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Abstract— One out of eight women will get breast cancer
during their lifetime. A biopsy, a procedure in which a tissue
sample is acquired from the lesion, is required to confirm the di-
agnosis. A biopsy is preferably executed under ultrasound (US)
guidance because it is simple, fast, and cheap, gives real-time
image feedback and causes little patient discomfort. However,
Magnetic Resonance (MR)-detected lesions may be barely or
not visible on US and difficult to find due to deformations of
the breast. This paper presents a robotic setup and workflow
that assists the radiologist in targeting MR-detected breast
lesions under US guidance, taking into account deformations
and giving the radiologist robotic accuracy. The setup consists of
a seven degree-of-freedom robotic serial manipulator equipped
with an end-effector carrying a US transducer and a three
degree-of-freedom actuated needle guide. During probe position-
ing, the US probe is positioned on the patient’s skin while the
system tracks skin contact and tissue deformation. During the
intervention phase, the radiologist inserts the needle through
the actuated guide. During insertion, the tissue deformation
is tracked and the needle path is adjusted accordingly. The
workflow is demonstrated on a breast phantom. It is shown that
lesions with a radius down to 2.9mm can be targeted. While
MRI is becoming more important in breast cancer detection,
the presented robot-assisted approach helps the radiologist to
effectively and accurately confirm the diagnosis utilizing the
preferred US-guided method.

I. INTRODUCTION

Breast cancer is one of the most common cancers and the
leading cause of cancer death in females [1]. Successful
treatment is more likely if the disease is detected and
diagnosed in an early stage. While mammography is the
most widespread imaging modality for detection, Magnetic
Resonance Imaging (MRI) is getting more important. MRI
has a higher sensitivity than other imaging modalities and has
the potential to overcome the shortcomings of mammography
by using new imaging approaches. However, the selectivity of
MRI, which is the ability to differentiate between benign and
malignant lesions on the acquired images, is not very high.
Consequently, a tissue sample from the detected lesion should
be acquired to confirm the diagnosis. The preferred procedure
to achieve this is the ultrasound (US)-guided biopsy. During
this procedure, a biopsy needle is manually inserted by the
radiologist and is navigated to the lesion under US guidance.
This is the preferred procedure since — compared to an
MRI-guided biopsy — it is relatively cheap, simple, fast,
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gives real-time feedback and causes little patient discomfort
because of the smaller needle diameters used [2].

However, performing a US-guided biopsy on an MR-
detected lesion is challenging. Firstly, transferring the lesion
position from the MRI to the US image is complicated due to
the different patient positioning between imaging modalities;
an MRI is typically performed with the patient in prone
position, while during a US-guided biopsy the patient is
positioned semi-supine. Due to the highly deformable tissue,
relating the US images to the MRI is difficult. Furthermore,
an MR-detected lesion may be barely visible on the US image
[2]. Finally, the procedure is highly operator dependent due
to these challenges and therefore finding the lesion may take
a significant amount of time.

The field of robotics is progressively becoming more
important in healthcare due to its high accuracy, efficiency
and operator independency. Specifically, there is an increasing
interest in robot-assisted breast biopsies because the US
probe can be accurately positioned based on the target
location and the needle is accurately manipulated [3]. The
biggest challenges in targeting a breast lesion include initial
localization of the lesion and deformations of the breast
during the procedure.

Firstly, the challenge of initial localization is greatly re-
duced by performing both the MR-imaging and robotic biopsy
with the patient prone position. Not only will involuntary
movements such as breathing be less apparent in prone
position, it also allows to image the breast in its undeformed
state [4]. Additionally, it is easier to relate the breast to the
MRI by means of e.g. markers attached to the skin [5].

Secondly, there are two approaches to correct for deforma-
tions occurring during the robot-assisted US-guided biopsy
procedure: deformation prediction and deformation tracking.
Prediction methods are a model-based approach in which
the updated position of the lesion based on tissue-probe
and tissue-needle interactions is estimated. Subsequently, the
planned needle trajectory is optimized for this. Although
research on the prediction of deformations resulting from
different positioning of the breast or interactions with the
breast is ongoing [6], [7], a sufficiently accurate patient-
specific prediction model of the interactions of the US probe
and the biopsy needle with the breast is currently infeasible.
Therefore, robotic solutions depend mainly on deformation
tracking. Current robotic breast biopsy systems mostly depend
on the visibility of the target [8]–[12] and therefore, any
deformations related to probe placement and needle insertion
are easily compensated for in these applications; the lesion
can be segmented from subsequent US images and the
needle trajectory can be adjusted accordingly. Actually, a
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Fig. 1: The approach to a robot-assisted US-guided biopsy on an MR-detected lesion: a. Robotic manipulator approaches breast. In the US plane (b.), the
target moves upon positioning the US probe (c.) and inserting the needle (d.).

