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Abstract— To function effectively in real-world environments,
powered wearable robots such as exoskeletons and robotic
prostheses must recognize the user’s motion intent by detecting
the user’s locomotion modes such as walking, stair ascent
and descent or ramp ascent and descent. Traditionally, intent
detection is achieved using rule based methods such as state
machines or fuzzy logic using data from wearable sensors.
Due to the difficulty of manual rule design, these methods are
limited to detect certain simple locomotion modes. Machine
learning (ML) based methods can perform classification on a
large number of classes without manual rule design and recent
research has explored several ML methods for locomotion
mode classification. However, current ML based methods for
locomotion mode detection use classical methods that require
use of feature engineering to achieve acceptable accuracies.
Additionally, current ML strategies only classify when certain
motion events are detected. This strategy, while computationally
efficient could result in misclassifications affecting large sections
of motion recognition. To overcome these limitations, this
paper proposes an end-to-end deep learning based method for
locomotion mode detection that eliminates the need for feature
engineering and classifies at a fixed sample rate. This paper
introduces a new metric called confidence index and proposes
a strategy for tuning confidence index thresholds to achieve a
stable intent recognition and overall accuracy of greater than
95% on a publicly available benchmark dataset.

Keywords— Lower limb wearable robots, Intent recognition,
Machine learning, Locomotion mode

I. INTRODUCTION

The technology of wearable robots have been well applied
to individuals with disability [1]–[4]. Powered wearable
robots such as exoskeletons and robotic prosthetic devices
need to detect the user’s motion intent to effectively as-
sist users in real-world environments. Based on the ter-
rain, human locomotion can be classified into modes that
share similar patterns of motion across human. Examples
of locomotion modes include walking, stair ascent, stair
descent, running, ramp ascent and ramp descent (Figure
1). By identifying these locomotion modes in real-time
using data from sensors such as inertial measurement units
(IMUs) [5] and electromyography (EMG) [1], [6], wearable
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robots can adapt their control strategies and patterns of
assistance to the specific locomotion mode. In other words,
they use the locomotion mode as an estimation of the
user’s motion intent. Most wearable robots track locomotion
modes using rule based methods such as state machines [7],
[8], fuzzy logic [9] or decision trees [10]. However, rule
based methods for locomotion mode detection require deep
study of experimental data for the design of the rules. Rule
design becomes increasingly complex and labour intensive
for larger numbers of locomotion modes. Consequently, most
rule based locomotion mode detection methods are limited
to certain simple locomotion modes such as walking.
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Fig. 1. The human-environment-robot (HER) loop consists of the human
locomotion monitor, human intention towards robot, human observation and
robotic recognition towards environment. In the human locomotion monitor
branch, machine learning models are utilized to recognize IMU signals,
which functions as the highest level in controller system of exoskeleton.

Due to their ability to perform large multi-class classifi-
cation tasks, machine learning based methods have recently
gained traction for locomotion mode detection. Recent works
have explored the use of several classical machine learning
methods such as Support Vector Machines (SVM) [1], [5],
[11], Linear Discriminant analysis (LDA) [2], Quadratic
Discriminant Analysis (QDA) [6] and Artificial Neural Net-
works (ANN) [5]. While these methods can be used to
detect locomotion modes without the manual design of rules,
they make use of feature engineering. Feature engineering
is the process of designing transformations that project the
input data into a space where the classes of interest are
more easily separable by these methods. Classical machine
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learning methods are less effective for data with complex
decision boundaries and feature engineering is often needed
to achieve acceptable performance.

Many machine learning based methods also perform clas-
sification of locomotion modes only when specific motion
events are detected [5], [11]–[15] such as heel strike or toe
off [16]. These event based methods have lower latency at
these gait events. They are also computationally efficient as
gait events usually happen at low rates and uneven intervals.
However, wrong classifications could potentially lead to
much larger segments of activity being wrongly classified
compared to continuous classification at a regular rate.

To overcome the limitations of existing locomotion mode
classification algorithms, this paper proposes a deep learn-
ing based end-to-end classification method for classifying
locomotion modes from wearable sensor data. Unlike clas-
sical methods, the proposed method is trained to classify
locomotion modes end-to-end using raw sensor data without
computing any specific feature. Unlike event based methods,
the proposed method runs continuously at a fixed sample rate
and generates a classification at each iteration or time step.

