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Abstract— This paper introduces an obstacle-crossing strat-
egy, and the self-reconfiguration algorithm for a new class
of modular robots called the rolling sphere, which can fit
obstacles represented by cubes of different sizes due to the chain
connection of multiple spheres. For the self-reconfiguration of
the rolling spheres, a large gradient is obtained by classifying its
action types and hierarchically minimizing the distance between
the initial configuration and the final configuration. The most
direct use of this large gradient is the fast crossing of various
obstacles, by jointing multiple self-reconfigurations according
to the OctoMap of the obstacles. It is verified in simulation
that the self-reconfiguration takes full advantage of the parallel
movement of multiple modules to reduce the total time steps,
and the obstacle-crossing strategy can adapt to a variety of
obstacles.

I. INTRODUCTION
Modular Self-Reconfiguration Robots (MSRRs) perform

better than traditional fixed robots in versatility and adapt-
ability [1]. MSRRs consist of multiple modules, and the over-
all configuration can be changed by changing the connection
relationship or mutual position. The different configurations
are for different tasks and different environmental obstacles.
The action sequence transforming one configuration of mod-
ular robots into the final configuration is defined as the Self-
Reconfiguration (SR) process.

In scenarios such as fire rescue, reaching the destination
in the shortest time, regardless of the morphological change
of the modular robot in this process, is a more important
issue than power consumption. The question discussed in
this paper is how to reach the destination with overcoming
obstacles in the environment quickly. Butler introduces the
sliding cube in [2] and the algorithm called Cellular Au-
tomata to overcome obstacles using the sliding transitions
and the convex transitions of the sliding cube. The Million
Module March algorithm inspired by reinforcement learning
is further proposed for the sliding cube in [3]. However,
subject to the shape of a cube, the sliding cube can only
overcome obstacles composed of module-sized cubes. To
fit obstacles composed of different sizes of cubes with
the help of the chain connection of multiple spheres, the
rolling sphere is proposed, as shown in Fig. 1. The Million
Module March algorithm [3], as well as other agent-based
approaches [4] [2], are difficult to reproduce the best results
and debug when it is actually deployed on hardware [5]. The
more applicable solution is to fit the shape of the obstacle and
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joint two self-reconfiguration processes, which is inspired by
a divide-and-conquer approach [6].

As for the reconfiguration algorithms of MSRRs, they
are summarized into four categories [1]: bio-inspired ap-
proaches, agent-based approaches, search-based approaches,
and control-based approaches. The search-based approaches
such as [7] [8] [9], suffer from the volume of configuration
space [10] and the computation of the guided search [11]
which grow exponentially with the number of modules. So
we focus on designing non-sampling control algorithms,
which simulates the feedback control loop to navigate the
sequence of configuration changes. In the gradient-based [12]
[13] [14] method, non-source modules follow the steepest
descent way computed by the density of neighbors’ attrac-
tors which are broadcast by a source module. Our self-
reconfiguration algorithm also computes the steepest gradient
in three steps. A global goal ordering method is introduced
for the reconfiguration of the Proteo models [15], but it
may fall into a local minimum when composing multilayer
entities. For our obstacle-crossing strategy, the layer number
is limited to be less than 3 so as to avoid the local minimum.
3D Catoms [16] use a decentralization method to assemble
various shapes. This decentralization method requires each
agent to have the same input and a non-random calculation
process, so that each agent can choose its own actions from
the same output according to its own Id. We also applied this
method. 3D Catoms [17] [18] further propose the distributed
reconfiguration method through messaging, but require a free
position between the modules that move concurrently.

Our obstacle-crossing strategy consists of several consec-
utive self-reconfiguration processes and the actions to joint
them. The final or initial configuration in those SR processes
are designed to fit obstacles rather than arbitrary morpholog-
ical changes. This obstacle-crossing strategy simulates the
adaptability of water to different surfaces, thus also called the
flow process. The contributions of this paper are concluded
as:

(1) A fast parallel self-reconfiguration algorithm based on
the rolling sphere using three-step minimization for
a large gradient.

(2) An obstacle-crossing strategy: jointing multiple self-
reconfiguration processes to fit and cross various ob-
stacles.

