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Abstract— Most current bipedal robots were modeled with
an assumption that there is no slip between the stance foot and
ground. This paper relaxes that assumption and undertakes a
comprehensive study of a compass gait biped with foot slipping.
It is found that slips are most likely to happen near impact for a
broad range of gaits. Among these gaits, ones with a backward
swing foot velocity relative to the ground just before touch down
generally require less friction to maintain stable walking than
ones with a forward relative foot velocity. Moreover, a larger
percentage of gaits with the “swinging backward” foot can
tolerate some slipping without falling than those with a swinging
forward foot at touch down. Thus, a gait with the swing-
backward foot just before touch down should be more robust in
the sense of preventing slipping and falling. It is further shown
that only one parameter in gait design determines the swing-
backward feature, which can help design robust gaits. Models
with varying physical parameters such as mass, leg length, and
position of center of mass (CoM), are also studied to validate
the generality of the results.

I. INTRODUCTION

Currently the methods to control biped walking can be
broadly classified as full actuation or underactuation. Hu-
manoid robots such as Honda’s Asimo [1] are actuated at
all joints, and their walking is achieved by actuation of the
hip, knee, and ankle joints. Underactuated robots have fewer
actuators than the number of degrees of freedom, for exam-
ple, they may be lack of ankle actuation [2] or hip actuation
[3]. Many underactuated biped walking robots [2]–[7] are
controlled with the hybrid zero dynamics (HZD) approach
[8], which applies a Poincaré map to design stable, periodic
walking gaits. All the aforementioned models assume that
there is no foot slippage on the ground, and thus the stance
foot can be treated as a stationary pivot point. To take the
robot outside of human-made environment, however, foot
slipping needs to be considered to make it able to walk on
different terrains (such as a rainy, snowy or icy ground) and
improve the robustness of biped robots [9], [10].

Boone and Hodgins [11] simulated a hopping two-leg
robot on ground with different coefficients of friction by
using reflex control, i.e., the robot takes action immediately
after it detects that a slip happens. They compared different
strategies, and showed that to abandon the step by pulling
the leg off the ground and re-positioning the robot is suc-
cessful in recovering from slips on surfaces with very small
coefficients of friction (as low as 0.07). Park and Kwon [12]
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proposed a reflex control method that elevates the hip (thus
increasing the ground reaction force and friction force) and
laterally drag the swing leg toward stance leg during swing
phase (to keep the ZMP in a safety region). Their simulation
on a 12-DoF fully actuated biped model showed that the
robot can walk stably on the ground with the coefficient
of friction as low as 0.3. Kajita et al. applied the preview
control method on a fully actuated biped HRP-2 walking on
a low friction floor [13], [14]. The biped was shown to be
able to walk on a slippery floor with a friction coefficient
of 0.14. However, the exact relationship among the slip- and
stability-related indices proposed in their research was not
fully resolved.

Recovery methods for when a foot slips require detection
of slips. In simulation, slips are detected when the velocity
of the stance foot is not zero or the horizontal acceleration of
the stance foot is above a certain level, both of which may
be difficult to detect in a real system. Kaneko et al. [15]
defined a slip force, which is the difference between the
actual reaction force and a reference reaction force. The slip
force can be adopted as a slip observer in a physical robot.
They also used the slip force to calculate the slip moment,
which was considered to be the factor in posture rolling at
slipping. Thus, they proposed a slip stabilizer to suppress
posture rolling at slipping and experiments showed that the
robot HRP-2 with the slip stabilizer can walk on the ground
with a friction coefficient of 0.144.

Research focusing on underactuated bipeds has also re-
cently started to consider foot slipping. The work in [16],
[17] modeled slipping dynamics and provided a scheme to
switch among multiple domains when a slip occurs. In [18],
the authors experimentally demonstrated a foot slipping gait
that can be stabilized on both a low-friction surface and a
rough no-slip surface with the robot AMBER-3M.

This paper also studies foot slipping for underactuated
bipeds, with a special focus on classification and characteri-
zation of all the feasible gaits that are obtained on a rough no-
slip surface. It uses minimal coordinates to model a hybrid
bipedal robot which allows for foot slipping, and further
studies the causes of falling due to slipping, the relationships
between slips and impact, gait feature and robustness (in
the sense of preventing slipping and falling). The results are
validated by using models with varying physical parameters.
A simple robust gait design method is proposed and proven
via simulation, considering a specific model, as opposed to
proven mathematically.
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Fig. 1. Top: illustration of the hip-actuated compass gait biped in this
paper. The legs are symmetric, with mass m = 5kg and length l = 1m for
each. The location of the CoM of each leg is lc = 0.8m away from the
foot, and the moment of inertia with respect to the CoM for each leg is
J = 0.6kg ·m2. Bottom: A general bipedal walking system consists of two
modes: no slip (sticky) mode at the left side, and slip mode at the right side
[18].

