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Abstract— Automated surgical gestures classification and
recognition are important precursors for achieving the goal of
objective evaluation of surgical skills. Many works have been
done to discover and validate metrics based on the motion
of instruments that can be used as features for automatic
classification of surgical gestures. In this work, we present
a series of angular metrics that can be used together with
Cartesian-based metrics to better describe different surgical
gestures. These metrics can be calculated both in Cartesian
and joint space, and they are used in this work as features
for automatic classification of surgical gestures. To evaluate the
proposed metrics, we introduce a novel surgical dataset that
contains both Cartesian and joint spaces data acquired with
da Vinci Research Kit (dVRK) while a single expert operator
is performing 40 subsequent suturing exercises. The obtained
results confirm that the application of metrics in the joint space
improves the accuracy of automatic gesture classification.

I. INTRODUCTION

The use of Surgical Robotic Systems (SRSs) is growing
worldwide, with over 6 million procedures performed on
5000 da Vinci robots [1]. This large number of procedures
does not even consider other robotic platforms in use. The
superior characteristics of SRS (e.g. enhanced stereo view
and improved dexterity) enable a better outcome for the
patients [2]. In fact, there is a strong connection between
a surgeons performance (i.e. technical skills) and patient
outcome. Numerous studies show that the degree of learning
of a given surgical technique by the surgeon directly impacts
the patients post-operation health status: low-quality surgical
treatments increase the risk of serious complications [2][3]. It
is, therefore, crucial to have effective and systematic training
techniques in robotic surgery to improve the quality of the
intervention. We define surgical competence as the skill level
required to safely perform a surgical procedure [3].

The concept of surgical competence encompasses both
technical and non-technical skills. Nowadays, there are nu-
merous curricula related to training in robotic surgery to
improve technical skills, however, no standardized training
protocol has been defined and validated [4]. The state of
the art in the evaluation of surgical skills today consists of
direct or indirect observation of the surgical scene by an
experienced surgeon; some problems arise [5]: first of all, the
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evaluation may vary depending on the examiner, secondly,
the evaluation is limited by what the observer can see and by
his attention span. Finally, the observation process requires
a considerable amount of time and resources. Therefore, it
is important to find quantitative metrics that can describe the
surgical performance in details, without requiring the pres-
ence of an expert surgeon [6]. Automated surgical activity
classification and recognition are important precursors for
achieving the goal of objective evaluation of surgical skills
[3].

Work has been completed to discover and validate metrics
based on the motion of instruments that can be used as
features for automatic classification of surgical gestures [6].
Most of the motion metrics have been derived from the one
developed for standard minimally invasive surgery, thus they
are based only on motion analysis performed in Cartesian
space (e.g. end-effector velocities and accelerations or total
distance traveled [7]). Some research groups have recently
introduced metrics based on orientation information [6], grip-
ping forces, and interaction forces with the environment [8].
However, the computation of these metrics requires access
to low-level SRS kinematic data, which has been difficult
to obtain in the past due to manufacturer trade secret and
user/patient privacy. This fact has limited the development
and exploitation of such advanced metrics. This fact is also
confirmed by the limited number of public datasets devel-
oped for benchmarking surgical skills assessment methods,
which is limited to JIGSAWS [9]. This situation is rapidly
changing thanks to the introduction of SRS research plat-
forms, such as da Vinci Research Kit (dVRK) [10] and Raven
II [11]. These systems enable straightforward acquisition of
low-level kinematics and status variables.

With this work, we present a series of orientation-based
metrics that can be used together with the more traditional
Cartesian-based metrics to have an objective assessment of
how a surgical gesture should be performed. These metrics
can be calculated both in Cartesian space and in joint
space and they are used in this work as input features to
an automatic classification algorithm. Since existing open
source datasets only present information in the Cartesian
space, with this work, we also introduce a new surgical
dataset that contains information both in Cartesian and in
joints spaces.

To reiterate, the main contributions of this paper are two:
the definition of joints space metrics and the introduction of a
new public annotated dataset. This allows you to objectively
describe how a surgical procedure should be performed and
will allow in the future to evaluate the degree of learning of
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a surgical procedure by a novice. The experimental results
show that the application of metrics in the joint space sig-
nificantly improves the results of the automatic classification
compared to those obtained by applying the metrics to the
Cartesian space only, as described by [6].

