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Abstract— Reinforcement Learning (RL) methods have
demonstrated promising results for the automation of subtasks
in surgical robotic systems. Since many trial and error attempts
are required to learn the optimal control policy, RL agent
training can be performed in simulation and the learned be-
havior can be then deployed in real environments. In this work,
we introduce an open-source simulation environment providing
support for position based dynamics soft bodies simulation and
state-of-the-art RL methods. We demonstrate the capabilities
of the proposed framework by training an RL agent based
on Proximal Policy Optimization in fat tissue manipulation for
tumor exposure during a nephrectomy procedure. Leveraging
on a preliminary optimization of the simulation parameters, we
show that our agent is able to learn the task on a virtual replica
of the anatomical environment. The learned behavior is robust
to changes in the initial end-effector position. Furthermore, we
show that the learned policy can be directly deployed on the
da Vinci Research Kit, which is able to execute the trajectories
generated by the RL agent. The proposed simulation environ-
ment represents an essential component for the development of
next-generation robotic systems, where the interaction with the
deformable anatomical environment is involved.

I. INTRODUCTION

Diffusion of Surgical Robotic Systems (SRSs) has con-
stantly increased over the last 15 years. This spreading is
motivated by enhanced dexterity and 3D vision provided
by SRSs that allows to translate a conventionally difficult
Minimally Invasive Surgical (MIS) procedure into an easier
work for surgeons and, ultimately, to better surgical treatment
for patients [1]. Since all MIS procedures are composed of a
series of standard subtasks (e.g. dissection, suturing and knot
tying), recent SRS research has pushed towards their robotic
automation, to allow the surgeon to focus on more critical
steps and further improve the overall quality of the surgical
treatment. One of the most common subtasks present in most
MIS procedures is soft tissue manipulation. For example, in
robotic assisted nephrectomy procedures, the surgeon has to
manipulate the highly deformable perirenal fat tissue which
covers the kidney in order to expose, and subsequently
have access to, the region of interest. The main challenge
when attempting to automate robotic tissue manipulation
relies on accounting for the dynamic behavior of soft tissues
interacting with the anatomical environment. The design
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Fig. 1.
tissue covering a kidney phantom. The simulated scene controlling dVRK
movements can be seen in the background.

In our setup, a single arm of the dVRK interacts with silicone fat

of hand-crafted control policies requires to consider such
dynamic behavior in path planning and control methods.
However, the high variability of soft tissue properties makes
it very complex to find a control policy able to generalize to
realistic anatomical environments.

Deep Reinforcement Learning (DRL) have shown promis-
ing results in the automation of robotic tasks, without the
need to design ad-hoc control strategies [2]. However, the
DRL agent reaches robust performance after it has explored
a huge amount of possible policy options, which requires
a long training consisting of a large number of attempts,
many of which fail with unsafe behavior. Although safe
learning methods have been proposed, their exploitation
in the surgical robotic field remains limited, due to the
impracticality to acquire many training trials from real SRSs
[3]. To tackle this issue, some works have proposed to use
a sim-to-real approach, where autonomous agents can be
trained in a simulated environment and the learned policies
can be successfully transferred to a real system [4], [5].
Training an agent in simulation seems the most appropriate
strategy to apply DRL to learn surgical subtasks, since the
training process can be optimized, avoiding all the limitations
related to technical and ethical aspects of organizing clinical
experiments. However, to exploit sim-to-real methods in the
surgical robotic field, it is essential to have realistic and
fast simulation environments where to prototype and test
the algorithms. Realism is an important requirement of the
simulation framework used, in fact it has been proved that
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the greater the discrepancy between the simulated and real
environments (called reality gap), the higher the probability
that a policy learned in simulation will perform poorly in the
real world [6].

In this work, we introduce a completely general and
modular framework that allows to exploit RL methods to
learn task automation in simulated surgical environments
which involve deformable objects. The main contributions
of this work are the following:

1) we present a complete open-source' virtual environ-
ment designed for training RL methods involving de-
formable objects interaction;

2) we show that a soft tissue manipulation task can be
learned in simulation without any user demonstration;

3) we demonstrate that the learned policy translates di-
rectly to the surgical robotic system thanks to the da
Vinci Research Kit (dVRK), without further training.

To the best of our knowledge, this represents the fist attempt
of introducing an extensible virtual environment supporting
soft tissue simulation for training RL agents in surgical
robotic applications. By making it publicly available, we
hope to encourage the research community to adopt it for
modelling many different scenarios of increased complexity.
Furthermore, the simulation framework is designed to enable
a straightforward deployment of the learnt behaviours on real
SRSs.

