward direction since the robot can only

get point support from the wheel. To achieve 3D walking

motion, we have composed two under-actuated LIPMs in

both directions, more details can be found in our previous

work [10]. For walking in place, the desired velocities in

both directions are simply set to zero.

C. Hybrid Locomotion

Hybrid locomotion mode combines rolling and walking.

The contact sequence for hybrid locomotion is the same

as walking as shown in Fig. 3. The wheel in contact with

ground rolls in the forward direction while pushing the robot

in lateral direction. The wheel in the air tracks a trajectory

defined for its center, while its rotation is subject to a

minimum torque task. Two scenarios have been designed to

show the usefulness of this mode.

In the first scenario, an obstacle is presented in front of

the robot and blocks half of the robot, but the robot is able to

step over it while the other wheel on the ground still keeps

rolling. The process of going over the obstacle is plotted in

Fig. 8. The height of the obstacle is the same as the radius

of the wheel and the width and length are both 0.5m. It is

very challenging either to roll over (due to the height) or to

walk over (due to the length). However it can be achieved

through the enabled hybrid locomotion; what is more, the

“step length” in hybrid mode is proportional to the speed of

the robot.

In the second scenario, a much higher barrier is placed in

front of the robot. Instead of steering away to move around it,

with the hybrid mode, the robot can step aside while rolling

forward. This movement is shown in Fig. 9.

The above simulations show that the hybrid locomotion

mode indeed provides the robot more options to traverse

cluttered environments. To summarise, the hybrid locomotion

mode makes the wheeled biped robots much more versatile

and able to deal with scenarios arising in real world, unstruc-

tured environments. The recorded simulations can be found

here: https://youtu.be/AbWz0OjNxpU.

VI. CONCLUSION AND FUTURE DIRECTION

In this paper, we have demonstrated how different types

of motion such as rolling, walking and hybrid motions can
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be generated from the composition of decoupled rolling

and walking motion. The Cart-LIPM and the under-actuated

LIPM are proposed to model these scenarios. Due to the

model linearity, the motion planning can be executed in

real time which enables fast online MPC implementation,

significantly increasing the robustness of the motion as

illustrated by the examples.

However, the proposed composition method has limita-

tions introduced by the template models such as the require-

ment of constant CoM height. This prohibits more dynamic

motion, such as jumping, which could be very effective in

certain circumstances. The motion composition necessarily

decouples the rolling and discrete stepping motion along

different directions. In future, we will integrate this, for e.g.,

by combining rolling and walking in the forward direction.

Another issue that has not been mentioned in the paper is

the steering control which could be potentially explored,

especially in the hybrid locomotion scenario.
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