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Abstract— A long-standing argument in model-based control
of locomotion is about the level of complexity that a model
should have to define a behavior such as running. Even though
a goldilocks model based on biomechanical evidence is often
sought, it is unclear what level of complexity qualifies to be
such a model. This dilemma deepens further for bipedal robotic
running with point feet, since these robots are underactuated.
When center-of-mass (COM) trajectories defined by the spring-
loaded inverted pendulum (SLIP) model are fully tracked,
angular coordinates of the robot’s trunk become uncontrolled.
Existing work in the literature approach this problem either
by trading off COM trajectory tracking against upright trunk
posture during stance or by adopting more detailed models
that include effects of trunk angular dynamics. In this paper,
we present a new approach based on modifying foot placement
targets of the SLIP model. Theoretical analysis and numerical
results show that the proposed approach can be alternative to
existing strategies.

I. INTRODUCTION

Simplified models of locomotion are widely used in
robotics since they are intuitively simple and supported
by biomechanical evidence. In this context, spring-loaded
inverted pendulum (SLIP) model was proposed as a simple
model of running [1] for natural runners that differ in number
of legs, leg morphology, and posture [2]. Capturing the
underlying dynamics of running [3], SLIP also serves as a
target model for robotic running and hopping [4], [5], [6]
since it admits extremely robust and stable running in the
presence of ground height disturbances [7].

Despite these theoretical advantages of the SLIP model,
it is difficult to transfer the resulting running behavior to
humanoids having many degrees of freedom (DOF) including
a floating-base that acts like an inverted pendulum. Angular
DOF of the floating-base become uncontrolled on robots
with point feet since external moments cannot be created
unlike in robots with planar feet (e.g. [4]) due to the point
contact whereas external forces are completely reserved for
tracking trajectories defined by the SLIP. Notwithstanding
the accurate realization of SLIP trajectories on the robot,
uncontrolled trunk dynamics are often unstable, thus lead-
ing to failure. In the literature, there are two approaches
to solve this problem: i) Optimization-based planning of
center of mass (COM) trajectories which stabilizes trunk
dynamics naturally instead of relying on simple models like
SLIP [8], [9]. This approach actually provides a model-free
solution, which requires running computationally expensive
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optimization algorithms at each step. Unfortunately, this is
not feasibly scalable to robots with large number of DOF.
As an example, interested reader can refer to CPU time
results of a hybrid zero dynamics (HZD) approach for which
optimization of a single gait was reported ranging from 2 to
40 seconds depending on the robot’s complexity in [10]. ii)
Using more detailed simple models with trunk instead of a
point-mass body [11], [12], [13]. Although this is a model-
based approach, it suffers from the curse of dimensionality
and the lack of mechanical and intuitive interpretation of
model’s behavior due to the increased complexity.

In this paper, we propose an alternative approach to
stabilize trunk in SLIP-like running of bipedal robots without
the shortcomings of existing approaches. In this regard, our
main contributions are as follows:
i) We discover that step-to-step trunk dynamics in bipedal
robotic running can be formulated as a linear time-varying
discrete dynamical system which admits modification of
SLIP foot placement targets as a control input.
ii) We show that modifying these targets according to a linear
control law provides a novel controller with provable stability
guarantees.
iii) Simulations of a bipedal robot are provided to show that
the proposed approach outperforms an existing model-based
strategy in both transient and steady-state running.

II. THE SPRING-MASS MODEL OF RUNNING
SLIP model is basically a point-mass riding on a compliant

leg, as shown in Fig. 1. Originally, the leg was modeled as
a pure spring [1], which results in energetically conservative
gaits. However, robotic running requires full control of the
mechanical energy since a robot should be able to compen-
sate energy losses in mechanics and to accelerate/decelerate
when needed. Regarding this, different extensions to SLIP
model has been proposed. In this paper, we consider the
extended model in [14] since it was specifically proposed
for energetically efficient control of locomotion on robotic
platforms. Interested reader can see [15], [16] for other
extensions of the SLIP model.