The content of this article is organized as follows. Section
II details the problem. Section III and IV introduce the self-
reconfiguration algorithm and the obstacle-crossing strategy.
Simulation results are shown in Section V.
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Fig. 1. The rolling sphere and two of its basic actions. (a)the sphere
robot. The trolley in the lower part of the spherical metal shell has
differential wheels and an electromagnet. (b) the simulation in Gazebo.
The red cylinder indicates the orientation of the differential wheels, which
are actually inside the sphere. (c) four possible sliding transitions; (d) four
possible convex transitions. Their two opposite directions are not drawn.

II. PROBLEM FORMULATION

A. The rolling sphere and its prerequisites

The rolling sphere consists of a rough metal spherical
shell and a trolley in the lower half. The trolley has two
differential wheels and an electromagnet, as shown in Fig.
1(a). In Fig. 1(b), the red cylinder simulated in Gazebo is
protruding from the sphere for the convenience of indicating
the orientation of the differential wheels, which are actually
inside the sphere. We idealize this hardware and summarize
it into the following three prerequisites that can be achieved:

(1) 3D positioning capability;
(2) 3D perception of the environment;
(3) The disturbance caused by detaching, sliding and con-

vex transitions is negligible.

The prerequisites (1)(2) are used to generate the input
signals of the SR algorithm, which are the position and
orientation of each module and the OctoMap [19] of ob-
stacles in the environment. Prerequisite (3) is a condition to
realize four kinds of basic actions of each module. Since the
rolling sphere has unlimited connection points [20], we call
it a free-form robot.

In the discrete motion space, we use the normals of six
faces of a cube, as shown in Fig. 2(a), to represent the
pointing of the N pole of the magnet in the Sth step, namely
Ms, and the forward directions of the differential wheels
in the Sth step, namely W s. There are six options for the
direction of the magnet, as shown in the Eq. (1). Fig. 2(b)
gives an example of Ms = (0, 0,−1). For the inner trolley
inside the rolling sphere, it has only two driving forces,
as shown in Fig. 1(b), yaw and roll. With the Y aw force,
the trolley in the example of Fig. 2(b) can choose from
four directions as the forward direction of the differential
wheels W s, as shown in the Eq. (2). With the roll force,
the rolling sphere can perform four kinds of basic actions,
{Pan,Corner, Sliding, Convex}.

Ms ∈ {x+ : (1, 0, 0);x− : (−1, 0, 0);

y+ : (0, 1, 0); y− : (0,−1, 0);

z+ : (0, 0, 1); z− : (0, 0,−1).}
(1)
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Fig. 2. Two direction vectors of each module and the Corner transitions.
(a) Six normals on six faces representing six possible directions; (b) Ms

and W s, two direction vectors of each module at step S; (c) The Corner
transitions that change the Ms of the module to the Ms+1 in the next step
S + 1.

if Ms ∈ {z+ : (0, 0, 1); z− : (0, 0,−1).}
then W s ∈ {x+ : (1, 0, 0);x− : (−1, 0, 0);

y+ : (0, 1, 0); y− : (0,−1, 0).}, etc.

(2)

Pan is defined as moving on the ground when no other
modules block it. If blocked by other modules in front, the
inner trolley climbs up to 90◦ along the inner spherical shell.
Its magnet at this time will be attracted to that module, from
Ms = (0, 0,−1) to Ms+1 = (0, 1, 0) shown in Fig. 2(c).
Conversely, if the magnet of the module in the (S + 1)th

step, Ms+1, was originally attracted to other modules and
the forward direction W s+1 chosen from Eq. (2) was blocked
by the ground or other modules, the inner trolley would also
climb down for 90◦. These movements are called the Corner
transitions.

The last two kinds of basic actions are the Sliding tran-
sitions and the Convex transitions, as shown in Fig. 1(c)(d)
and Fig. 6(c)(e). For anyone of the directions, W s, when its
movement is supported by adjacent modules, it is a Sliding
transition along the surfaces of two modules. If there is no
support from adjacent modules, it is a Convex transition
along the center of a module. In reality, these two actions
require the support of a certain 3D connection structure and
sufficient friction to ensure that the entire modular robot will
not be dragged by gravities or disturbances. Thus we set
the prerequisite 3 to focus on path planning. Note that the
rolling sphere only can choose WS parallel to the face
touched by the inner trolley. The sliding cube [] can choose
directions based on any of the six faces of the cube.