II. METHOD

A. Metrics

In this work, we assumed that each trial is already divided
into different temporal segments corresponding to different
surgical actions or gestures. This segmentation could be
manually performed by an expert user or automatically
extracted with data processing methods [3] [12]. The main
metrics considered in this work are calculated for each trial
and each segment. We have extended the metrics introduced
in [6] to consider their application to the joint space. In the
following formulas, we will show how to calculate metrics
on a generic joint and how to extend them to multiple joints
simultaneously. In more detail, the considered metrics in
Cartesian space are [6]:
Task Time which is defined as:

T = tIi+1 − tIi (1)

where tIi and tIi+1 are the timestamps corresponding to the
beginning of segment number i and i+1 respectively.

Total distance travelled between two successive frames is
defined as:

∆di,i+1 = ‖[∆xi,∆yi,∆zi]‖ (2)

where ∆xi, ∆yi, ∆zi are the differences between frame i and
i+1 with respect to x, y, z positions, respectively and ‖·‖ is
the Euclidean norm.
Using ∆d j, j+1 we can define Path Length as:

P =
N−1

∑
j=1

∆d j, j+1 (3)

where N is the number of samples of which the surgical
sub-action is composed.

In the joint space, we introduce the Angular Displacement
joint (ADIJ) metric as:

ADIJk =
N−1

∑
i=1
|∆Θi+1,i| (4)

The angle ∆Θi+1,i represents the orientation change between
pairs of consecutive sampled angles for the joint k.

Another metric defined in the joint space is the Time
Angular Displacement joint (TADJ):

TADJk =
1
T

N−1

∑
i=1
|∆Θi,i+1| (5)

where T is the duration of the surgical action and k is the
number of joint under analysis.
We also define the metric Rate Of Change Joint (ROCJ):

ROCJk =
1

N−1

N−1

∑
i=1

ωi (6)

Fig. 1: Schematic representation of the considered robotic manipulator with joints
configuration: on the left Base unit, on the right Instrument unit

where ωi is the angular speed of the joint number k in the
frame i and N is the number of samples.

In addition, we assume that joint data contain also infor-
mation about current joint effort (e.g joint motor current,
joint force or torque) as a scalar value τi. Based on this
information we introduce the mean effort (MEJ) which
represents how the joint k interacts with the environment:

MEJk =
1

N−1

N−1

∑
i=1

τi (7)

The structure of the da Vinci slave robotic manipulator
used to do experimental validation can be divided into two
parts: the Base Unit i.e. the first three joints of the robot
and the Instrument Unit i.e. the last three joints of the robot,
see Fig. 1. It is possible to extend these formulas in order
to consider the average value of metrics on all joints of
the base/instrument part of the robot. Let Mk be a metric
calculated on a general joint k (Mk can be ADIJ, TADJ,
ROCJ or MEJ). The value of this metric on joints of the
base unit is expressible as:

Mbase unit =
1
3

3

∑
k=1

Mk (8)

while the value of this metric on joints of the instrument unit
is expressible as:

Minst unit =
1
3

6

∑
k=4

Mk (9)

The main problem is that publicly available and freely usable
surgical datasets do not contain information on joints space.
With this work, we introduce a new surgical dataset that
contains information both in the Cartesian space and in the
joints space. This dataset will be presented in detail in the
next section.

B. Dataset

We introduce a publicly dataset called YEAST (Yet
Another Surgical Training Dataset). The acquired dataset
consists of 42 trials of the same suturing task performed by a
single expert user. The expert is right hand dominant and she
has more than 50 hours of experience with da Vinci surgical
robotic system. Trials can be divided into two macro-classes:
the first 20 using a different phantom position than the last 20
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Fig. 2: Axes of the phantom (z-axis outward). Orange boxes represent the different
sections of the phantom used for performing the different trials.

Fig. 3: Right camera endoscope image extracted from trial 22 showing the rotated
position of the phantom. Numbered points indicate ordered fiducials used for spatial
calibration.

in which the phantom is turned 45 degrees clockwise. Trials
21 and 42 do not contain suturing task but a procedure useful
for spatial calibration as explained later in this paper. Figure
2 shows the training phantom used for the experimental
validation and the common reference system defined. Each
trial is executed in a different section of the phantom as
represented in Figure 4 by letters A, B, C and D. The
trials are executed following lettering ordering (clock-wise
ordering starting from vertical section). Each trial consists
in a 3 pass suturing task executed with a 1/2 circle suture
needle following reference points present in the phantom.