A. Model

As opposed to the original SLIP model, the extended
model has a compliant leg consisting of a spring with
stiffness k and rest length l0, a damper d and a constant
forcing f . Assuming that origin of the coordinate system
coincides with the foot location, which is in contact with the
ground during stance, dynamics take the form

r̈SLIP = rSLIP(m‖rSLIP‖)−1F +
[
0, −g

]T
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Fig. 1: Planar SLIP model with damper and constant forcing.

with rSLIP ∈R2 denoting the position of the mass m, 2-norm
distance operator ‖.‖, gravity g, and leg force

F =−k (‖rSLIP‖− l0)−d
(

d
dt
‖rSLIP‖

)
− f . (1)

On the other hand, flight dynamics take the form

r̈SLIP =
[
0, −g

]T
.

As usual, the transition between these phases are marked
with touchdown and liftoff events. In particular, the stance
phase starts at touchdown event marked with

[0, 1] (rSLIP−ρtd) = 0 (2)

with
ρtd := l0

[
cos(αtd), sin(αtd)

]T (3)

denoting the foot-to-COM vector at touchdown and αtd
denoting the touchdown leg angle. On the other hand, the
liftoff event occurs when

F = 0 . (4)

B. Step-to-Step Control

The control of SLIP running is often formulated as a
step-to-step regulation of apex states, which are defined as
the system states at the vertically highest point (i.e., ẏ = 0)
in flight. Since horizontal position is usually not a control
objective in SLIP running, it can be discarded from the apex
states, thus yielding their final form Z :=

[
y, ẋ

]T . This
definition actually provides a useful abstraction of the SLIP
model by discretizing its hybrid dynamics with an apex-to-
apex return map Zi+1 = R(Zi) from the ith apex to the
next. In order to control this discrete system, we consider
the shifted damping strategy [14], which modifies the leg
damping d and touchdown angle αtd once-per-step according
to a deadbeat policy

(d,αtd) = argmin‖Zd−R(Zi)‖ (5)

with Zd denoting a desired apex state. While seeking a
solution to these tunable parameters with this problem, we
fix the leg spring to a predefined value and use the relation
f = d (d‖rSLIP‖/dt) |t=ttd proposed in [14] for the constant
forcing. As a result, all parameters of the SLIP model are
completely defined, hence allowing use to generate desired
COM trajectories rSLIP(t) and foot placement targets ρtd to
transfer controlled running behavior to a robot.

III. BIPEDAL ROBOT MODELING AND CONTROL
As mentioned in Sec. I, control of bipedal robots with

point feet is susceptible to postural instabilities due to
underactuation, which is cited as the primary reason of
inaccuracies in robotic running based on the SLIP model
[17], [18]. To capture these effects, in this section, we
consider a general bipedal robot with a trunk and point
feet as a model of a target physical platform to transfer
the SLIP-like running behavior described in Sec. II. To
be consistent with the SLIP model, we assume that the
robot is planar. Therefore, its floating-base trunk has two
translational and one rotational DOF. Furthermore, similar
to other instantiations of such robots [19], [5], we assume
that each leg has two fully actuated DOF.

A. Model

The floating base formulation is a general framework
to model a system of rigid bodies that are not fixed to
the world. In this framework, for a bipedal robot whose
configuration can be represented by generalized coordinates
q =

[
qT

b , qT
l

]T ∈R7 consisting of floating-base coordinates
qb ∈ SE(2) and joint coordinates ql ∈R4, dynamics take the
standard form

M(q)q̈+C(q, q̇)q̇+G(q) = ST
τ + JT

f (q)λ (6)

where M(q) denotes the mass matrix, C(q, q̇) the Cori-
olis matrix, G(q) the vector of gravitational forces,
S =

[
04×3, I4×4

]
the selection matrix mapping joint

torques τ to generalized coordinates q, and the Jacobian J f
of contact constraints mapping constraint forces λ to joint
space spanned by q.