II. RELATED WORKS

Automation of surgical subtasks with the dVRK is a very
active research area within the surgical robotics community.
Most of the prior works in the field rely on the Learning
From Demonstrations (LfD) approach, where the robot learns
to perform a task in complete autonomy from a set of
demonstrations from expert users [7]-[9]. LfD represents
the preferred approach since it does not require to explicitly
model the highly deformable anatomical environments the
robot interacts with, which would be the most challenging
step. However, the robustness of learned tasks to changes
in the initial conditions or in the environment is strongly
affected by the amount and variety of expert demonstrations
provided to the system. Collecting such a dataset is impracti-
cal and often unfeasible in clinical settings. Some alternative
approaches for surgical actions automation which exploit
simple control algorithms have also been proposed, but
they require the extraction of visual and geometric features
that would need strictly controlled conditions and are thus
difficult to generalize in realistic settings [10]. Leveraging
on the latest advancements in DRL, which has proved to be
promising for learning control strategies in robotics when
the behavior of the environment is not completely known,
some recent works have focused on applying DRL methods
to learn tasks in robotic surgery [10], [11]. In their recent
work, Richter et al. proposed the first RL environment for
surgical robotics which allows to train DRL policies in sim-
ulation before moving to the real SRS, where OpenAl Gym

"Project available at https://gitlab.com/altairLab/unityflexml

communicates with V-REP robotic simulator [5]. The main
limitation of such framework is that it lacks the possibility to
model deformable objects, which is extremely important in
a realistic simulation, especially if the agent has to interact
with the anatomical environment.

In general, there are very few works of sim-to-real RL
which involve the manipulation of deformable objects, even
fewer if we consider the surgical field [12]. Shin et at. have
compared the performances of RL and LfD in automating
soft tissue manipulation with the Raven IV surgical system
[13]. Although both RL and LfD could successfully learn the
task, trajectories learned with RL have not been transferred
to the real robotic system because considered too hazardous.
If an integrated framework able to provide a more realistic
simulation of the environment dynamics were available, it
would lead to different conclusions. Surgical pattern cutting
learned with DRL in simulation involving deformable objects
has been successfully tested on the dVRK in [4], [11].
Authors have used an ad-hoc simulation environment for RL
policy learning, which can only simulate a 2D deformable
sheet with a set of masses and springs, and cannot thus
generalize to more complex deformations and anatomical
shapes.

III. ROBOT PLATFORM AND SIMULATION
ENVIRONMENT

In this work, we show that an RL agent can be trained
in our simulated environment to manipulate soft tissues and
the learned policy can be deployed to the da Vinci Surgical
System, controlled through the dVRK [14].

A. Robot Platform

We consider a scenario with a single dVRK slave unit,
known as Patient Side Manipulator (PSM) arm. In order to
have a state space which is straightforward to observe for RL
in both the simulator and the real robot, the motion of the
PSM end-effector (EE) is controlled in the Cartesian space,
keeping the EE orientation constant (as in [5])). Although
in this work we consider the Large Needle Driver (LND)
instrument unit, our framework generalizes to any possible
instrument, provided that the corresponding kinematic model
is loaded in simulation. Therefore, the PSM EE state is
completely characterized by its position p; and gripper state
(g9¢ € {0,1}, open/close). Similarly to [5], we normalize the
PSM positions with respect to the workspace, defined by
the PSM joint limits and the obstacles in the environment,
to allow generalization of the learned policies to various
joint configurations. We assume that the 3D model of the
anatomical environment is available, extracted from some
kind of pre-operative images such as Magnetic Resonance
Imaging (MRI), which allows us to know the position of the
tumor area of interest q.

B. Simulation Environment

Our simulation framework is based on Unity3D engine,
a game development platform which has shown promise in
medical simulations [15]. The main advantage of using Unity
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is that its high modularity allows users to easily customize
the environment scene and to exploit advanced features im-
plemented in separate plugins. In particular, our framework
relies on two main Unity plugins: the Machine Learning
Agents Toolkit (ML-Agents), for training intelligent agents
[16], and NVIDIA FleX, for soft object deformation [17].

Deformable bodies are simulated with the Position Based
Dynamics (PBD) approach relying on the optimized imple-
mentation provided by NVIDIA FleX, which has already
proved able to model soft tissue deformations both realis-
tically and fast [15]. Therefore, it is suitable for performing
the huge number of trial and error attempts required by RL.
In an effort to minimize reality gap, we perform a prelim-
inary optimization procedure to find the PBD deformation
parameters that keep the real and the simulated behaviors
as close as possible. From what concerns the simulation of
the robotic part, we have implemented a closed form inverse
kinematics of the PSM to enable the Cartesian space control
of the manipulator. At each simulation step, the robotic
system is allowed to perform a very small motion increment.
Thanks to this feature, we could assume the impact of the
robot dynamic behavior to be negligible, thus we have not
accounted for it in the simulation [5]. In our simulated
environment, grasping of an object is modelled as an atomic
event triggered when the relative distance with the EE is less
that 2 mm.