II. FOOT SLIPPING FOR THE COMPASS GAIT BIPED

The hip-actuated compass gait biped is illustrated in
Fig. 1. Denote the hip and ankle joint angles as q1 and q2
respectively. The position of the stance foot is (xst ,yst), and
u is a torque applied at the hip. A general model consists of
two modes: sticky mode1 and slip mode. Thus, the system
H [18], [19] can be expressed by

H = {Q,X , f , Init,E,G,R} (1)

where
• Q = {0,S}, where 0 represents the sticky mode, and S

represents the slip mode;
• X = (q1,q2,xst ,yst , q̇1, q̇2, ẋst , ẏst) ∈ Rn, represents the

state space;
• f : Q×X→Rn assigns to each mode in Q an analytical

vector field;
• Init ⊆ Q×X is the set of initial states;
• E = {e0→s,es→0,ei

0→s,e
i
s→0,e

i
0→0,e

i
s→s} ⊆ Q×Q is the

set of discrete transitions;
• G = {G(e) : e∈ E} is a set of guard conditions referring

to the switching surfaces between different modes; and,
• R = {R(e) : e ∈ E} is a set of reset maps.

A discrete transition event with a superscript i means that the
transition happens at impact [18], which is also illustrated
with a dashed line in Fig. 1. The other events occur during
swing phases, such as e0→s triggers when static friction force
between the ground and stance foot cannot maintain sticky
walking, and es→0 triggers when the stance foot velocity
decreases from nonzero to zero.

1Sticky mode means that no slipping occurs at the mode, i.e., the relative
velocity between the surfaces of contact between the foot and the ground
is zero.

A. Swing Phase in Each Mode

Compared with [16] that used excessive coordinates to
model a biped with foot slipping, this paper adopted minimal
coordinates to construct the model, i.e., only 4 states X0 =
{q1,q2, q̇1, q̇2} are needed to model the dynamics in the
sticky mode, and 6 states Xs = {q1,q2,xst , q̇1, q̇2, ẋst} are
used for the slip mode. The advantage of using minimal
coordinates is that the dynamics at each mode are concise
and the computation is relatively simple.

The dynamics for a swing phase at the sticky mode are

ẋ =
[

q̇
D−1

0 (q)[−C0(q, q̇)q̇−G0(q)+B0(q)u]

]
= f0(x)+g0(x)u,

(2)

where q = [q1, q2]
T is the configuration, x =

[q1, q2, q̇1, q̇2]
T ∈ X0 is the state vector, u is the input,

D0 is the inertia matrix in sticky mode, C0 is the Coriolis
matrix, G0 is the gravity vector, and B0 is the input direction
vector. The dynamics for a swing phase at the slip mode are

ẋ =
[

q̇
D−1

s (q)[−Cs(q, q̇)q̇−Gs(q)+Bs(q)u+B f (q)Ff ]

]
= fs(x, ẋ)+gs(x)u,

(3)

where q = [q1, q2, xst ]
T is the configuration, x =

[q1, q2, xst , q̇1, q̇2, ẋst ]
T ∈ Xs is the state vector, u is

the control input, Ff is the friction force, Ds, Cs and Gs are
the corresponding matrices or vectors in slip mode, and B f
is the input direction vector for Ff .

The friction force Ff can be computed by Ff = µkFn, in
which µk is the coefficient of kinetic friction, and Fn is the
normal force computed by

Fn =m
(
2g− (l + lc)cosq2q̇2

2 +(l− lc)cos(q1−q2)(q̇1− q̇2)
2)

−m((l− lc)sin(q1−q2)+(l + lc)sinq2) q̈2

+m(l− lc)sin(q1−q2)q̈1.

Note that Fn is a function of q, q̇, q̈, which is why fs in Eq. (3)
is a function of x, ẋ. Specifically, Fn is linear in q̈. This allows
isolation of ẋ onto one side, and thus, a standard numerical
solver, such as Matlab’s ode45(), can be used to compute a
numerical solution to Eq. (3). Detailed expressions for the
terms in Eq. (2) and (3) are in the Appendix.