The robots of interest to us have two limbs with point
feet. During stance phase of a stride, one of these limbs is in
contact with the ground, while the other one swings forward
to prepare for the next stride. In the sequel, we will refer
to them as the stance leg and as the swing leg, respectively.
Because of the contact with the ground during stance, contact
forces are active (i.e., λ 6= 0) with the constraint Jacobian
J f defined as the Jacobian of the stance leg’s foot location
r f (q) ∈ R2 with J f = ∂ r f (q)/∂q. Furthermore, it is known
that contact forces are completely determined by the joint
torques during stance because of the constraint that the foot
is stationary with

ṙ f = J f (q)q̇ = 0
r̈ f = J̇ f (q)q̇+ J f (q)q̈ = 0 .

(7)

To formulate the relation between contact forces λ and joint
torques τ , we substitute the joint acceleration q̈ solved from
(6) into (7) and obtain

λ =
(
J f M−1JT

f
)−1 (

J f M−1(Cq̇+G−ST
τ)− J̇ f q̇

)
. (8)

On the other hand, during flight, both legs are swinging.
Hence, contact forces are not active, becoming

λ = 0 . (9)

Even though Equations (8) and (9) show that contact
forces are indeed specified by the mode of contact and joint
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torques, these forces become uncontrolled instantaneously at
contact transitions. In particular, when a swing leg hits the
ground, an impact happens leading to a change in states. To
compute the effect of this impact on dynamics, we assume
that collisions are perfectly plastic resulting in impulsive
contact forces applied at the stance foot y f . In this context,
following the methodology in [20], the impact map can be
written as an affine function[

q+

q̇+

]
=

[
In×n 0n×n
0n×n P(q−)

][
q−

q̇−

]
(10)

where P(q) is the mapping between velocities prior to
and posterior to the touchdown, denoted respectively with
superscripts − and +. In contrast to the touchdown, as the
ground contact is lost, no impact occurs at the stance leg’s
liftoff which marks the transition from stance to flight with
zero crossing of the contact force λ = 0.

B. Controls

The main objective of the controller is to transfer the SLIP
running behavior to the robot. In this regard, robot’s COM
trajectories rCOM(q)∈R2 during flight match exactly to those
of the SLIP model since flight dynamics already satisfy

r̈COM = r̈SLIP =
[
0, −g

]T
. (11)

On the other hand, we use a feedback controller during stance
to track COM trajectories of the SLIP model. Furthermore,
we need to control foot positions in both phases to ensure
continuous running. To achieve these goals, we adopt the
Khatib’s task-space control approach [21].

Consider, a vector of tasks w(q)∈R4, which is a function
of generalized positions. Substituting joint space dynamics
into task accelerations ẅ = Jw(q)q̈+ J̇w(q)q̇, with Jacobian
Jw(q) = ∂w(q)/∂q, we obtain the task space dynamics as

ẅ = Jw M−1 (ST
τ + JT

f λ −Cq̇−G
)
+ J̇wq̇ . (12)

Substituting (8) and (9) into this equation and reorganizing
yields a common form for task-space dynamics as

ẅ = E1
(
ST

τ−Cq̇−G
)
+E2q̇ (13)

with E1 :=

{
Jw M−1(I− JT

f (J f M−1JT
f )
−1J f M−1) stance

Jw M−1 flight

E2 :=

{
J̇w− JwM−1JT

f (J f M−1JT
f )
−1J̇ f stance

J̇w flight .

Thus, if a desired trajectory wd(t) ∈ R4 is given, an asymp-
totically stable tracking controller can be formulated as

τ = (E1ST )−1 (ẅd +Kdẇe +Kpwe +E1(Cq̇+G)−E2q̇)

with controller gains Kp ≥ 0 and Kd ≥ 0, where ẇe := ẇd− ẇ
and we := wd−w. This framework is sufficiently flexible to
define different tasks in flight and stance phases.