Each trial consists of 10 Comma Separated Value (CSV)
files that captured raw kinematic data (time, position and
orientation) and two videos that reproduce the entire surgical
scene captured by two endoscopic cameras. Files contained
in the dataset are listed below:
• (ECM|PSM1|PSM2|MTML|MTMR)

position Cartesian current.csv: they
contain temporal information about position and

orientation in the Cartesian 3D space of the ECM,
PSM1, PSM2, MTML and MTMR respectively 1

• (ECM|PSM1|PSM2|MTML|MTMR)
state joint current.csv: they contain

temporal information about position, velocity and
effort of each joint for ECM, PSM1, PSM2, MTML
and MTMR respectively. joints are: outer-yaw,
outer-pitch, insertion, outer-roll, outer-wrist-pitch e
outer-wrist-yaw.

The Cartesian position and the orientation of MTM and
PSM are calculated starting from the joint angles using
direct kinematics. Velocities in the joint space are computed
directly by the dVRK robot controller. Acceleration and
jerks are instead calculated with numerical derivation, using
a finite difference method. We performed a spatial and
temporal calibration of the robot’s kinematics to have a single
reference system in which all the robot’s components are
represented.

1) Temporal Calibration: During the surgical task, kine-
matics of MTM, PSM, and ECM were captured and videos
recorded using two cameras (Left and Right): kinematics are
gathered with a frequency of 100Hz (every 10 ms) while the
video frames are updated at 25Hz (40 ms). The main problem
is that the kinematics are not synchronized with respect to the
video frames and consequently the description at a specific
time t obtained by kinematic analysis is not consistent with
the description at the same time t by video analysis: we need
to find a way to temporally synchronize the kinematics with
video frames; doing this we would know how to map each
frame to the corresponding kinematic representation.

To solve the problem, we calculate the initial instant in
which a task starts by analyzing both kinematics (obtaining
t0 kin) and frames (obtaining t0 video). For kinematics, we cal-
culate the Euclidean distance in 3D space traveled by PSMs
between two successive updates with the assumption that
without any movement, kinematics return (approximately)
the same value: if this distance is greater than a threshold
(experimentally estimated) then we have found t0 kin. For
videos we did similarity analysis between adjacent frames in
order to detect movement; The time corresponding to the first
motion, as seen in the video becomes t0 video. For similarity
analysis, we explored two alternatives: MSE (Mean Square
Error) [13] metric and SSIM (Structural Similarity) [13]
metric. In tasks under examination, the first metric provides
more accurate results, so it was adopted in the proposed syn-
chronization method. The effectiveness of the MSE metric
for motion detection is proven by [14][15][16]. Once we
find t0 kin and t0 video we can express the desynchronization
between kinematics and video as ∆t psm = t0 kin− t0 video.
At this point, we calculate the initial synchronized time as
t0 synch = t0 video + ∆t psm. A further problem rises up: as
mentioned above kinematics sampling rate is greater than
frames sampling rate, so t0 synch found is just a fictitious

1ECM: Endoscopic Camera Manipulator; PSM: Patient Side Manipulator;
MTML: Master Tool Manipulator Left; MTMR: Master Tool Manipulator
Right.
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Fig. 4: Diagram representing the temporal calibration problem with different data
streams and temporal offset.

timestamp that will not exactly match any real timestamp:
we decided to associate it with the nearest (but not future)
timestamp. The Figure 4 shows an illustration of the temporal
calibration problem.

2) Spatial Calibration: PSM1 and PSM2 have indepen-
dent spatial reference frames; we would like to rotate and
to translate frames in order to uniform them to a unique
reference frame named World. After that, we want to project
the World into the camera’s reference space in order to have
a uniform spatial view of the scene. We choose as World
the phantom on which tasks are executed; on it, we select
9 fiducials (see Figure 3) and for each, we measure the
Cartesian position. The purpose is to find the best rotation
and the best translation between two sets of 3D points which
allow us to align them. In our application, we use a Euclidean
transformation as it preserves shape and size. In the previous
literature, there have been several proposed solutions for this
problem: the one we adopted is taken from [8] and [17].

Adopting the procedure reported in the article above, all
PSMs have been mapped to World; the remaining step is to
map World in the camera space. This problem is known in
the literature as Perspective-n-Point problem [18]: we want
to find the pose of an object having a calibrated camera,
locations of n 3D points of an object and the corresponding
2D projections of the same points. We solved this problem
using ad hoc functions provided by the OpenCV library.

The dataset and related detailed documentation are avail-
able at gitlab.com/altairLab/yeast-dataset.git

C. Sub-actions

The main surgical activity was sub-divided into elementary
sub-actions following information in the literature (JIG-
SAWS convention [9]) to which extensions were made to
consider the use of both hands. The table I summarizes
the elementary sub-operations (in bold our extension to
JIGSAWS nomenclature).