IV. LEARNING SOFT TISSUE MANIPULATION

In this work, methods of RL are employed to learn the
actions that the da Vinci system has to perform to expose a
kidney tumor by manipulating fat tissue.

A. Background in RL

Our RL problem is formulated as a Markov Decision
Process (MDP) where an agent learns by interacting with the
surrounding environment. An MDP is described as a tuple
(S,A,r, P,v), where S is the state space, A is the action
space, r : Sx A — Ris the reward function that encapsulates
the goal, P : S x A x S : R is the transition probability
function, and v € [0, 1] is the discount factor. At each time
step ¢, the environment produces a state observation s; € S.
Then, the agent takes an action a; ~ pu(s:) , a: € A, sampled
from P(s:,as,.), which brings it to a new state s;,;. The
goal of the agent is to learn the behavior policy p: S — A
which allows to maximise the expected discounted reward
E [ZiT;Ol ~ir;], where T is the considered time horizon.

B. Observation and Action Space

In our problem, the agent is represented by the EE of
the da Vinci PSM, which interacts with the surrounding
anatomical environment, whose initial state is assumed to
be known from pre-operative data. Our task consists of
moving the PSM arm from a pre-defined initial position
Po to a position close to the tumor q, grasp the fat and
lift it to a pre-defined final position pr. Points pg and pr
are considered fixed through all the training experiments,

to accelerate the training phase by reducing the number of
possible configurations.
The state and action space of the environment is:

S¢ = [P+, 9, P, |IP: — dll, [|Pt — prll]

1
A= [Augt] M

where ||.|| is the Euclidean distance. A;; = 0.5a, a €
{0,—1,+1} tells the agent if it has to remain still, move
backward or forward by 0.5 mm in the iy, spatial dimension,
while g; € {0, 1} represents the gripper state (open/close).

C. Reward Function

We design a reward function which changes depending on
the current gripper state:

p:—dqa|lxk—0>5, ifg.=0
r(sy) = i I L _ (2)
Pt — prl| * K, if g =1

where k is a normalization factor which depends on the
volume in which PSM can move. When the gripper is open,
the reward encourages the PSM to move towards the tumor.
On the other hand, when the EE has grasped the tissue,
it is pushed towards the target position. During training,
the rewards are accumulated at each episode. An episode
terminates after 1500 steps. Our DRL framework is based on
Proximal Policy Optimisation (PPO), in its implementation
provided by Unity MLAgents.

V. EXPERIMENTS

The soft tissue manipulation task we aim to learn consists
in grasping and pulling the fat tissue covering the kidney
in order to expose a tumor. Our real experimental setup
consists of a synthetic kidney phantom covered with silicone
fat tissue, shown in Fig. 1. We restrict the portion of fat tissue
our agent interacts with to a 90x90 mm square region which
is rigidly anchored to the top part of the kidney. The silicone
patch representing the fat is held in place through a custom
designed rigid structure, which enables to uniquely define the
position of fat and kidney between the simulated and the real
environment. All the simulation experiments, including RL
training and dVRK control, ran on a workstation equipped
with an AMD Ryzen 3700X processor and NVIDIA TitanX
GPU.

A. Simulation Optimization

To ensure that the simulation used to train our RL agent
provides a realistic behavior, we employ the genetic algo-
rithm scheme to optimize PBD parameters most impacting
the deformable behavior of the fat tissue our robot interacts
with, similarly to [15]. Optimization is performed on some
preliminary experiments where a teleoperated PSM arm lifts
the fat tissue, which starts from a planar configuration and
is rigidly fixed on one side (Fig. 2). We define N = 5
different pinch points along fat contour and L = 3 different
levels of lifting are defined for each pinch point. The point
cloud representing ground truth positions of the fat tissue is
acquired using an Intel RealSense D435 Depth camera (Intel
Corporation, Santa Clara, USA), whose position is defined
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with respect to a custom calibration board which allows to
rigidly align the simulated and the real environment (Fig. 3).

(b)

Fig. 2. One of the experiments of the optimization process. The fat tissue
is anchored to the calibration board (right side in the Figure). (a) Rest
condition; (b) Deformed condition. Point cloud of the deformed tissue is
acquired with the depth camera shown on the right.