B. Impact Map

Ignoring foot scuffing at mid-stance, as is typically done,
touchdown occurs when the swing foot hits the ground, i.e.,
the vertical position of the swing foot is 0 and the vertical
velocity of the swing foot is negative. At touchdown, the
model dynamics are

Deq̈e +Ceq̇e +Ge = Beu︸︷︷︸
control

+ JT F︸︷︷︸
contact f orces

+δFext︸︷︷︸
impact

, (4)

where qe = [q1, q2, xst , yst ]
T is an extended configuration

state vector, De ∈ R4×4 is the extended inertia matrix, Ce ∈
R4×4 is the Coriolis matrix, Ge ∈R4 is the gravity vector, J
is a Jacobian matrix, F = [Ff ,Fn]

T are the contact forces
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applied at the stance foot, and δFext are the generalized
impact forces applied at the swing foot when it hits the
ground. Integrating both sides of Eq. (4) within a very small
amount of time δ t, gives

De(q+e )q̇
+
e −De(q−e )q̇

−
e = Fext , (5)

where q+e and q̇+e are configuration and velocity states just
after impact, q−e and q̇−e are configuration and velocity states
just before impact, and Fext ∈R4 is a result of integrating the
impulse force δFext over the impact duration δ t. Refer to the
Appendix for details about the extended inertia matrix De.
Eq. (5) is also interpretable as an expression of conservation
of momentum.

As slipping may occur just at the impact, it makes the
configuration-based impact map in [8] not applicable. To
obtain a general impact map, define the position of the swing
foot p2 =(xtd , ytd)

T = p2(qe), and the impulse at touch down
as F2 = (F t

2 , Fn
2 )

T . Thus, the generalized impulse is

Fext = [
∂

∂qe
p2(qe)]

T
[

F t
2

Fn
2

]
, E2(q−e )

T F2, (6)

where E2(q−e ) ∈ R2×4 is a Jacobian matrix, which projects
from joint velocities to end-effector velocities, and E2(q−e )

T

thus projects end-effector forces to joint torques.
Note that the configuration states at impact stay un-

changed, and thus q+e = q−e . Substituting Eq. (6) into (5),
we have four equations and six unknowns, i.e., q̇+e and
F2. The other two equations come from the constraints of
configurations or contact forces.

1) When no slip happens at the impact, the swing foot
sticks onto the ground with neither slip nor rebound,

E2(q−e )q̇
+
e = 02×1,

and so in matrix form,[
De(q+e ) −E2(q−e )

T

E2(q−e ) 02×2

][
q̇+e
F2

]
=

[
De(q−e )q̇

−
e

02×1

]
. (7)

2) When slipping occurs at the impact and there is no
rebound but slipping, i.e.,

ẏ+td =
∂ytd

∂qe
q̇+e = 0, |F t

2 |= µkinetic|Fn
2 |,

and so in matrix form,De(q+e ) −E2(q−e )
T

∂ytd
∂qe

01×2

01×4 [±1, µ]

q̇+e
F t

2
Fn

2

=

De(q−e )q̇
−
e

0
0

 . (8)

III. SIMULATION RESULTS AND ANALYSIS

A. Control of An Underactuated Biped Robot

An HZD-based controller [8] is adopted to control the
hip-actuated biped robots studied in this paper. The idea is
to actuate the hip joint q1 in order to make it follow some
desired trajectory q′1(q2), which is a function of q2 defined
by a fourth-order Bézier polynomial. Because it completely
specifies the motion, a trajectory q′1(q2) is also called a gait.
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Fig. 2. A fourth-order Bézier curve defined by five control points, a0
through a4.

Fig. 3. The yellow and green region represents all the feasible gaits, and
the green dots represent the gaits with a required coefficient of static friction
µs that is less or equal to 1 to prevent slipping.

Some details about the Bézier polynomial will be impor-
tant subsequently. Fig. 2 shows an example of a fourth-order
Bézier curve. The curve is defined by a set of control points,
a0 through a4. The first and last control points are the end
points of the curve, and the second and second-to-last points
help define the slopes at the two end points of the curve.
Thus the gait is defined by

q′1(q2) =
4

∑
k=0

ak
4!

k!(4− k)!