Further, the Corner transitions and the Pan transitions
are combined to be the Retreat transitions in Fig. 6(a). Sec-
tion III-B will describe four kinds of the combined actions:
{Retreat, Corner Retreat, Corner Sliding, Corner Convex}.

B. The detail of the reconfiguration problem

Reconfiguration can be roughly represented by Eq. (3)
where the CFGcurrent and CFGfinal represent the current
configuration and the final configuration. The definition
of configuration should be clear-cut with an appropriate
complexity for our modular robot. For example, the graph
representation [21] is defined by pure connection relations,
which can’t distinguish configurations with different gravity
distributions or functionalities. Whereas, it’s too complex to
use the transformations of every module as the configuration
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shown in Eq. (4) and (5). For this reason, we replace Rc
i

in Eq. (5) by two range-limited vectors, Ms in Eq. (1)
and the corresponding W s in Eq. (2). Further, we limit the
three coordinates of P , in Eq. (5) and (6), to only integer
multiples of the radius of the sphere module which means
the motion space is discrete. The discrete space facilitates
the calculation of trajectory planning and collision detection.
Now, the current configuration is defined as Eq. (7). The final
configuration is defined as Eq. (8), given that only positions
and connection relationships can be extracted from OctoMap
of obstacles. The superscripts c and f indicate the current
configuration and the final configuration, respectively.

Route(t) = Reconfiguration(CFGcurrent, CFGfinal)
(3)

CFGcurrent = {[Idi, T c
i ] | i = 1, . . . , n} (4)

T c
i =

[
Rc

i

... P c
i

]
=


x11 x12 x13 xc

i

x21 x22 x23 yci
x31 x32 x33 zci
0 0 0 1

 (5)

P c
i = [xc

i , y
c
i , z

c
i ]T , i = 1, . . . , n. (6)

CFGcurrent = {[Idi, P c
i ,M

c
i ,W

c
i ] | i = 1, . . . , n} (7)

CFGfinal = {[P f
i ,M

f
i ] | i = 1, . . . , n} (8)

Based on the prerequisites 1 and 2, each module can get
the transformations of all modules, CFGcurrent in Eq. (3),
and a co-built shared OctoMap, as shown in Fig. 3(a). One
of the ideas of decentralized computing [16] is that each
module has the same input and calculation process, and then
selects its own route from the same output according to its
own Id, as shown in Fig. 3(b). As far as the algorithm is
concerned, it can be just understood as centralized control.

Poses &
OctoMap

Wifi & Bluetooth

(a)

Id_115
Id_116
Id_117
Id_118
>>>

(b)

Fig. 3. The input and output. (a) Each module is input the Poses of all
modules and the OctoMap of obstacles. (b) Select a route from the output
based on its Id.

We mathematically define the problem of self-
reconfiguration as Eq. (9), where P c represents the set of
3D positions of all modules in the current configuration,
as shown in Eq. (10). Dj represents the multiplication
of n Manhattan distances between one of the vacancies
j in the final configuration and the n modules in the

current configuration. In Eq. (11), the reason for using the
multiplication for Dj is that the position of the jth vacancy
in the final configuration can be occupied by any module
i in the current configuration. The Manhattan distance is
calculated by giving two weights wx, wy ∈ (0, 1] to the
x − y plane, as shown in Eq. (12). Eq. (9) expresses that
the purpose of the self-reconfiguration algorithm is to fill
all the vacancies j = 1, . . . , n in the final configuration
by adjusting the 3D position of each module in the current
configuration. The planned routes in Eq. (13) is the P c at
each step S of the minimization process in Eq. (9).

p∗ = arg min
P c

n∑
j=1

Dj (9)

P c = {P c
i | i = 1, . . . , n} (10)

Dj =

(
n∏

i=0

∣∣∣P c
i − P f

j

∣∣∣) (11)

∣∣∣P c
i − P f

j

∣∣∣ = wx ×
∣∣∣xc

i − xf
j

∣∣∣+ wy ×
∣∣∣yci − yfj

∣∣∣+ ∣∣∣zci − zfj

∣∣∣
(12)

Route(s) = {P c | s = 0, 1, . . . } (13)

III. THE SELF-RECONFIGURATION ALGORITHM

A. The global priority and setting goals

This section uses a simple example to explain how to
assign a goal position to each module in the current con-
figuration. In Fig. 4, the four modules on the left represent
the current configuration, and the four colored cubes called
vacancies on the right represent the final configuration,
one of which is black and translucent. the corresponding
feedback control scheme for one step is shown in Fig. 5.