Optimal values for the cluster spacing, cluster radius and
cluster stiffness parameters (those mostly controlling the
PBD implementation of NVIDIA FleX) are estimated by
minimizing the following error e:

N L M

=23 Iesoin) —xporm) (3)

n=1[=1 m=1

where ||.|| represents the Euclidean distance between the
position of the M particles defining the fat in simulation
xpBp, at deformation level [ and pinch point n, and the
closest point of the corresponding point cloud xpcr. The
acquired point cloud has been decimated to bring the number
of points comparable to M. The diameter of the PBD
particles is set to 3mm (i.e., the width of our tissue sample),
which allows to describe the dynamics of the fat tissue with
a single layer of particles. The constraints and the range of
allowed values for each parameter are set according to [15].

Fig. 3. The calibration board used to uniquely map all the components of
our experimental setup to the simulated environment.

B. Simulation

In our pipeline, the agent is trained in simulation always
keeping the same initial and final positions (pg and pr). In
order to assess if the behavior learned by the agent is robust
to different starting EE positions, we perform an experiment
where the trained agent has to perform the task starting
from 100 different positions uniformly sampled above the
portion of the fat tissue of interest. The task is considered

successful if, once the robot EE reaches the final target
position, the tumor region becomes visible. Tumor exposure
is assessed as percentage of tumor surface which can be seen
from a simulated endoscope placed in front of the kidney
in the simulation scene (the camera point of view can be
appreciated in Fig. 6). To do that, we count the number
of pixels belonging to the tumor (i.e., green pixels in our
simulation) on the simulated camera image after each grasp.
This evaluation allows us to assess if the quality of the
exposure is correlated to the initial PSM position.

C. Robotic Setup

The most important preliminary step that needs to be
performed in order to transfer the learned policy from the
simulation scene to the real dVRK system consists in the
rigid alignment between the real and the simulated envi-
ronment. In our setup, we map the poses of the PSM in
a common reference space by reaching several points on the
calibration board shown in Fig. 3. Precise alignment of the
two environments is extremely important for our application
since all the movements of the da Vinci arm in the real
system are directly controlled by the simulated environment.
Furthermore, due to the fact that we do not rely on any visual
feedback for these preliminary experiments, grasping event
is triggered in simulation whenever a collision event between
the end-effector and the fat is detected, and the corresponding
action is transferred to the real system. Therefore, accurate
registration is essential to prevent inconsistencies between
the two environments. The policy transfer is evaluated by
replicating the simulated scene with the PSM arm starting
from 25 different initial positions equally distributed above
the lower half of the fat tissue. The proximal part of the
fat tissue has not been considered due to safety constraints
(e.g., to avoid potential collisions between the robot and
the rigid supporting structures). For each starting position,
we evaluate the number of times the real system is able
to successfully grasp the tissue. Data exchange between the
simulated environment and the real one exploits UDP-based
communication, as described in [18], at rate of 50 Hz.

VI. RESULTS
A. Simulation Optimization

Optimal values for the cluster spacing, radius and stiff-
ness parameters generated with the optimization process are
0.127, 0.095 and 0.361 respectively, which lead to an average
error between the simulated and the ground truth point clouds
of approximately 3mm, comparable with dimensions of
PBD particles. These values are employed to describe the
deformable behavior of the fat tissue in the simulation scene.

B. Simulation

Fig. 4 shows the obtained learning curve. The agent takes
3 million steps to learn the whole task. This result is com-
parable with the ones obtained from previous works based
on rigid bodies simulation, for instance [5]. Analyzing the
reward trend, it emerges that the agent needs approximately
500 thousand steps to learn the approach behavior towards
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the fat, the following 1,5 million steps to learn the interaction
with the fat and eventually the last 1 million steps to learn
the retract behavior after grasping. Note that the behavior is
learned without any visual cues and purely on the basis of
positional information.

0.0

Cumulative reward

0.0 05 1.0 15 20 25 3.0
Steps (in million)

Fig. 4. The obtained learning curve. Cumulative reward is normalised in
the range [—1, 0]. The shaded area spans the range of values obtained when
training the agent starting from three different initialization seeds.