(
q2−q+2
q−2 −q+2

)k

×
(

1−
q2−q+2
q−2 −q+2

)4−k

,

(9)

where q2 is the ankle joint angle, q′1 is the desired hip joint
angle, and q−2 and q+2 are the ankle joint angles just before
and after touch down, respectively, a0 and a4 are fixed by
the end conditions of the gaits, and the jump condition at
impact gives a relationship between a1 and a3. Therefore,
only two parameters a2 and a3 are free to define the gait.
Refer to [8, p. 138-144] for more details.

In this paper a fixed step length 0.445m is adopted to
design the gaits and the gait curve starts at (−π/14,−π/7)
and ends at (π/14,π/7), which requires a0 = −π/7 and
a4 = π/7. Gaits on a 601×501 grid for 0< a2 < 6 and −2<
a3 < 3 are evaluated. Feasible gaits are defined such that:
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Fig. 4. When a slip happens for a feasible gait. < 1% represents that the
most susceptible instant is at the first 1% cycle of a swing phase. > 99%
represents that the instant is at the last 1% cycle of the swing phase, and
1−99% indicates that the instant is in the middle of the swing phase. “at
impact” indicates that the instant is just at the impact.

1) there exists a real-value initial condition, 2) the normal
force on the stance foot is always positive (unilateral contact
force), 3) after impact the stance foot immediately lifts up
without interaction with the ground, 4) the biped does not
fall backward, 5) the joint velocities are within a reasonable
range (under 100rad/s),2 6) the biped does not alternate
the initially-designed step length. All the feasible gaits are
shown in a colored region in Fig. 3. Outside boundary A, the
biped can fall backward, because the unactuated ankle joint
velocity becomes zero before the CoM of the biped passes
the stance foot. Beyond the boundary B, negative normal
force is required, which is not feasible. Below boundary C,
the swing foot does not have negative vertical velocity when
the foot reaches the ground, thus failing to hit the ground at
the instant but keeping swinging.

B. Slip Friction and Falling Friction

Define the slip friction to be the minimum required
coefficient of static friction that prevents slipping along the
entire gait trajectory, including at impact. The slip frictions
for all the feasible gaits in Fig. 3 range between 0.1 and
several thousand. In order to make the contributions of this
paper practically relevant, only the gaits with a slip friction
less than or equal to 1 will be considered in the rest of this
paper, which are shown in green in Fig. 3.

For all the feasible gaits in green, Fig. 4 shows at which
stage in the gait slips occur. From Fig. 4, slips are most likely
to happen at some instant in the neighborhood of impact,
with 50% of the gaits where slipping happens just at the
beginning of swing phase, 15% where slipping happens just
before the impact, and the rest, 35%, where slipping happens
just at impact. This intuitively makes sense, because our
everyday experience is that a slip usually occurs just after
touchdown in human locomotion.

On a surface with a low coefficient of friction slipping is
likely to occur. Some gaits may be stable in the sense the

2Actually all the obtained feasible gaits have relatively small joint speeds,
much less than 100rad/s.
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Fig. 5. The black boundary circles all the feasible gaits with a required
µs ≤ 1 to prevent slipping. Each contour represents a level set of gaits with
a specific CoT, which is numbered. Green dots represent all the gaits that
fail on slippery ground because of falling backward. They generally have a
small CoT ≤ 0.2. The other gaits fail on slippery ground because negative
normal force is required.

robot does not fall and can continue to walk even if there
is some foot slip during the gait cycle. Therefore, define the
falling friction as the minimum required coefficient of static
friction to maintain a stable walking without falling.

Throughout this paper we assume that the coefficient of
static friction is 1.2 times the coefficient of kinetic friction.
To obtain the falling friction for each feasible gait, the
simulation starts with a friction coefficient that is slightly
larger than the slip friction (0.002 greater), and repeats the
simulation with the coefficient of friction decreased by 0.01
until the gait fails. The criteria used to determine a fall are
that within 50 steps: 1) a negative normal force is required,
2) the biped falls backward, and 3) unreasonably large joint
velocities are generated (greater than 100rad/s). It shows that
on slippery ground the gaits fail either by falling backward
(because the biped cannot move its CoM to pass over the
stance foot), or by requiring negative normal force. Fig. 5
shows the distribution of these two types of gaits along with
the Cost of Transport (CoT)3. For low CoT gaits, slipping can
drain energy from the system, eventually leaving it without
the energy necessary to take the next step.