target can be tracked independently of its visibility by using
tissue deformation tracking algorithms. Applicable algorithms
that have been implemented in robotic US applications
include speckle tracking, optical flow and normalized cross
correlation and mutual information similarity functions [13]–
[15]. However, those studies do not focus on the whole breast
biopsy procedure, i.e. they do not include probe positioning
and the resulting deformations.

The purpose of this work is to develop a workflow to
accurately perform a robot-assisted US-guided biopsy on
MR-detected lesions. The work specifically focuses on how
US feedback from the probe can be utilized in the process.
US feedback is used in acquiring acoustic coupling, which is
the transfer of acoustic energy from the probe into the tissue.
Most other studies use a normal force for this. Also, in the
absence of accurate deformation prediction models and of
the ability to detect the lesion on US images, US feedback
is used to compensate for deformations caused by the needle
insertion and deformations caused upon probe contact. The
lesion is not visible, but its initial position before deformation
is retrieved from pre-operative data, such as MRI.

The presented solution utilizes a seven degree-of-freedom
(7DOF) serial manipulator equipped with a linear US probe
and an actuated needle guide. Confidence maps, previously
used for pose adjustments of robotic US systems [16], [17],
are utilized to estimate the first probe contact and to correctly
place the probe. Upon first probe contact it is assumed that
the deformation is not significant. The target, whose position
was extracted from pre-operative data, can thus be mapped
in the US image and tracked with optical flow during further
positioning and needle insertion. The radiologist is responsible
for needle insertion, but the actuated needle guide determines
the needle trajectory based on kinematics and needle detection.
The robot-assisted biopsy workflow is validated with phantom
experiments. It is shown that pre-operatively defined targets
which are invisible on US images are targeted with millimeter
accuracy. The compensation for movements in the 2D US
frame is a first step towards compensation for both in- and
out-of-plane deformations.

II. ROBOT-ASSISTED US-GUIDED BIOPSY

The approach for a robot-assisted US-guided biopsy on an
MR-detected lesion is shown in Fig. 1. A patient is positioned
in prone position over a robotic serial manipulator carrying
an end-effector (EE) equipped with a US probe and a 3DOF
actuated needle guide [18]. The guide aims the needle towards
a target within the US plane. The lesion’s position with respect
to the robot is known by registration of the MRI-data with
the patient by e.g. a camera scan. A desired US plane through
the lesion is defined and a contact point of the US probe
with the skin is derived such that the target is in the field of
view (FOV) (Fig. 1 a.). The robot is aligned with the desired
US plane (Fig. 1 b.) and approaches the breast. It is shown
that during probe positioning (Fig. 1 c.) and needle insertion
(Fig. 1 d.) the target displaces with respect to its original
estimated position. These two phases of the biopsy, and how
to compensate for the target displacement, will be discussed
in the following sections.

A. Probe positioning
The probe positioning phase is focused on aligning the EE

with the desired US plane, measuring the instant of contact
and starting to track tissue deformations. Additionally, it
assures adequate acoustic coupling between the US probe
and the skin in its final position. The probe’s position and
orientation remain static during needle insertion.

1) Determining the contact position: A triangular mesh,
which describes the skin surface of the breast, and the target
position, pt, are extracted from the pre-operative data (Fig.
1 a. and b.). The desired US-plane, A, is constrained by the
target position such that pt ∈ A. The orientation of A is
based on input of the radiologist, who could e.g. prefer A to
be aligned with the coronal plane. Possible contact positions
are extracted by calculating the intersection of A with the
surface model. The initial contact position is also chosen by
the radiologist. The robotic manipulator aligns the x- and
z-axis of the EE frame, Ψee in Fig. 1, with A. It is assumed
that if the contact point of the probe with the skin and the
target location are coincident with the z-axis of Ψee, the lesion
will be in the FOV upon contact. Thus, at the moment of
contact, the target coordinates can be associated with a pixel
in the US image.
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Fig. 2: System diagram of the probe positioning phase. The features of the
confidence map are used to adjust the probe position and to start deformation
tracking. The US image is used to track the tissue deformation. The process
stops if full contact is achieved.