The plot in Fig. 5 shows the percentage of tumor surface
which is visible from the simulated camera depending on the
starting position of the PSM arm above the fat tissue. The
starting position used for the training correspond to the point
(6,5) of the evaluation grid. Whenever the agent starts from
the distal part of the tissue (i.e., the one farther from the fixed
region), the agent learns to grasp the tissue and the tumor
becomes visible from the camera (at least partially). The
learned policy is thus able to generalize to different initial
EE positions, except when they are close to the proximal
area of the kidney. This behavior can be further appreciated
in Fig. 6, which shows simulation results corresponding to
two different initialization points. It seems that, when pg is
initialized close to the fixed fat region, the agent is not able
to move towards a reasonable grasping point, thus causing
the tumor not to be exposed. This may be due to the fact
that our reward function does not penalize the agent if the
grasping point is far from the target. It is worth noticing that
the obtained policy makes the trained agent able to reach
the target position pr with 100% success rate, which means
that it has correctly learned to perform the task. The fact that
the tumor is not always exposed, even if the agent grasps the
tissue, depends on the fact that no visual cues are considered
at this stage in the reward function. In future works we plan
to integrate the current reward function with an additional
term assessing the amount of exposed surface.

C. Robotic Setup

The trained policies are transferred and tested on the
dVRK (Fig. 1). The real and simulated setup are initially
aligned with respect to the same reference frame, defined
by the center of the calibration board (Fig. 3). The mean
positioning error of the PSM arm is 1.7 mm. We have been

- 100
(o]
80

o
= 60
T}
© 40
P~

-20
[+0]
> -0

2 3 4 5 6 7 8 9

Fig. 5. Percentage of tumor area exposed to the simulated camera at
different initial position of the PSM arm, uniformly distributed over the fat
region. The color of each subregion is correlated with the percentage of
visible tumor area when pg belongs to that subregion.

Fig. 6. Simulation results related to two different starting position of the
PSM arm, with the corresponding image captured by the simulated camera.
Left: EE initial position falls within subregion (2,10) of the grid in Fig.
S5, and the tumor is not exposed. Right: EE initial position falls within
subregion (8,6) of the grid in Fig. 5, the tumor is exposed.

able to successfully replicate the learned behavior from the
simulated to the real environment without any appreciable
latency. Please refer to the video attachment for further proof
of the behavior. The da Vinci EE successfully gets in contact
with the fat tissue for all the different initial positions, and it
is always able to reach the target point. The main difference
between the simulated and the real environment is related
to grasping task. Figure 7 shows that the PSM can grasp
the fat tissue in 9 cases out of 25, and in 2 cases the tissue
is initially grasped but lost during the upward movement
(semi-successful grasp). The obtained distribution suggests
that the tissue is more likely to be grasped when the EE starts
from positions above the tumor area. It is worth noticing
that the presence of failed grasps is due to the difference
between the real and the simulated grasping. In simulation,
when the proximity condition is verified (Section IIIA), a
grasping action is triggered and the fat is assumed rigidly
attached to the EE. If the same condition could be precisely
replicated in the real setup, we expect the total number of
accomplished grasps to increase, due to the fact that the
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PSM is able to touch the fat surface in all the attempts.
In reality, grasping represents a more challenging action
which should not be driven only by the relative distance
between the instrument and the tissue, but also by tool
orientation and tissue properties. Examples of a successful
and failed grasps are shown in Fig. 8. This aspect will be
addressed in future works by both improving the realism
of the simulated grasping and integrating sensors in the real
environment able to provide online feedback on the grasping
status. Furthermore, we plan to evaluate our approach in
more general settings, for example considering a variable
orientation of the EE.

987654321

1 2 3 4 5

Fig. 7. Color of each cell represents the outcome of the grasping task
performed with the dVRK, at different initial position of the PSM arm,
uniformly distributed over the fat region. Green, orange and yellow represent
a successful, semi-successful and failed grasps, respectively. The portion of
fat tissue which is not considered for the experiments is colored in gray.

(a) (b)

Fig. 8. Examples of (a) successful (EE initial position in (8,1) of the grid
in Fig. 7) and (b) failed (EE initial position in (9,4) of the grid in Fig. 7)
grasps on the dVRK.

VII. CONCLUSIONS

In this work, we designed and implemented a flexible
simulation environment suitable for DRL training in surgical
robotic applications. We demonstrated the capabilities of the
proposed simulation in fat tissue manipulation for the expo-
sure of tumor during robotic assisted nephrectomy procedure.
We demonstrated that a DRL agent trained in simulation
is able to generalize to real scenario thanks a calibration
procedure for optimizing the simulation parameters to reduce
the reality gap. Results confirm the robust performance
and generalization capabilities of the trained method. The
proposed simulation environment is an essential component
in development of autonomous agents for controlling surgical
tools and manipulating soft tissues. Future work would be
focused on autonomous control using visual cues, which

would allow to implicitly account for the current deformed
tissue configuration. We also plan to extend the work towards
using model-based approaches and incorporating imitation
based learning to bootstrap the number of training steps.
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