A robust gait in the sense of preventing slipping or falling
is a gait that requires relatively small slip friction and falling
friction, and that can “tolerate” some slipping without falling.
It is found that a very high percentage (over 99%) of gaits
with a negative swing foot velocity relative to the ground (a
“swing-backwards foot”) just before touch down can tolerate
some slipping without falling, as shown in Fig. 6. In contrast,
about a half of gaits with swing-forward foot would fail once
a slip occurs.

The left and right plots in Fig. 7 show the required
slip friction and falling friction for all the feasible gaits,
respectively. Note that color distribution on the two plots
is similar, which suggests that a gait with small slip friction
generally requires small falling friction.

3Cost of Transport (CoT): smaller CoT means more energy efficiency.
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The feasible gaits can be split into two types, indicated
in Fig. 7 by the black line. All the gaits with the swing-
backward feature are above the line, while all the gaits
with the swing-forward feature are below it. The gaits
with relatively small slip and falling friction (that are in
blue and outlined) are concentrated above the black line in
both plots. Therefore, the optimally robust gaits have the
swing-backward foot feature. The black line in Fig. 7 can
be analytically computed. The x-directional velocity of the
swing foot is

vx = q̇2l cosq2 +(q̇1− q̇2)l cos(q1−q2).

Just before impact, the velocity is

v−x = q̇−2 l cosq−2 +(q̇−1 − q̇−2 )l cos(q−1 −q−2 ), (10)

where v−x is the x-directional velocity of the swing foot just
before impact, q−1 and q−2 are hip and ankle joint angles
just before impact, and q̇−1 and q̇−2 are hip and ankle joint
velocities just before impact. Note that q−1 = 2q−2 for a
symmetric biped. Thus, it can be further simplified,

v−x = q̇−1 l cos(q−1 −q−2 ). (11)

TABLE I
BIPED MODELS WITH VARYING PARAMETERS.

Model Code m(kg) J (kg ·m2) l (m) lc (m)

Model-0 5 0.6 1 0.8
Model-1a 1 0.12 1 0.8
Model-1b 10 1.2 1 0.8
Model-2a 5 0.14 0.5 0.4
Model-2b 5 1.3 1.5 1.2
Model-3a 5 0.5 1 0.7
Model-3b 5 0.55 1 0.75
Model-3c 5 0.65 1 0.85
Model-3d 5 0.7 1 0.9

Note that the term cos(q−1 −q−2 ) is positive, and a positive
(negative) q̇−1 determines the swing-forward (swing-back) for
a gait. The ankle joint angle q2 is monotonically increasing
in the HZD controller design, thus giving q̇−2 > 0. Therefore,
to have a gait with the swing-back feature, it is required that
q̇−1 /q̇−2 should be negative. Recall in Fig. 2 that

q̇−1
q̇−2

=
a4−a3

π/28
, (12)

and thus a3 > a4 = π/7 gives a gait with the swing-backward
feature, and a3 < a4 = π/7 gives a gait with the swing-
forward feature. The value of a3 is the line in Fig. 7 that
differentiate the two types of gaits.

Even when a higher-order Bézier polynomial is adopted to
design the gaits, the aforementioned result is applicable. The
slope at the end point of the Bézier curve is defined by the
last and second-to-last control points, as shown in Eq. (12).
Thus, the second-to-last control point can always be used to
design a robust gait with the swing-backward feature.

IV. EXTENSIONS TO MODELS WITH VARYING
PARAMETERS

This section considers varying model parameters to verify
that the results in Section III are not specific to the model
parameters used for the nominal model. Table I lists different
models for study. Model-0 is the nominal model. Model-
1x represent models that vary masses relative to Model-0.
Model-2x represent models that vary leg lengths. Model-3x
represent models that vary positions of the CoM of the legs.
These values are similar to the values taken for the compass
gait biped model in [20].

Simulation shows that varying masses (Model-1x) or leg
lengths (Model-2x) does not qualitatively affect the afore-
mentioned results, i.e., slips are most likely to happen near
impact for all feasible gaits, and the gaits with the swing-
backward feature are more robust in the sense of preventing
slipping and falling. However, varying the CoM location of
each leg (Model-3x) shows more complicated results, and
thus five sets of models with different CoM positions are
studied. See Model-0 and Model-3x in Table I.