Fig. 4. The example explains the calculation of global priority and
setting goals. Left: the current configuration; Right: the final configuration,
including the black and translucent cube.

In Fig. 5, the sequence Sf represents the different
vacancies in the final configuration with the inner number
indicating their global priority. Sf is obtained by layering
vacancies in the final configuration and sorting them ac-
cording to their Manhattan distances from the center of this
layer. Sorting within a layer can select the mode (maximum,
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Fig. 5. The reconfiguration control scheme for one step. Different colors
of the circles in Sc represent the target vacancy assigned to each movable
module in the current configuration. The numbers in the squares or circles
indicate global priorities.

minimum, or center) to calculate the Manhattan distance with
each module according to different tasks. After comparing
with the current configuration, delete occupied vacancies
from the head of Sf until unoccupied vacancies appear. At
this time, there may still exist occupied vacancies in Sf ,
such as the vacancy marked with CoincidentL in Fig. 4,
which is ranked behind the unoccupied red cubes in Fig. 4
in Sf .

To obtain the ordered module sequence, Sc in Fig. 5,
we assign a vacancy in Sf as the goal position to each
module in the unordered module list Lc, and use the global
priority of this vacancy as the priority of the module to avoid
collisions when selecting actions. The unordered module
list Lc is obtained by removing the attached modules such
as the module marked with Attached in Fig. 4, and the
modules occupying one vacancy deleted from Sf . Thus the
length of Lc, nc, is less than the length of Sf , nf . The
nc < nf guarantees that each module in Lc can be assigned
a goal vacancy and global priority. For the Sc in Fig. 5, the
number and the color represent the global priority and the
goal vacancy assigned to the module separately.

The vacancy ranked in the ith (i ∈ [0, nf − 1])
position in Sf will be assigned to the nearest one of the
remaining nc − i modules. For example, the vacancy
represented by the red cube will select the one with
the smallest Manhattan distance from the nc modules,
namely the module inside the black and translucent cube
in Fig. 4. The reason for this is to minimize Dj in
Eq. 11 and thus minimize the total distance in Eq. 9.
For any module i ∈ Sc, its relationship with the other
modules in the current configuration can be expressed as
[[high priority][i][low priority][Attached, CoincidentL]]c.

B. The candidate actions and collision avoidance

We calculate 4 candidate actions corresponding to four
forward directions W s in Algorithm 1, based on Ms in
Fig. 2(b). If any W s is blocked by immovable modules,
[Attached, CoincidentL], the Corner transition in Fig. 2(c)
will change Ms and result in the second calculation of 4
candidate actions. Due to the second calculation of candidate
actions, there are four types of combined actions as shown
in the Fig. 6 created by combining the Corner transition in
front.

To explain the concept of the calculation of 4 candidate
actions for two times, we give an example shown in Fig. 7 as
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Fig. 6. 4 kinds of combined actions: {(a), (b), (d), (f)}. The green circle
and arrow represent the goal position for this type of action and the expected
forward direction of the wheel. The yellow arrow and magnet represent the
result position of the first selected action before 4 new candidate actions
are going to be calculated. The red arrow and fans represent the trajectory
and the rotation angles of the type of action.

well as the corresponding code in Algorithm 2. In the three
views, the yellow trajectories represent the first calculation
of 4 candidate actions. The result of one of the candidate
actions conflicts with the existing immovable module, the
3rd module in Fig. 7(d), so the direction of the magnet Ms

is changed to point to that immovable module. Based on the
new Ms+1, 4 new candidate actions represented by the red
trajectories are calculated. The result of one action in 4 new
candidate actions conflicts with the 1st module in Fig. 7(b)
again. At this time, we no longer calculate thirdly, because
the obstacle-crossing capability that adapts to the surface of
different obstacles is mainly achieved by the coating of two-
layer modules. If this self-reconfiguration algorithm aims to
form dense shapes of multi-layer, more than three times’
calculation is needed. Moreover, focusing on the calculation
of two-layer modules can avoid falling into the local bucket
minimum to ensure convergence.