Similar to [4] and [17], a state machine is employed to
define and schedule these tasks depending on the mode
of contact. To this end, the state machine categorizes the

legs as primary and secondary. During stance, primary
and secondary legs are chosen as stance and swing legs,
respectively. At the lift off, they are switched so that the
next stance leg is treated as the primary leg during flight.
In this context, primary leg actuators are used to track
SLIP’s COM trajectories during stance and to realize SLIP’s
foot placement targets during flight. On the other hand,
secondary leg basically mirrors the primary leg’s motion
in the horizontal direction while maintaining a safe ground
clearance in the vertical direction as suggested by [22] to
effectively prepare a swing leg to the next step without
injecting much trunk disturbance. In order to realize these
objectives, we explicitly define the task function as

w(q) =
[
(rCOM(q)− r f 1(q))T , (rCOM(q)− rf2(q))T ]T

with foot locations of the primary and secondary legs
rf1(q) ∈ R2 and rf2(q)∈R2, respectively. Desired trajectory
wd(t) corresponding to these tasks are defined as

wd(t) =


[
(r?COM(t))T , (ρ td

lo (t))
T
]T

during stance[
(ρ td

lo (t))
T , (ρ lo

td (t))
T
]T

during flight
(14)

with r?COM(t) := rSLIP and ρ
j
i (t) denoting a smooth point-

to-point trajectory that connects foot-to-COM position of
the SLIP model at event i (i.e., ρi) to that at event j (i.e.,
ρ j). Finally, note that, during implementation, we slightly
modify these desired trajectories to avoid unwanted ground
contact and discontinuities that may arise at phase transitions.
However, we omit this for space reasons.

IV. TRUNK-BALANCING STRATEGIES FOR
RUNNING UPRIGHT

Even though the control approach described in Sec. III-B
accurately embeds the SLIP model into COM dynamics
of the full robot model, it does not guarantee to stabilize
the trunk orientation. Unfortunately, due to underactuation
resulting from the point feet, trunk stabilization cannot be
handled by trivially adding a postural task to w(q) without
compromising existing tasks. In the following subsections,
we present a summary of the existing work and a novel
strategy for balancing the trunk in the scope of spring-
mass running. Note that the novel controller is our primary
contribution and provides provable guarantees of postural
stability by modifying foot placement targets of the SLIP
model with a linear feedback law.

A. Existing Work

In the literature, there are only a few studies providing
SLIP-like running with a stable trunk. Raibert [23] was
the first who showed successful running experiments by
allocating leg actuators for the regulation of energy and
stabilization of the trunk, while foot placement is used to
control forward speed. However, his controller was based
on empirical observations, and the objective was to achieve
steady-state running rather than single-step control accuracy.
Another interesting approach [18] in the scope of HZD-based
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control showed that it was possible to accurately embed
both two DOF of the SLIP model and stabilize the trunk
through using leg length and trunk orientation as the only
tasks to control while ignoring the leg angle. However, as
these results were specific to a particular robotic platform, it
is not clear how they translate to robots with significant leg
mass and different leg morphologies. A third approach called
trunk SLIP model with virtual pendulum posture control
(TSLIP-VPPC) is based on a model more detailed than
the SLIP, which was originally proposed for upright human
walking [13] and later adapted to running [24]. In particular,
it additionally incorporates a trunk and a hip reflex. In [25]
it was shown that TSLIP-VPPC achieves accurate control of
running with a stable trunk. In the same paper, TSLIP-VPPC
and HZD approaches were compared, and it was found
that they perform similarly for a robot without leg mass.
Furthermore, the performance of TSLIP-VPPC was found to
be reasonably consistent for different leg masses. However,
to the best of our knowledge, there is no work in the
literature that investigates how HZD performs for significant
leg masses. Therefore, we consider TSLIP-VPPC to compare
against our approach presented in the next subsection.