For all the models with varying positions of CoM, it can
still be observed that slips are most likely to happen at the
instant in the neighborhood of impact. In Figs. 8-10, the x-
axis, position of the leg CoM to the foot, represents the ratio
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Fig. 8. Success percentage means the percentage of gaits that can tolerate
some slipping with not falling. Blue dots represent the success percentages
among the gaits with swing-backward feature, and red dots represent the
success percentages among the gaits with swing-forward feature.
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Fig. 9. Percentages of the two types of gaits in the feasible gait region,
for models with varying positions of the leg CoM.

of distance between the foot and the leg CoM over the leg
length. In an extreme case, if the CoM coincides with the
foot, the value is 0.

Fig. 8 shows success percentages among the two types
of gaits. The gaits with swing-backward feature have advan-
tages over those with swing-forward feature almost through
the whole range, and the advantage is the most significant at
some point between 0.8 and 0.85.

When increasing the CoM location of each leg, the feasible
region gets larger (which is not shown in this paper due to
space limit). Along with that, the percentage of the gaits with
swing-backward feature also gradually increases, as shown in
Fig. 9. When the position is over 0.8, the increasing trend is
no longer significant. Also note that when the CoM location
of each leg is as low as 0.7, there are very few gaits with
the swing-back feature.

Fig. 10 illustrates the slip and falling friction for the two
types of gaits. Generally, the gaits that require the smallest
slip and falling friction for different models have the swing-
backward feature, which can be obtained by comparing the
top two plots. The only exception is the Model-3a with the
position of the CoM at 0.7: the gait with the smallest slip
friction has the swing-forward feature. That is because there
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Fig. 10. Top-left: blue (red) dots represent the minimum slip friction among
all the feasible gaits with the swing-backward (swing-forward) feature. Top-
right: blue (red) dots represent the minimum falling friction among all the
feasible gaits with the swing-backward (swing-forward) feature. Bottom-
left: blue (red) dots represent the median slip friction among all the feasible
gaits with the swing-backward (swing-forward) feature. Bottom-right: blue
(red) dots represent the median falling friction among all the feasible gaits
with the swing-backward (swing-forward) feature.

is nearly no gait with the swing-backward feature for the
Model-3a. The bottom two plots compare the median slip
and falling friction for the two types of gaits. The median
slip friction for the gaits with the swing-forward feature is
generally smaller than that for the the gaits with the swing-
backward feature, partly due to the fact that the gaits with
the swing-backward feature take a much larger percentage
among all the feasible gaits as shown in Fig. 9. Even so, the
median falling friction for the gaits with the swing-backward
feature is generally smaller than that for the gaits with
swing-forward feature. Therefore, the gaits with the swing-
backward should be more robust in the sense of preventing
slipping and falling.

Another observation from Fig. 10 is that the minimum and
median slip/falling friction generally decrease as the biped
has a higher CoM position of each leg. This suggests that
increasing the CoM locations of the legs may help design
a biped that is suitable for slippery ground. As the position
of the CoM is over 0.8, the decreasing trend, however, is
no longer significant. Also considering in Fig. 8 that the
success rate for the gaits with the swing-back feature falls
dramatically as the CoM position is over 0.85, an optimal
biped design should be to select a position of the CoM at
some point between 0.8 and 0.85.

V. CONCLUSIONS AND FUTURE WORK

This paper studies the compass gait biped robot with foot
slipping. It uses minimal coordinates to model the system,
and presents the modeling of swing phases at sticky and
slip modes and the derivation of a general impact map
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in detail. It is found that slips are most likely to happen
in the neighborhood of impact for models with varying
parameters. The feasible gaits fail on slippery ground either
by falling backward or by requiring negative contact force,
which cannot be provided by the ground.

Two types of coefficients of friction are defined, slip
friction and falling friction. Thus, a robust gait in the sense
of preventing slipping and falling is a gait that requires
small slip and falling friction to maintain stable walking, and
that can tolerate some slipping without falling. By studying
the models with varying parameters, the optimally robust
gaits have a swing-backward feature. This result is consistent
with that in [21], which shows that the swing leg retraction
can improve biped walking stability. A CoM position at
some point between 0.8 and 0.85 is an optimal design in
increasing the robustness defined in this way. Furthermore,
this paper also proves that the second-to-last control point
in gait design using the Bézier curve determines the swing-
backward feature, which is applicable to any order Bézier
curve. Thus, it can guide the design of robust gaits in a
simple way.