One of the disadvantages of a continuous intent classifier
is that the predicted class can switch between different
locomotion modes when the classification probability of the
intents is uncertain. A new metric, the confidence index,
is proposed that measures how certain the classifier is in
the output. By producing output classes only when the
confidence index is high, we achieve stable locomotion mode
classification with minimal false mode switches.

The proposed method is trained on a benchmark dataset for
human lower limb locomotion mode detection and evaluated
on key metrics against state of the art existing methods. The
results presented indicate that the proposed method is capable
of performing end-to-end classification of locomotion modes
at fixed sample rates.

II. METHODS

A. Dataset

We use a public benchmark dataset [17]. We subscribe the
IMU partitioning in the dataset. The dataset contains inertial
sensor data from 10 able-bodied (AB) subjects. In total, five
6-DOF IMUs are fixed on their waist, bilateral thigh and
shank respectively. The subjects are asked to freely ambulate
over level walking (LW), stair ascent/descent (SA/SD) with
a four-step staircase and ramp ascent/descent (RA/RD) with
10 degree slope.

B. IMU Data Preprocessing

In the dataset, each data sample contains the signal of 5
IMU sensors. Each IMU records 6 channels of data (3 axis
acceleration and 3 axis angular velocity). Every 25 samples
(50ms), a window of 150 samples (300ms) is captured. The
choice of window length refers to [5]. The resulting window
of data x ∈ R150×30 is used as the input to the classifiers.
Thus, the sampling rate is 20 Hz. To visualize the inertial
signal difference between the five locomotion modes, we

compute the means and standard deviations across windows
for each mode (Figure 2).

For using with the classical machine learning methods
that we compare against (e.g., LDA, QDA, SVM), we also
compute features from these windows. The features com-
puted include the mean, standard deviation (SD), maximum,
minimum, initial, and final values for each of the 30 channels
in the data. This follows the features computed in [5], [7].

Fig. 2. The lower limb inertial signal from the dataset is divided into
windows of 300ms length (150 sampling points). The data is aligned by the
order of sampling points (x-axis). The interval between neighbor windows
that are adjacent is 50ms. All the windows are statistically analyzed with
computing mean values (solid curve) and variance (shade area). The dataset
are collected from signals of 5 IMUs. Each IMU has three channels of
acceleration signal and three channels of gyroscope signal. The curve colors
vary with different locomotion modes, where LW denotes level walking,
RA/RD denote ramp ascent/descent, SA/SD denote stair ascent/descent.

C. Convolutional Layers

The proposed deep learning model’s primary building
block consists of convolutional layers. Convolutional layers
convolute a set of kernels over the input matrix to generate
one feature map for each kernel. A non-linear activation
function is often applied after the convolution [18], such that

xn = δ(wn ∗ xn−1 + bn) (1)

xn represents nth convolution layer’s output and δ is the
non-linear activation function. wn and bn are the weights
and biases of nth convolutional layer respectively.

The Rectified Linear Unit (ReLU) is an activation function
that is commonly used in deep neural networks due to their
computational efficiency and easier propagation of gradients
through the network. The convolutional layers of this model
adopt this activation function.

δ(x) = max(x, 0) (2)
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D. Fully Connected Layer

The fully connected layer or dense layer applies a matrix
multiplication with a set of weights and adds a bias vector
before applying a non-linear activation function. As the
model classifies input to several mutually exclusive classes,
the last layer applies a softmax activation function. The
inputs of the softmax activation layer ai are the outputs of
fully connected layer. The outputs of the softmax activation
layer ρ(ai) are classification possibilities that sum up to 1.
N is the number of the locomotion modes to be classified.
N = 5 for our case.

ρ(ai) =
eai∑N

n=1 e
an

, for i = 1, ..., N (3)

E. Network Architecture

The proposed convolutional neural network (CNN) model
(see Figure 3) applies a 1-D convolution (across the time
axis) with appropriate padding to preserve the dimensions of
the input data. 1D convolutional layers applies a convolution
using a 1D kernel over each channel. After the first layer, the
network branches in two with each branch consisting of four
convolutional layers. Since the features in a sliding window
contribute to classification, we would like to preserve the
original kinematic information. Therefore, there is no pooling
layer since the information loss would be too significant.
The proposed CNN model contains a convolutional layer
and fully connected layer with softmax layer to extract deep
features from sliding windows which is the input and output
of the probability for each class.

Fig. 3. The neural network architecture for continuous locomotion mode
detection. f1 − f6 are parameters that can be tuned with S, S is the length
of the input window.