2) Acquiring contact: The system diagram for acquiring
contact is shown in Fig. 2. Confidence maps are utilized to
estimate the moment of contact and to gain acoustic coupling
with the breast. The confidence map, C, represents the per
pixel confidence in the corresponding US image, U . The
pixels of an image are located in a matrix Ωn×m. An acquired
US image, U : Ω → [0, 1], is associated with a confidence
map, C : Ω → [0, 1]. The map, f : U → C, is solved as a
random walk equilibrium which respects physical constraints
specific to US. Furthermore, the top row of a confidence
map is defined as 1 and the bottom row is defined as 0
[19]. Confidence maps emphasize shadowed and attenuated
regions, and are therefore useful to estimate how the probe is
in contact with the skin. As shown in Fig. 2, partial contact
transfers to a high confidence region in the middle of the
confidence map. The mean confidence, Cmean, correlates with
the contact area of the US probe with the skin

Cmean =
1

n ·m
∑

(i,j)∈Ω

C (i, j) . (1)

During the positioning of the probe, Cmean is constantly
evaluated. Fig. 2 shows that a threshold value of the mean
confidence, Cthres, is defined which indicates the first contact
and the start of tissue deformation tracking. Additionally, Cset
is defined as the mean confidence for which the probe has
appropriate acoustic coupling with the breast.

Furthermore, the weighted barycentre, µ, of the confidence
indicates where the contact with the probe is located

µi =
1

CΩ

∑
(i,j)∈Ω

i · C(i, j) ,

µj =
1

CΩ

∑
(i,j)∈Ω

j · C(i, j) ,
(2)

with CΩ =
∑

(i,j)∈Ω C (i, j) the total confidence. The pixel
indices µi and µj correspond to EE coordinates µz and µx,
respectively. If these coordinates are located off-centre, the
probe contact is off-centre and thus the target may not be in
the FOV. Therefore, the probe should be rotated around the
target by θr = tan µx

µz
radians. This movement is indicated

in Fig. 2. The new desired position relative to the current
position expressed in Ψee is given by

Hc
d =[
I3×3 −dtẑ
01×3 1

] [
Roty(θr)

3×3 03×1

01×3 1

] [
I3×3 dtẑ
01×3 1

]
,

(3)

where I is the identity matrix, ẑ the unit vector in z-direction
and dt is the distance between the EE and the target. Once
the barycentre is located in the centre, the robot approaches
the breast until the mean confidence matches Cset.

3) Tissue deformation tracking: It is assumed that no
significant deformation has taken place when Cmean = Cthres.
Thus, the target, pt, still has its pre-operatively defined
position. Therefore, the target coordinates (z, x) expressed
in Ψee, as obtained from the pre-operative data, can be
mapped on a pixel (i, j) of the US image U . The probe
continues to move to acquire acoustic coupling. This motion
compresses the tissue and thus moves the target from its
original position. Since the target may not be visible, optical
flow is used to track this motion. The popular Lucas-Kanade
method is used [20] to track the movement of brightness
patterns of the target location. This method assumes that the
inter-frame movements are small and the same for a small
window of pixels with the target at its centre. A pyramidal
implementation of the algorithm is utilized to make the target
tracking more robust [21]. The algorithm outputs an updated
position of the expected target location per acquired US image.
The same tissue tracking algorithm is also utilized during
needle insertion.

B. Needle insertion

After probe positioning, the radiologist starts inserting the
needle. The system diagram is shown in Fig. 3. The initial
target position is the position of the target determined after
probe positioning. The needle may displace the target due to
tissue-needle interaction and thus the US images are evaluated
to update the target position. Furthermore, the actual needle
trajectory may differ from the one derived with the forward
kinematics due to needle bending. Therefore, the system relies
on a needle detection algorithm also.