TSLIP-VPPC illustrated in Fig. 2 has a finite-inertia body
instead of a point-mass and applies not only forces along
the compliant leg but also hip torques to stabilize the trunk.
In particular, the hypothesis of [13] based on human data
suggests that hip torques and leg forces are coordinated in
such a way that the corresponding ground reaction force
(GRF) crosses a single point fixed to the trunk throughout
the stance, hence leading to pitching motion like a damped
pendulum suspended from a pivot at that point. Even though
this model does not completely capture trunk dynamics of
robots, it has been shown to be a more useful template than
the pure SLIP model by accounting for the trunk inertia
which is a major contributor to the postural stability for
robots with point feet.

With this extension, TSLIP-VPPC model can be described
by three DOF corresponding to generalized coordinate vector
q =

[
x, y, θ

]T with COM position
[
x, y

]T and trunk
orientation θ . As shown in Fig. 2, compliant leg of the
TSLIP-VPPC model is identical to that of the SLIP, con-
sisting of a spring, a damper, and a constant forcing. Thus,
both models produce the same leg force F given in (1) with
rSLIP = rhip corresponding to the hip location

rhip =
[
x−dhip sinθ , y−dhip cosθ

]T
.

On the other hand, in order to redirect the GRF toward the
virtual pendulum pivot, hip torque

τ = F ‖rhip‖
dhip sin(ψ)+dvpp sin(ψ +θvpp)

r−dhip cos(ψ)−dvpp cos(ψ +θvpp)

is applied between the trunk and the leg, which can be
defined by the angle ψ = α +θ +π/2.

Combining leg force and hip torque, stance dynamics of
the TSLIP-VPPC can be expressed as

q̈ = diag(1/m,1/m,1/Ib)
(

Jψ τ + Jhip F−
[
0, mg, 0

]T)

with Jacobians Jψ := ∂ψ/∂q and Jhip := ∂ rhip/∂q, whereas
flight dynamics take the usual form q̈ =

[
0, −g, 0

]T
.

These dynamics alternate with touchdown and liftoff events
given in (2) and (4), respectively, yielding the return map
Zi+1 = R(Zi) from the ith apex state Zi =

[
y, ẋ, θ , θ̇

]T
to the next. Note that apex state has two more dimensions
compared to the SLIP, thus requiring two more control inputs
in addition to leg damping and touchdown angle in (5).
Following [26], VP pivot angle θvpp and VP pivot distance
dvpp can be used for this purpose. Therefore, a step-to-step
deadbeat policy can be formulated as

(θvpp,dvpp,d,αtd) = argmin‖Zd−R(Zi)‖ (15)

with a desired apex state Zd . Assuming that the coordi-
nate system coincides with the stance foot location and
denoting resultant COM trajectories by rvpp =

[
x, y

]T , the
TSLIP-VPPC behavior can be translated to the robot by
replacing the desired COM trajectory with r?COM = rvpp.

Fig. 2: TSLIP-VPPC model redirects GRF toward the VP
pivot point on the body.

B. Proposed Approach : A Momentum-Based Foot Place-
ment Strategy

Even though TSLIP-VPPC provides controlled running
with stable postural dynamics, this comes at a price, as
the return map’s complexity increases with four dimensional
state space compared to two of the SLIP model. This
drastically increases both memory and computational cost of
the optimization problem (15), making implementation of the
controller difficult. Furthermore, in contrary to TSLIP-VPPC,
the return map R(Zi) of the SLIP model admits sufficiently
accurate approximate analytical solutions [15], which fa-
cilitate real-time computations. Therefore, if a solution to
postural stability could be found in the scope of the SLIP
model, it would be very appealing. In this regard, we propose
to modify SLIP foot placement target ρtd in such a way that
the trunk is not unstable when SLIP trajectories are tracked
on the robot.