• IMU Axis Features Separate Branch
Each IMU has six signal axis consisting of three signal
channels of gyroscope and three signal channels of ac-

celeration. Each signal axis points to locomotion modes-
wise features (Figure 2). In order to avoid mixture
among the features of each axis (e.g., accelerations of
x axis), a 5 × f (5 IMUs setup) convolutional kernel
with dilation rate of 6× f was used to extract features
from each axis of IMU. After separating signal channels
in each IMU, the following layers are 1-D convolution
kernel for extracting time-series features and reducing
the size of the feature map. Flatten layer would flatten
all the outputs from previous layer into a row for
concatenating with the flatten outputs of another branch.

• Local and Global Dilation Branch
This branch is proposed to extract local and global
features with 2-D convolutional kernel and ascending
size of dilation rate. A bigger dilation rate can help
networks to obtain more global feature, because the
convolution range increases with dilation rate. The
channels could form a connection by dilated kernels. All
the outputs at the end of this branch would be flattened
and concatenated with outputs of another branch.

F. Mode Specific Classifiers (MSC) Configuration

Rather than using a single classifier to perform classi-
fication at each sample, we adopt a mode specific classi-
fication approach similar to the one presented in [5]. We
train five copies of the deep neural network presented in
the sections above, where each copy is corresponding to
each of the five locomotion modes considered in this paper.
Each copy is trained to classify locomotion data sample
that is in the corresponding locomotion mode. The classifier
corresponding to each mode differs in the output layer. This
constrains the possible mode transitions to a small set and
improves accuracy as proved by our results. Table I shows the
output classes available to each mode specific classifier. This
reduces the size of each individual classifier and improves
its computational efficiency.

TABLE I
THE OUTPUT OF EACH MODE SPECIFIC CLASSIFIER FOR

LOCOMOTION-MODE DETECTION

Mode Specific Classifier Output

LW

LW
RA
RD
SA
SD

RA LW
RA

RD LW
RD

SA LW
SA

SD LW
SD
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G. Confidence Index

We propose a metric called the confidence index (CI) that
measures the average level of prediction confidence of the
classifier. If any of the class outputs are highly certain (have
a high probability), the confidence index is close to 1.

CI =
2×

∑N
i=1 |ρ(ai)− 50%|

N
,

N∑
i=1

ρ(ai) = 100% (4)

where the N denotes the number of locomotion modes to be
classified. N = 5 for our case. ρ(ai) is the output probability
of each class i, and full mark of CI is 1. According to
properties of classifier, every possible class would be given
a probability ρ(ai).

H. Metrics

• Accuracy
One of the metrics for performance evaluation is accu-
racy. It is defined as the ratio of the number of correct
classifications over the total number of data points.

Accuracy =
Ncorrect

Ntotal
× 100% (5)

• Response Time
The response time is defined as the time taken by the
classifier to classify each sample. Response time is a im-
portant metric to measure the classifier’s performance.

I. Prediction/Inference

To predict locomotion from the neural network’s outputs,
we use a modified inference procedure. Neural networks with
a softmax layer predict the output class that corresponds to
the softmax output node with the largest probability.

We compute the confidence index of outputs Pi of softmax
layer and only make a prediction of the output class once
the confidence index is above a certain threshold. This
ensures that the neural network only predicts a change of
the locomotion mode if the change is confidently certain.
Figure 4 demonstrates the classifier output when different
thresholds are specified for the confidence index.
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Fig. 4. Decision Making Process of Locomotion Mode (LM) Recognition,
TC denotes confidence threshold.

III. EXPERIMENT

A. Offline Locomotion Mode Detection by MSC-CNNs

The CNNs model is built using Keras library, and trained
on a NVIDIA RTX 2080 Ti. The loss function is the categor-
ical cross-entropy. The training adopts the Adam Optimizer

[19] due to its computationally-efficiency. The learning rate
was set 10−5 or 10−4 during the training process

The input of MSC-CNNs (Section II-E & II-F) is the
sliding window containing 150 × 30 features values (S =
150) and parameters in our experiments are that f1:6 =
{15, 5, 6, 25, 15, 5}, which results in 21k trainable param-
eters in the networks. Then, input is convoluted by a deep
neural networks with 1-D, 2-D and dilated 2-D kernels to ex-
tract the in-depth features. We separately trained five CNNs
models corresponding to five locomotion modes for building
MSC-CNNs. A callback for early stopping is activated after
five epochs without validation f1score reducing, and the best
weight would be stored. The validation error is defined as:

Error = 1− f1score (6)

where the f1score is the mean of precision and recall for
each classification result.