1) Needle trajectory: As shown in Fig. 3, the desired
needle trajectory, expressed in the needle guide frame Ψng ,
is defined by the insertion point pi = (xi, yi) and the target
position pt = (xt, yt) as

y − yt =
yi − yt

xi − xt
(x− xt) . (4)

The insertion position is located on the intersection of plane
A with the surface model of the breast, and is chosen by the
radiologist. Throughout needle insertion, this position is kept
constant, while the target position is updated according to

2967



Tissue deformation
tracking

Needle guide
 controller

q[1-3]

Initial target
position

Needle detection

US image

(x,y)

Updated (x,y)

Insertion
Position, pi

Target
Position, pt

X
Y

Ψng

θtra
l1

l2

X
Y

pt

e θH

e , θH

Fig. 3: System diagram of the needle insertion phase. The controller adjusts
the needle guide based on optical flow and needle detection. The insertion
position remains constant, such that no stress is exerted on the skin.

the tissue motions. This way, the centre of motion is a point
on the skin, and thus the needle will not cause any stress
in this position. This resembles the way a radiologist would
manually manipulate the needle.

2) Needle detection: The needle detection is broken down
in several steps. First, Canny edge detection is applied to
the US image [22]. Canny edge detection consists of the
following processing steps: the application of a Gaussian
filter to reduce the noise, finding the intensity gradients of
the image along the x- and y-axis, finding the sharpest edges,
applying a double threshold to remove edge pixels caused
by noise and finishing the edges by connecting the stronger
edges with weaker ones. In the resulting image, the needle
trajectory is found by the Hough transform, and the error
between the needle trajectory and the target is expressed as

e = x cos θH + y sin θH , (5)

with e the shortest distance between the target and the
trajectory and θH the angle between the x-axis and the normal
connecting the target and the trajectory, as presented in see
Fig. 3 [23]. The target, pt, is taken as the origin.

A controller adjusts the needle trajectory virtually moving
the target position, pt, in the direction opposite to the normal
defined by e and θH. The offset to the needle trajectory
remains constant if no needle is detected in the image.

3) Needle guide position: The needle guide’s position, png,
is located at a constant distance, dng, of the insertion point,
pi, such that

png =

[
xng
yng

]
= pi −

[
dng sin θtra
dng cos θtra

]
, (6)

where θtra is the angle of the needle trajectory with the x-axis
of Ψng as shown in Fig. 3. The guide’s joint positions are

End-effector

KUKA Med

NDI field generator

Phantom

Needle

a.
b.

Fig. 4: The robotic setup. a. Overview of the setup with indicated: the
KUKA LBR Med 7 with the end-effector attached, the NDI field generator,
the tracked needle and the breast phantom. b. Close up of the EE with the
needle inserted in the phantom.

acquired via the inverse kinematics of the 2D planar system

q1 = arctan 2(y, x)± β , β = cos−1

(
r2 + l21 − l22

2l1r

)
,

q2 = π ± α , α = cos−1

(
l21 + l22 − l22

2l1l2

)
,

q3 = θtra − q1 − q2 ,
(7)

in which r =
√
x2

ng + y2
ng, l1 and l2 are the lengths of link 1

and 2, respectively, qi indicates the joint position of the i-th
joint, and the signs for α and β should agree [24].

III. EXPERIMENTAL VALIDATION

A. Experimental setup

The setup (Fig. 4) consists of a 7DOF robotic manipulator
(KUKA Med 7 R800, KUKA GmbH, Germany) to which
the EE is connected. The EE holds a VF13-5 linear US
probe (Siemens AG, Germany) and is equipped with a 3DOF
needle guide. The transformation of both the transducer and
the needle guide with respect to the flange is retrieved from
the CAD design of the EE. The US probe is connected to an
X300 US system (Siemens AG, Germany) which streams the
US images with an update rate of 24 Hz to a workstation via
a capture card (Pro Capture DVI HD, Magewell, China). The
workstation communicates with the manipulator via the fast
research interface, and with the EE via serial communication.

A phantom with a simplified breast shape, such that the
deformations occuring during the procedure remain in-plane,
is constructed with a PVCP/Plasticizer mixture (Bricoleurre,
France). The breast’s skin is mimicked by a stiff outer layer
of approximately 10 mm (100 % / 0 %), and the adipose tissue
by a softer inner structure (70 % / 30 %). While the skin layer
is expected to have a comparable stiffness to actual skin, the
inner structure may be up to ten times stiffer than actual
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Fig. 5: Graph showing the average confidence while approaching the breast and the corresponding US images for t[1−5]. The yellow arrows indicate the
optical flow profile. The white dot is the tracked target starting from Cmean = Cthres.

adipose tissue [25]–[27]. 1 wt.% silica powder is added to
both mixtures to increase scattering.