D. Automatic classification

To further investigate the ability of the previously de-
scribed metrics to discriminate gestures we trained a model
classifier that, given a set of metrics, automatically recognise

TABLE I: Labels used for gesture annotation in the proposed dataset. Bold font indicate
additional label introduced with respect to original JIGSAWS convention.

Gesture Description
G1 Reaching for needle with right hand
G2 Positioning needle with right hand
G3 Pushing needle through tissue with right hand
G4 Transferring needle from left to right
G5 Moving to center with needle in grip
G6 Pulling suture with left hand
G7 Pulling suture with right hand
G8 Orienting needle with right hand

G12 Reaching for needle with left hand
G15 Pulling suture with both hands
G20 Positioning needle with left hand
G21 Pushing needle through tissue with left hand
G22 Transferring needle from right to left
G23 Orienting needle with left hand.

the gestures. We selected Random Forest Classifier (RFC) as
implemented from the Scikit-learn library for the following
reasons [19] [20]:

• RFC shows the highest performance when applied on
the general dataset without hyper tuning parameters that
were outside the scope of this article [21];

• RFC has improved explainability since it is possible to
characterize the Mean Decrease Impurity (MDI) to state
variables importance [22];

1) Random Forest Classifier formalization: as stated in
[23] a random forest is an ensemble of T axis-parallel
decision trees that are trained independently. In RFC, each
non-leaf node is associated with a split function f (x;θ)

f (x;θ) =

{
1 i f x(θ1)< θ2
0 otherwise

where θ1 ∈ {1,2, ...,d} is the selected feature and θ2 ∈ R is
a threshold. The outcome determines the child node to which
x is routed. For instance, 0 may represent the left child node
while 1 may represent the right child node. The leaf nodes
of the tree either store class probability distributions or class
labels based on the training samples they receive. During
testing, for a test sample x, each tree returns a probability
distribution pt(y|x) stored on the leaf node it falls into, and
the class label is obtained via averaging.

2) Random Forest Classifier validation: due to the high
imbalances in the number of gestures reported in Figure
5 we validate our classifier using Stratified k Fold(SKF)
methodology. In SKF cross-validation, the folds are created
in a way that they contain approximately the same proportion
of predictor labels as the original dataset. Since the lowest
number of samples for a gesture is n=5, we create 5 test and
train sets. This was done to maintain near 20% of samples
for testing and guarantee the presence of each gesture in the
splits.
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Fig. 5: Histogram for gestures distribution, considering only gesture labels annotated
in the proposed dataset.

TABLE II: Average classification accuracy, considering the different subset of metrics
considered for the experimental evaluation.

Features Average Accuracy

Joint space 83.01%
Cartesian space 75.27%

All metrics 86.51%

III. RESULTS AND DISCUSSIONS

A. Temporal and Spatial calibration

The mean temporal desynchronization between video
frames and PSMs are of 140ms. The mean error for spatial
calibration is 1.5 mm for PSM1 and 1.6 mm for PSM2. Er-
rors in spatial calibration are attributable to the deformability
of the phantom.

B. Automatic classification of surgical gestures

In this section, we will discuss some of the results obtained
from the automatic classification of surgical gestures using
as descriptive features, the metrics presented in section II-A.
The experiment was accomplished on the dataset described in
section II-B. Specifically, we analyze the contribution of pose
(distance and acceleration), orientation (Cartesian space and
joints space), and effort (joints space) metrics to the gesture
classification, observing changes on accuracy performance.

In table II we report the mean accuracy obtained using
Stratified k Fold (k = 5) methodology on considered three
groups of metrics. The highest average accuracy with a
score of 86.51% is obtained using both Cartesian and joint
space. In Figure 6 we show that few features are highly
discriminative for the dataset since the average accuracy
grows very quickly. The ten most important metrics used for
automatic classification are shown in Table IV. Five (shown
in bold) out of the ten most important features are from joint
space and six of them are orientation based features.