Fig. 5. Validation error across 10 subjects (subject independent) by 5-fold
cross-validation.

We implemented the proposed MSC-CNNs classifiers to
recognize the locomotion data on the benchmark dataset
mentioned in Section II-A and compared performance with
previous approaches. To evaluate the proposed confidence
threshold, we offline tested the end-to-end recognition fil-
tered by several confidence threshold values. The offline
detection experiments were tested on the raw locomotion
data of last about 10% locomotion data of subject AB189,
while the MSC-CNNs models were trained on the rest 90%
data.

Fig. 6. The accuracy confusion matrix of each MSC classifier. SS denotes
steady status, which means keeping the current locomotion mode. T denotes
transition, which means switching the locomotion mode to LW.
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B. Comparative Study
In this section, we compared the performance of all the

machine learning classifiers (i.e., LDA, QDA, SVM, MSC-
CNNs and non MSC-CNNs) in terms of overall accuracy
cross 10 subjects. All of IMU signals were rolled into sliding
windows with a step size of 50ms (20Hz) and a window
length of 150 samples (300ms), as mentioned in Section
II-B. The total number of input frames for training and
evaluation is showed in Table II. The evaluation process
included: 1) shuffling all frames, 2) applying a stratified 5-
fold cross-validation.

TABLE II
THE NUMBER OF SLIDING WINDOWS FROM IMU SIGNALS THAT WERE

USED TO TRAIN AND EVALUATE CLASSIFIERS.

Classifier LW RA RD SA SD Total

LW 172080 45907 49777 20033 20281 308078
RA 172080 45907 217987
RD 172080 49777 221857
SA 172080 20033 192113
SD 172080 20281 192361

In the comparative study, MSC-CNNs and non MSC-
CNNs were implemented as mentioned in Section III-A. For
LDA, QDA and SVM’s setup using sklearn python package,
hyper-parameters of LDA were set as: solver is singular
value decomposition, hyper-parameters of QDA was set as:
all default, hyper-parameters of SVM was set as: kernel
is Radial Basis Function (RBF), C = 10 and one-vs-rest
strategy.

IV. RESULTS

To validate the proposed model that achieves continuous
intent recognition, we first evaluated the offline performance
of the model, which simulates the real 5 terrain walking
conditions by classifying the unseen locomotion data. Mean-
while, we compared the effect of various proposed confi-
dence threshold on the recognition stability. Then, we tested
classical machine learning to compare the performance.

A. Offline Locomotion Mode Detection by MSC-CNNs
Figure 5 shows the validation error of each classifier over

data of 10 subjects. The performance of LW classifier is
worse than the other four mode specific classifiers’ while
LW classifier has more locomotion modes to classify than
other four classifiers do (Table I). As shown in Figure
7, the detection curve filtered by the confidence threshold
(CT) is smoother than the curve without CT threshold,
which indicates that CT is effective at removing the spikes
due to wrong detections that happen in steady state (no
transition) period. Next, the number of wrong spikes against
CT suggests that adjusting proposed CT can make intent
recognition more stable. The number of spikes is reduced
from 20 to 1 when CT is increased from 50% to 98%.
Also, the classification performance on the tested samples is
reported by the confusion matrix (Figure 6). The influence
of misclassification in steady state to wearable robotics will
be discussed in next section.
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Fig. 7. (a) Terrains of signals that segmented for offline detection test.
Arrows show the ambulating direction. Data is from one subject (AB189),
LW denotes level walking, RA/RD denote ramp ascent/descent, SA/SD
denote stair ascent/descent. (b) The classic 5-modes context offline detection
test on raw IMU data of last about 2 trails on subject AB189, which was
implemented by Mode Specific CNNs at varied confidence threshold(CT).
As the results shown, CT is able to cancel most of wrong spikes, but the
transition delay would increase with CI: (1) CT = 50% ,(2) CT = 70%,
(3) CT = 90%, (4) CT = 95%, (5) CT = 98%. w/ CT denotes with
confidence threshold, w/o CT denotes without confidence threshold. (c) The
number of wrong spikes Ns that occur in steady state are reduced with
increasing CT.