The phantom was placed on top of and registered with
an Aurora tracker (Northern Digital Inc., Canada). An
electromagnetic (EM) tracker (part nr: 610090, Northern
Digital Inc., Canada) was placed inside the phantom at a
depth of approximately 25 mm to function as a lesion with
zero volume and a known location. The robot is registered
with the Aurora tracker such that the initial lesion location
with respect to the robot is known. A custom biopsy needle
was produced utilizing a metal tube with an outer diameter
of 2 mm and equipped with an EM tracker (part nr: 610059).
The experiments were performed in supine position since
the bed interferes with the NDI equipment, but normally
the procedure is performed in prone position. The desired
contact position was based on the current target position
and the CAD-file of the phantom. In all needle insertion
experiments, the accuracy of the procedure is determined
by recording the positions of both sensors and determining
the Euclidean distance between the needle tip and the target.
Furthermore, the normal distance is determined, which is the
shortest distance between the target and the needle trajectory.

B. Experiments

Three experiments were conducted. The first experiment
determines the accuracy of the estimated target location with
respect to the actual target location after probe positioning.
Starting from its home position, the robot aligns the EE
with the indicated US-plane and brings the probe in contact
with the phantom. The second experiment determines the
in-plane accuracy of the needle placement. This experiment
has been performed with and without the needle detection
activated. The needle is unlikely to bend during this particular
experiment due to the soft phantom and stiff needle. Therefore,
a small uniformly distributed error of ±0.08, ±0.06 and
±0.03 rad has been added to the initial setpoints of joint one,
two and three, respectively. The third experiment determines
the accuracy of the whole workflow. Each experiment has
been performed ten times and averaging is applied.

C. Results

Fig. 5 presents the mean confidence during an approach
to the phantom accompanied with US images and their

corresponding optical flow profiles at times t[1−5]. At t1
and t2, it is shown that the optical flow profile does not
follow the deformation. However, at t3, when Cmean = Cthres,
and t4 the profile in the centre of the image matches the
deformation and the target, shown in white, moves along. In
TABLE I, the error between the tracked target position and the
actual target position is stated for the initial position, when
Cmean = Cthres and the final position, when Cmean = Cset.
It shows that the initial error is in the millimeter range,
indicating that the target to robot registration has millimeter
accuracy. Furthermore it seems that, based on this data, a
larger target displacement does not necessarily imply a larger
error. The target displacement is the largest in z-direction,
whereas the error in z-direction is not. Actually, the x-direction
has the largest error, because the tracked position sometimes
follows the expanding region, indicated by the horizontal
arrows of the optical flow profiles shown in Fig. 5 at t3 and
t4.

TABLE II shows that the needle placement is more accurate
without needle detection than with. This is due to the detection

TABLE I: Mean absolute error between the estimated lesion position and
the actual lesion position initially, when Cmean = Cthres, and finally, when
Cmean = Cset, and the target displacement during the procedure.

dx [mm] dy [mm] dz [mm]
mean (max) mean (max) mean (max)

Error Initial 1.03 (1.28) 0.59 (1.82) 1.23 (1.71)
Final 2.12 (3.69) 0.80 (1.98) 0.97 (3.05)

Target displacement 0.53 (2.47) 0.88 (2.99) 2.35 (8.61)

TABLE II: Mean absolute distance between the needle tip and NDI target
after needle insertion

Needle detection dx [mm] dz [mm] dnorm [mm]
mean (max) mean (max) mean (max)

7 0.72 (1.44) 0.76 (2.05) 0.76 (2.15)
3 1.81 (3.12) 1.61 (4.60) 1.54 (3.14)

TABLE III: The mean absolute distance of the needle tip, and the normal
distance of the needle trajectory with respect to NDI target, after completing
the procedure in which the probe is placed and the needle is inserted.
Additionally, the target displacement is noted.

dx [mm] dy [mm] dz [mm] dnorm [mm]
mean (max) mean (max) mean (max)

Total error 1.15 (2.84) 1.31 (3.53) 3.47 (5.05) 2.89 (4.88)
Target displ. 0.84 (2.52) 0.93 (3.32) 2.66 (9.13)
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Fig. 6: Image sequence showing the needle trajectory adjustment based on
needle detection. Both the US image with the tracked point and the processed
image with the detected needle are shown. The frame rate was 20Hz.

algorithm marking the top edge — not the core — of the
needle, which is then aligned with the target (Fig. 6). Hence,
the core of the needle is off by the needle radius.