For a given initial apex Z0 =
[
y0, ẋ0

]T , identifying
horizontal and vertical components of ρtd with ∆xtd and ∆ytd,
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respectively, and solving purely ballistic flight dynamics (11)
yields touchdown COM states of the robot as

rCOM(q(ttd)) =
[
ẋ0
√

2(y0 +∆ytd)/g, −∆ytd
]T

ṙCOM(q(ttd), q̇(ttd)) =
[
ẋ0, −

√
2g(y0 +∆ytd)

]T
.

As these states are determined only by the vertical compo-
nent of the foot placement target, the horizontal component
can be used as an additional control input. In particular, we
propose to modify ρtd by incorporating an offset distance
∆xu into the horizontal term in (3) as

∆xtd = l0 cosαtd +∆xu

to control the net moment about trunk without affecting the
COM behavior. In this regard, denoting the trunk orientation
states at the kth apex with Θk :=

[
θk, θ̇k

]T and following
the derivation in the Appendix, we discover that apex-to-
apex trunk dynamics of a bipedal robot can be modeled as
a discrete linear time-varying system

Θk+1 = AkΘk +Bk (∆xu)+dk (16)

with the state transition matrix Ak, the control input-to-state
matrix Bk, and the disturbance input dk resulting from the
limb movements. This formulation enables that a closed-
loop controller can be designed using techniques from the
feedback control theory. In this regard, as an example feed-
back controller in this paper, we consider a proportional-
integral-derivative (PID) strategy ∆xu =−Ki zk−Kpθk−Kd θ̇k
with integral state zk+1 := zk − θk, since disturbances can
be eliminated with integral action, and since closed-loop
response can be shaped as desired with PD gains. The
resulting closed-loop system can be formulated as[

Θk+1
zk+1

]
︸ ︷︷ ︸

Θ̃k+1

=

[
Ak−BkKpd −BkKi[
−1, 0

]
0

]
︸ ︷︷ ︸

Acl

[
Θk
zk

]
︸ ︷︷ ︸

Θ̃k

+dk

with Kpd =
[
Kp, Kd

]
. Desired response can be obtained

with formal stability guarantees by solving the eigenvalue
placement problem associated with Acl . Finally, we believe
that the linear time-varying formulation in (16) will extend
to higher DOF robots as the form of the relation (19)
between angular momentum and foot placement offset will
be preserved.

V. RESULTS

In this section, we present a comparison of the proposed
controller with TSLIP-VPPC. In particular, controllers are
compared in terms of their trunk stabilization performance
alone, as our embedding approach in Sec. III-B explicitly
prioritizes tracking COM trajectories over trunk stabilization,
which leads to accurate COM tracking with uncontrolled
trunk response, due to underactuation. Comparisons are per-
formed for the bipedal robot illustrated in Fig. 3. The choice
of this particular robot is mainly due to recent hardware
platforms [27], [28] adopting the same leg morphology.
While running simulations, we choose trunk mass mb = 60kg,

Fig. 3: Planar SLIP model with damper and constant forcing.

trunk inertia Ib = 4.5kgm2, hip to trunk COM distance db =
0.15m, and link lengths dl = 0.5m of symmetric five-bar
linkage legs to be compatible with the biped ATRIAS [28].
The remaining platform parameters were chosen specific to
the analysis presented in the subsequent subsection.

A. Steady-State Running

By doing steady-state running experiments, we com-
pare the postural deviation of controllers using simulations
conducted across different velocities and platform param-
eters. In particular, we consider velocities in the range
ẋ ∈ [0,4]m/s, while using different link masses in the
range ml ∈ [0.25,2.5]kg to assess the effect of leg mass on
postural deviation. This is particularly important for robotic
running since leg mass is a major discrepancy between
hardware and simple models. However, we do not consider
different apex heights but y = 0.8m, as we observed that
height has a minimal impact on results. Note that leg links are
assumed to be cylindrical in shape made out of aluminium
with density µ = 2700kg/m3, defining the link inertia with
Il = ml(3ml/(πµdl)+d2

l )/12. Simulation results in Fig. 4
show that our approach improves the postural deviation
substantially with zero steady-state error, thus guaranteeing
upright running in all cases thanks to integral action, whereas
TSLIP-VPPC suffers from increase in both velocity and leg
mass.