There are certain issues that require further work. This
paper studies foot slipping with an assumption of Coulomb
model of friction, which might not be applicable to some
cases in reality. The friction model can be improved to
make foot slipping results close to reality. Current gaits only
consider a specific initial configuration, and a range of differ-
ent configurations should be considered, which might affect
foot slipping. Although many results initially obtained with
simple models have generalized in biped locomotion, the
results in this paper require validation on more complicated
models such as a five-link and 3D biped in future.

VI. APPENDIX

Model parameters in Eq. (2) are [8]

D0 =

[
D01 D02
D03 D04

]
C0 =

[
C01 C02
C03 C04

]
G0 =

[
G01
G02

]
B0 =

[
1
0

]

where,

D01 =J+m(l− lc)2

D02 =− J−m(l− lc)(l− lc− l cosq1)

D03 =D02

D04 =2J+ml2
c +m(l2 +(l− lc)2−2l(l− lc)cosq1)

C01 =0
C02 =−ml(l− lc)sinq1q̇2

C03 =−ml(l− lc)sinq1(q̇1− q̇2)

C04 =ml(l− lc)sinq1q̇1

G01 =mg(l− lc)sin(q1−q2)

G02 =−mg(l sinq2 + lc sinq2 +(l− lc)sin(q1−q2)).

Model parameters in Eq. (3) are

Ds =

Ds1 Ds2 Ds3
Ds4 Ds5 Ds6
Ds7 Ds8 Ds9

 Cs =

Cs1 Cs2 Cs3
Cs4 Cs5 Cs6
Cs7 Cs8 Cs9


Gs =

Gs1
Gs2
Gs3

 Bs =

1
0
0

 B f =

0
0
1


where,

Ds1 =J+m(l− lc)2

Ds2 =− J−m(l− lc)(l− lc− l cosq1)

Ds3 =m(l− lc)cos(q1−q2)

Ds4 =Ds2

Ds5 =2J+ml2
c +m(l2 +(l− lc)2−2l(l− lc)cosq1)

Ds6 =−m(l− lc)cos(q1−q2)+m(l + lc)cosq2

Ds7 =Ds3

Ds8 =Ds6

Ds9 =2m

Cs1 =0
Cs2 =−ml(l− lc)sinq1q̇2

Cs3 =0
Cs4 =−ml(l− lc)sinq1(q̇1− q̇2)

Cs5 =ml(l− lc)sinq1q̇1

Cs6 =0
Cs7 =−m(l− lc)sin(q1−q2)q̇1 +2m(l− lc)sin(q1−q2)q̇2

Cs8 =−m(l− lc)sin(q1−q2)q̇2−m(l + lc)sinq2q̇2

Cs9 =0
Gs1 =mg(l− lc)sin(q1−q2)

Gs2 =−mg(l sinq2 + lc sinq2 +(l− lc)sin(q1−q2))

Gs3 =0.

Model parameters in Eq. (5) are [8]

De =


De1 De2 De3 De4
De5 De6 De7 De8
De9 De10 De11 De12
De13 De14 De15 De16


where,

De1 =J+m(l− lc)2

De2 =− J−m(l− lc)(l− lc− l cosq1)

De3 =m(l− lc)cos(q1−q2)

De4 =m(l− lc)sin(q1−q2)

De5 =De2

De6 =2J+ml2
c +m(l2 +(l− lc)2−2l(l− lc)cosq1)

De7 =m(l cosq2 + lc cosq2− (l− lc)cos(q1−q2))

De8 =−m(l sinq2 + lc sinq2 +(l− lc)sin(q1−q2))

De9 =De3

3906



De10 =De7

De11 =2m

De12 =0
De13 =De4

De14 =De8

De15 =De12

De16 =2m.

Acknowledgments

The partial support of the US National Science Foundation
under grant IIS-1527393 is gratefully acknowledged.

REFERENCES

[1] Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki,
and K. Fujimura, “The intelligent asimo: System overview and in-
tegration,” in Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), vol. 3. IEEE, 2002, pp.
2478–2483.

[2] E. R. Westervelt, J. W. Grizzle, and D. E. Koditschek, “Hybrid zero
dynamics of planar biped walkers,” IEEE transactions on automatic
control, vol. 48, no. 1, pp. 42–56, 2003.