TABLE III presents the accuracy of the entire workflow,
in which the robotic manipulator first positions the US probe
to view the target, and then guides the needle towards the
target. At this moment, the error is not directly relatable to
the errors found in TABLE I and II. Additional experiments
may find this relation.

IV. DISCUSSION

This study demonstrated an approach to a robot-assisted
US-guided biopsy on MR-detected lesions which may be hard
to target otherwise. The overall accuracy, as presented in Table
III, indicates that it is feasible to target lesions with a radius
down to 3 mm. This accuracy is acceptable in breast cancer
diagnostics and similar to equivalent experiments performed
in the cited studies (1.1–2 mm) [8], [9]. The accuracy could be
increased by improving the registration between the phantom
and the robot, which is currently in the millimeter range.
Other factors influencing the accuracy are the target tracking,
the calibration of the US probe and the needle guide with
the robot flange, and the accuracy of the needle guide itself.

The main limitation of this study is the assumption that
the lesion remains in-plane. This assumption was correct
for the performed experiments since the phantom and the
applied forces were symmetric. However, in real-life situations
the tumor may move out-of-plane due to asymmetry in the
applied pressure and the boundary conditions. Nonetheless,
the system can easily be extended to 3D by switching to a 3D
US probe. Both confidence maps and deformation tracking
have previously been applied to 3D US. Additionally, out-of-
plane motions may be detected from the B-mode images by
taking the divergence of the optical flow field. In future steps,
both simulation and feedback algorithms may be combined
to account for deformations that the current system cannot.

Furthermore, the deformation in breast tissue is larger than
in phantom material: the structure is less constrained, the
material softer, and although positioned in prone position, the
patient may move. Therefore, the manipulator may need to
adjust the probe position and subsequently the needle guide
during needle insertion to retain acoustic coupling. Impedance
control of the needle guide may provide compliance for small
patient movements, but will affect the accuracy. Also, a safety
release mechanism may be needed for the needle in a clinical
environment, since the patient may inadvertently move more
than the system accounts for.

This work specifically focused on how US feedback can
be integrated to estimate probe contact and compensate for
deformations. It showed that confidence maps are suitable to
both estimate probe contact and acquire acoustic coupling
with the phantom. The confidence map has advantages over
force feedback, since variations in breast stiffness will not
influence the image quality while deformations are kept to
a minimum. Fig. 5 shows how the confidence map serves
to start the tissue tracking. The optical flow profile shows
the tissue compression in the region in contact, whereas
the edges show some vectors pointing sideways indicating
the expanding region in contact. Sometimes, the tracked
target moved along horizontally with this region. This can be
prevented by specifically evaluating the confidence around
the target area, by setting Cthres to a higher value and by
having a more accurate registration between the target and
the robot. Optical flow was also successfully applied during
needle insertion. TABLE II shows that in-plane accuracy of
the needle placement is currently more accurate with than
without needle detection. This is because the implemented
algorithm detects and aligns the top edge of the needle with
the target, whereas the forward kinematics considers the centre
of the needle. The needle detection will be more accurate by
incorporating the needle radius in the error, e, in equation 5.

Overall, the system shows some promising features. The
robot-assisted biopsy minimizes the MR-time, since the
biopsy takes place under US guidance, the time per biopsy
is less, because the system automatically navigates to the
correct US plane, and the radiologist gains robotic accuracy,
even while he is in control like in the conventional procedure.
Thus, the radiologist can still respond appropriately to either
haptic or patient feedback.

V. CONCLUSION

A robotic workflow was introduced to assist the radiologist
to accurately perform an US guided biopsies on MR-detected
lesions. It was shown confidence maps can be utilized
to estimate first probe contact, and that optical flow can
track tissue deformation in areas with high confidence with
millimeter accuracy. The needle detection algorithm did
reduce errors in the initial direction of the needle, but at
this point is less accurate than using only the encoders of the
needle guide. The proposed workflow has millimeter accuracy
in the current setting.
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