Fig. 4: Postural deviation of our approach (solid blue) and
TSLIP-VPPC (dashed orange) for various speeds and masses.
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B. Transient Running

As a second experiment, trunk responses of controllers are
compared in an example scenario of transient running. In
particular, we investigate apex-to-apex discrete behavior of
the robot with nominal leg parameters (i.e., link mass ml =
0.5kg and link inertia Il = 0.01kgm2) for desired forward
velocities in the range ẋ ∈ [0, 4]m/s, desired heights in the
range y ∈ [0.9,0.72]m, and desired trunk states θ = θ̇ = 0.
In particular, the robot is commanded respectively to hop in
place for 10 steps at the apex height of 0.9m, to accelerate by
0.4m/s increments with 1.8cm decrements in apex height for
10 steps, to preserve this speed for 10 steps at the apex height
of 0.72m, to decelerate by 0.4m/s decrements with 1.8cm
increments in apex height for 10 steps, and finally to come
to a stop with in-place hopping at apex height of 0.9m for
10 steps. Results illustrated in Fig. 5 show that the proposed
strategy clearly outperforms the TSLIP-VPPC by providing
less postural deviation. Furthermore, results reveal interesting
relations between forward speed, step-to-step acceleration
and postural deviation : Being in line with the observation in
Sec.V-A, postural deviation obtained with the TSLIP-VPPC
seems to be correlated with the forward speed. On the other
hand, there seems to be positive correlation between step-to-
step acceleration and the postural deviation of the proposed
approach.

0.6

0.8

1

0

5

0 10 20 30 40 50

-0.1

-0.05

0

Fig. 5: Height (top), forward velocity (middle), and trunk
orientation (bottom) responses at apex in each step for our
approach (solid blue) and TSLIP-VPPC (dashed orange).

VI. CONCLUSIONS

In this paper, we presented a novel control approach
that modifies foot placement targets defined by the simple
SLIP model to stabilize trunk orientation in bipedal robotic
running. To the best of our knowledge, this approach is the
first strategy leading to stable trunk response without trading
off tracking desired COM trajectories of SLIP running for
underactuated robots with point feet. To this end, a linear
controller that computes horizontal offset for foot placement
target is formulated based on apex-to-apex dynamics of
trunk orientation which is shown to be a discrete linear

time-varying system. Finally, we show through simulations
that our approach outperforms an existing strategy using a
more complex locomotion model TSLIP-VPPC instead of
a point-mass SLIP model to account for trunk orientation
dynamics in the reference model level. Furthermore, we
believe that our approach is easily scalable to 3D running
as opposed other strategies favoring more complex models
since they will suffer from the curse of dimensionality. For
these reasons, we think that the our control approach is worth
investigating on hardware platforms. In addition to verifying
the theoretical/numerical results, experimental verification is
also important to quantify robustness of our approach to
unforeseen ground height disturbances and modeling and
control errors on a real platform. As another interesting
future work avenue, integration of our approach and footstep
planning algorithms can be explored.

APPENDIX
In this section, we present detailed derivation of apex-to-

apex trunk dynamics (16). Before doing so, however, we find
it useful to present three common definitions: i) We define
the centroidal angular momentum l(t) (i.e., the total angular
momentum about COM) as

l(t) := Ibθ̇(t)+ l̃(t)
with l̃(t) denoting angular momentum of limbs about the
system’s COM. ii) We define a simplified notation for a
definite integral of centroidal angular momentum l(t) as

L(t0, t) :=
∫ t

t0
l(τ)dτ = Ib(θ(t f )−θ(t0))+

∫ t

t0
l̃(t)dt .

iii) We define a simplified notation for single and double
integrals of any function h(t) as

I(h(τ), t0, t) :=
∫ t f

t0
h(τ)d(τ)

D(h(τ), t0, t) :=
∫ t f

t0

(∫ t f

t0
h(τ)dτ

)
dt .