Furthermore, it emerges that the joint space analysis (made
possible by the dataset we introduced) improves the quality
of the classification. Also, the joints sub-division in two
classes (base unit and instrument unit) allows obtaining
important features for the classification as shown by Table
IV. Table III shows Precision, Recall, and F-Score for each
gesture and three groups of metrics: Cartesian space metrics,
joints space metrics, and combined analysis of Cartesian and

Fig. 6: Accuracy curve considering an increasing number of features.

joint metrics. Precision evaluates the fraction of correctly
classified instances among the ones classified as positive, Re-
call is a metric that quantifies the number of correct positive
predictions made out of all positive predictions that could
have been made; unlike precision that only comments on the
correct positive predictions out of all positive predictions,
recall indicates missed positive predictions. In this way, recall
provides some notion of the coverage of the positive class. F-
Score provides a way to combine precision and recall into a
single measure that captures both properties. Table III shows
that some gestures have better metric scores in proposed
joint space and most of the gestures are better recognized
in the combined Cartesian and joint space. Our hypothesis
that joint space helps capture more information and improves
the performance of the model is validated: our proposed
orientation based metrics in joint space are a good set of
features that can be used to develop methods for automated
classification of surgical gestures.

The classification method, however, fails for some ges-
tures, like for example for G4 (Transferring needle from left
to right) and G22 (Transferring needle from right to left). The
reason is that the number of occurrences of such gestures is
very low: 4 occurrences for G4 and 6 occurrences for G22.
Another reason could be related to the intrinsic similarity
of G4 and G22: from kinematic variable it is difficult to
estimate which instrument is holding the needle and therefore
distinguish between these two gestures.

IV. CONCLUSIONS AND FUTURE WORKS

With this work, we address the lack in the literature about
the use of orientation-based metrics in both Cartesian space
and joint space to objectively describe the characteristics of
a surgical sub-operation of which the main activity is com-
posed. The effectiveness of metrics has been validated using
them as features for an automatic classification algorithm.
Some surgical sub-operations can be well described using
metrics based on Cartesian position, other sub-operations can
instead be well described using orientation-based metrics. We
have also introduced a new dataset that contains information
both in the Cartesian space and in the joint space. It was used
to make experimental validation of the proposed metrics.

This work will later be extended to allow an automatic
segmentation of the main surgical procedure and to permit
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TABLE III: Support, precision, recall and F-Score of considered surgical gestures.

Gestures Support Cartesian space Joints space Cartesian + Joint space
Precision Recall F-Score Precision Recall F-Score Precision Recall F-Score

G1 7.2000 0.7148 0.6429 0.6639 0.7864 0.8357 0.7993 0.8556 0.8357 0.8363
G2 4.8000 0.9029 0.9200 0.9044 0.8095 0.9000 0.8485 0.8762 0.9000 0.8810
G3 5.0000 0.8529 0.8800 0.8600 0.8333 0.9200 0.8727 0.8600 0.9200 0.8873
G4 1.2000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
G5 7.4000 0.6495 0.6464 0.6337 0.6752 0.8143 0.7259 0.7844 0.8357 0.7907
G6 7.4000 0.8950 0.9429 0.9115 0.9492 0.9714 0.9597 0.9092 0.9714 0.9374
G7 7.4000 0.8051 0.9464 0.8655 0.8833 0.9750 0.9249 0.8833 1.0000 0.9366
G8 6.6000 0.6267 0.6524 0.6217 0.7992 0.7238 0.7453 0.8444 0.8429 0.8359

G12 7.2000 0.7853 0.7571 0.7577 0.8929 0.8929 0.8894 0.9095 0.8679 0.8857
G15 3.4000 0.7333 0.5500 0.6248 0.5000 0.2500 0.3267 0.8333 0.4167 0.5343
G20 4.0000 0.9143 0.7500 0.7588 0.9500 0.8000 0.8548 0.9200 0.9500 0.9270
G21 4.0000 1.0000 0.8500 0.8800 1.0000 0.9000 0.9333 1.0000 0.9000 0.9333
G22 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
G23 7.0000 0.5813 0.6857 0.6109 0.7214 0.7714 0.7222 0.7922 0.8571 0.7936

TABLE IV: Ten most significant features for gesture classification. Bold font is used
to indicate proposed joint space metrics.

# Feature

1 distance on z-axis of PSM1
2 acceleration on z-axis of PSM1
3 distance on z-axis of PSM2
4 acceleration on z-axis of PSM2
5 mean effort on sixth joint of PSM2
6 mean effort on sixth joint of PSM1
7 mean effort on PSM2’s Instrument Unit
8 angular Displacement of PSM2’s fifth joint
9 rate of change of PSM1
10 angular Displacement of PSM2’s forth joint

an automatic assessment of surgical skills as shown by [6]
based on the metrics introduced. We are also working for
extending the dataset with more experts demonstrations.
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