B. Comparative Study

The comparative study results (Figure 8) include the
accuracy (p < 0.001), confidence index (p < 0.001) tested in
the 5-fold cross-validation over each subject and the average
response time (p < 0.001) for each frame.

The performance of the proposed MSC-CNNs (Mode
Specific Classifiers with CNNs) to recognize the IMU signal
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TABLE III
THE PERFORMANCE OF MSC-CNNS

Approach Sensor Type Classifier Monitor Type Monitor Rate Subjects Mean Overall Accuracy [std] %

Hu et al. [5] IMU LDA Event Based - 10 97.74[0.23]
Liu et al. [11] EMG SVM Event Based - 4 93.5 - 95.5

Proposed IMU MSC-CNNs Continuously 20Hz 10 98.06[1.7]

Fig. 8. The comparative study results of linear discriminant analysis (LDA),
quadratic discriminant analysis (QDA), support-vector machine (SVM),
MSC-CNNs and non MSC-CNNs. (a) Overall accuracy and confidence
index (mean±SD). (b) Average Response time per frame (mean±SD).
The results are averaged across 10 subjects. w/CT denotes with confidence
threshold, w/o CT denotes without confidence threshold.

is evaluated offline through 10 subject on the dataset. Table
III shows the results of overall accuracy of locomotion
recognition. The performance of MSC-CNNs outperforms
the Non MSC-CNNs in terms of accuracy and confidence
index. Because MSC-CNNs is a novel attempt with continu-
ous locomotion mode detection, we only compared two rep-
resentative previous works [5], [11]. However, those previous
works using state machines for rehabilitation devices make it
difficult to implement continuous classification. As a result,
proposed work achieved 20Hz monitor rate and outperformed
in terms of mean overall accuracy.

V. DISCUSSION

In this study, we demonstrated the potential to detect
users intent for lower limb wearable robots. Currently, intent
detection strategies either need feature engineering efforts,
or are event based potentially causing large segment of mis-
classification. Few research has been focused on developing
a method that can recognize raw signal and perform an event
detection. To address those limitations, an end-to-end deep
learning based method was evaluated offline on a benchmark
dataset. Results showed that our method can perform a high
accuracy (above 90%) for classifying raw locomotion signals
into multiple human movement such as walking, stair ascent
and descent or ramp ascent and descent.

Also, we compared the performance of continuous intent
recognition among classical ML methods, which is the part
of contribution of this work (Figure 8). QDA, SVM and

proposed CNN methods are all above 90% in terms of
accuracy and confidence index. However, QDA and SVM
need engineering work before classification. When being ap-
plied to actual wearable robots, intent recognition controller
pursues stability when classifier is accurate enough since
any misclassification during steady state may cause serious
consequences to user. Therefore, we evaluated the proposed
confidence index, and proved its benefit to reducing insta-
bility during steady state by removing wrong classification
spikes (Figure 7), while the overall accuracy with threshold
is decreased slightly. Also, although the latency for entering
transition is enlarged when using CT, this is a interesting
issue to be optimized for future work. For controller of
actual wearable robot, transition latency is still a challenging
metric, where people use outreach device, such as camera,
that can recognize environment before locomotion [20]. The
evaluation results also showed that MSC with multi-classifier
outperforms Non MSC with single classifier in terms of
accuracy and confidence index.

We believe that our novel approach could contribute to
the design of user intent recognition controller of wearable
robots system. Although continuous intent recognition prob-
ably need much more computational resources than classical
event-based state machines, it is reported that the NVIDIA
Jetson Xavier can run deep neural networks with large input
sizes at rates above 50 Hz in a real-time fashion [21], [22].
Therefore, it is feasible to embed this algorithm in a portable
controller and to execute continuous intent recognition in
real-time.

VI. CONCLUSION AND FUTURE WORK

This paper evaluated an end-to-end deep neural network,
which takes raw IMU data as as input, for locomotion mode
detection at a fixed sample rate of 20Hz, and introduced a
new metric called confidence index, and proposed a strategy
to tune confidence index thresholds to achieve a more stable
intent recognition. This approach achieved a mean accuracy
above 90% on a publicly available benchmark dataset. The
comparative study results showed that the algorithm achieved
performance that is comparable with the state of the art
classifiers. Furthermore, it eliminates the needs of feature en-
gineering and avoids large segments with mis-classification.

The proposed algorithm was tested offline on a public
dataset. Therefore, future works should include embedding
the end-to-end intent detection methods on an actual wear-
able robotic system and testing the performance of the
method in real-time control.
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