Now, suppose that initial values at the apex θ(0), θ̇(0),
and l̃(0) are given. During flight descent phase, there are no
external moments, hence, yielding

l(t) = l(0)
L(0, t) = l(0)t .

(17)

Solution to trunk orientation states can be obtained from
these equations as

θ̇(t) = θ̇(0)+(l̃(0)− l̃(t))/Ib

θ(t) = θ(0)+ θ̇(0)t +∆L̃(t)/Ib
(18)

with ∆L̃(t) = l̃(0)t− I(l̃(τ),0, t).
In contrary to flight, a net moment about COM is created

by GRF during stance as illustrated in Fig. 6. This can be
captured by

l̇(t) =
(

rCOM(t)− r̃ f − [∆xu, 0]T
)
⊗
(

mr̈COM(t)+ [0, mg]T
)

(19)

with cross product ⊗ and unmodified foot location
r̃ f := rCOM(ttd)+ρtd defined by the SLIP model. Note that,

for ∆xu = 0, we have

(rCOM(t)− r̃ f )⊗ (mr̈COM(t)+ [0, mg]T ) = 0 ,
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since GRF always passes through the point-mass of the SLIP
model, corresponding to the robot COM. This reduces (19)
to l̇(t) = ∆xu Ry(t) with Ry(t) :=−m(ÿCOM(t)+g) denoting
the vertical component of the force applied to the ground.
Integrating this equation in stance leads to

l(t) = l(ttd)+(∆xu) I(Ry(τ), ttd, t)

L(ttd, t) = l(ttd)(t− ttd)+(∆xu) D(Ry(τ), ttd, t) .
(20)

Now, using (17) with t = ttd, we obtain

θ̇(t)=θ̇(0)+
(
l̃(0)− l̃(t)+(∆xu) I(Ry(τ), ttd, t)

)
/Ib

θ(t)=θ(0)+ θ̇(0)t +
(
∆L̃(t)+(∆xu) D(Ry(τ), ttd, t)

)
/Ib .

Finally, we consider the flight ascent phase, during which
angular momentum is conserved with

l(t) = l(tlo)

L(tlo, t) = l(tlo)(t− tlo) .
(21)

Substituting (20) with t = tlo into (21), trunk states are
obtained as

θ̇(t)=θ̇(0)+
(
l̃(0)− l̃(t))+(∆xu) I(Ry(τ), ttd, tlo

)
/Ib

θ(t)=θ(0)+θ̇(0)t +
(
∆L̃(t)+(∆xu) D(Ry(τ), ttd, tlo)

)
/Ib .

As we are mainly interested in apex-to-apex behavior, eval-
uating this equation at the stride duration t = Tk and associ-
ating trunk states at t = 0 with the apex k and those at t = Tk
with the apex k+ 1 yields the time-varying linear discrete
dynamical system in the state-space form[

θk+1
θ̇k+1

]
︸ ︷︷ ︸
Θk+1

=

[
1 T
0 1

]
︸ ︷︷ ︸

Ak

[
θk
θ̇k

]
︸︷︷︸
Θk

+

[
D(Ry(t), ttd, tlo)
I(Ry(t), ttd, tlo)

]
︸ ︷︷ ︸

Bk

(∆xu)+

[
l̃(0)−l̃(Tk)

Ib
∆L(0,Tk)

Ib

]
︸ ︷︷ ︸

dk

.

Fig. 6: Mechanism of the proposed strategy for a robot
depicted as a centroidal inertia and mass with the baseline
foot position r̃ f and correction with horizontal shift ∆xu.
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