[3] T. Chen, X. Ni, J. P. Schmiedeler, and B. Goodwine, “Using a
nonlinear mechanical control coupling metric for biped robot control
and design,” in Proceedings of the 22nd International Conference on
Methods and Models in Automation and Robotics (MMAR). IEEE,
2017, pp. 903–908.

[4] C. Chevallereau, G. Abba, Y. Aoustin, F. Plestan, E. Westervelt, C. C.
de Wit, and J. Grizzle, “Rabbit: A testbed for advanced control theory,”
IEEE Control Systems Magazine, vol. 23, no. 5, pp. 57–79, 2003.

[5] E. R. Westervelt, G. Buche, and J. W. Grizzle, “Experimental valida-
tion of a framework for the design of controllers that induce stable
walking in planar bipeds,” The International Journal of Robotics
Research, vol. 23, no. 6, pp. 559–582, 2004.

[6] T. Yang, E. Westervelt, A. Serrani, and J. P. Schmiedeler, “A frame-
work for the control of stable aperiodic walking in underactuated
planar bipeds,” Autonomous Robots, vol. 27, no. 3, p. 277, 2009.

[7] B. G. Buss, A. Ramezani, K. A. Hamed, B. A. Griffin, K. S. Galloway,
and J. W. Grizzle, “Preliminary walking experiments with under-
actuated 3d bipedal robot marlo,” in 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2014, pp. 2529–
2536.

[8] E. R. Westervelt, J. W. Grizzle, C. Chevallereau, J. H. Choi, and
B. Morris, Feedback control of dynamic bipedal robot locomotion.
CRC press, 2007, vol. 28.

[9] “Marlo walks in the snow, uphill!” [Online]. Available:
https://www.youtube.com/watch?v=Gusf8-bWchg

[10] “Cassie blue’s first time to play in the snow.” [Online]. Available:
https://www.youtube.com/watch?v=GSbYHArd5o8

[11] G. N. Boone and J. K. Hodgins, “Slipping and tripping reflexes for
bipedal robots,” Autonomous robots, vol. 4, no. 3, pp. 259–271, 1997.

[12] J. H. Park and O. Kwon, “Reflex control of biped robot locomotion
on a slippery surface,” in Proceedings 2001 ICRA. IEEE International
Conference on Robotics and Automation (Cat. No. 01CH37164),
vol. 4. IEEE, 2001, pp. 4134–4139.

[13] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa, “Biped walking pattern generation by using preview
control of zero-moment point,” in Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA), vol. 3, 2003,
pp. 1620–1626.

[14] S. Kajita, K. Kaneko, K. Harada, F. Kanehiro, K. Fujiwara, and
H. Hirukawa, “Biped walking on a low friction floor,” in 2004
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), vol. 4. IEEE, 2004, pp. 3546–3552.

[15] K. Kaneko, F. Kanehiro, S. Kajita, M. Morisawa, K. Fujiwara,
K. Harada, and H. Hirukawa, “Slip observer for walking on a low
friction floor,” in 2005 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems. IEEE, 2005, pp. 634–640.

[16] B. Gamus and Y. Or, “Dynamic bipedal walking under stick-slip
transitions,” SIAM Journal on Applied Dynamical Systems, vol. 14,
no. 2, pp. 609–642, 2015.

[17] K. Chen, M. Trkov, J. Yi, Y. Zhang, T. Liu, and D. Song, “A
robotic bipedal model for human walking with slips,” in 2015 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2015, pp. 6301–6306.

[18] W.-L. Ma, Y. Or, and A. D. Ames, “Dynamic walking on slippery
surfaces: Demonstrating stable bipedal gaits with planned ground slip-
page,” in 2019 International Conference on Robotics and Automation
(ICRA). IEEE, 2019, pp. 3705–3711.

[19] H. Lin, P. J. Antsaklis, et al., “Hybrid dynamical systems: An
introduction to control and verification,” Foundations and Trends R©
in Systems and Control, vol. 1, no. 1, pp. 1–172, 2014.

[20] T. Chen, J. P. Schmiedeler, and B. Goodwine, “Robustness and
efficiency insights from a mechanical coupling metric for ankle-
actuated biped robots,” Autonomous Robots, vol. 44, no. 2, pp. 281–
295, 2020.

[21] M. Wisse, C. G. Atkeson, and D. K. Kloimwieder, “Swing leg re-
traction helps biped walking stability,” in 5th IEEE-RAS International
Conference on Humanoid Robots, 2005. IEEE, 2005, pp. 295–300.

3907