There are three cases for collision avoidance. For each
action, if its target position conflicts with the target position
of the action selected by the higher priority module, it will be
deleted in Algorithm 1. If the selected action conflicts with
the current position of a lower priority module, then this
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Algorithm 1 Calculate four candidate actions from four W s

function fun del collision(CFGcurrent, Sc)
if Collide with higher priority modules or obstacles then

Delete this action.
end if

end function

function fun W to actions(CFGcurrent, Sc)
for i ∈ Sc do

for 4 choices of W s of module i do
if Collide with the ground then

Action type: Retreat
fun del collision

end if
if The supporting module exist then

Action type: Sliding
fun del collision

else
Action type: Convex
fun del collision

end if
end for
Sort by the distances of these actions’ result
if CFGcurrent[i].stop == True : then

Action type: Stop
end if

end for
return 4 actions or Stop

end function

lower priority module cannot choose to stop in Algorithm 2.
If a low-priority module has not collected any action, it needs
to request the right to stop, from the higher-priority module
collided with him. Thus, all possible candidate actions are
collected through Algorithms 1 and 2.

In order to minimize the sum of Dj in Eq. 14, each Dj

should take the minimum value. Because the minimization of
the product of Manhattan distances is mostly affected by the
smallest of all distances, we choose to minimize the smallest
one in Eq. 15 to obtain a large gradient. Then choose one
of the collected candidate actions that further minimizes this
distance, as shown in Eq. 16. Thus we have the remark 1.

arg min
P c

n∑
j=0

Dj =

n∑
j=0

arg min
P c

(
n∏

i=0

∣∣∣P c
i − P f

j

∣∣∣) (14)

∣∣∣P c
i∗ − P f

j

∣∣∣ = min{|P c
i − P f

j | | i = 1, . . . , n} (15)

The selected action = arg min
actions

∣∣∣P c
i∗ − P f

j

∣∣∣ (16)

Remark 1: The large gradient of self-reconfiguration is
obtained by taking the minimum values in three steps’
calculation as shown in Eq. (14), (15) and (16).

IV. THE OBSTACLE-CROSSING STRATEGY

A. Jointing multiple reconfigurations

The obstacle-crossing strategy is jointing multiple recon-
figuration processes whose final or current configurations
are adjusted to fit the obstacle’s OctoMap. Let us take a

Algorithm 2 Calculate four candidate actions for two times
function fun two times(CFGcurrent, Sc)

for actions in fun W to actions() do
if Doesn’t collide with CFGcurrent then

(Retreat/Sliding/Convex)
else

if Collide with the module hlow priority then
CFGcurrent[h].stop = False;
(Retreat/Sliding/Convex)

else
Substitute the new Ms+1;
for actions in fun W to actions() do

if Doesn’t collide with CFGcurrent then
Corner+(Retreat/Sliding/Convex)

else
if Collide with the module hlow p then

CFGcurrent[h].stop = False;
Corner+(Retreat/Sliding/Convex)

else
pass;

end if
end if

end for
end if

end if
end for

end function

simple 2D obstacle in Fig. 8 as an example. After OctoMap
decoding, the brown obstacle in Fig. 8(a) is represented by
the cubes of different sizes similar to Fig. 9(b). The Z − Y
plane of the coordinate system of OctoMap is shown in Fig.
8(a). This coordinate system is discretized using the diameter
of the module as one unit. The Z−Y plane is cut into green
squares, as shown in Fig. 8(a). For each square containing
obstacles, such as one of the squares {6, 7, 8, 9} in Fig.
8(a), calculate whether the 8 squares surrounding it contain
obstacles. For example, among the 8 squares surrounding
square 6, {1, 2, 3, 4, 5} has no obstacles, and {7, 8, 9} contain
obstacles. For square 8, there are only two squares {1, 2} sur-
rounding it that do not contain obstacles. {1, 2, 3, 4, 5} and
{1, 2} are gathered increasingly to compose the vacancies
surrounding the obstacle. They will be used on the right side
of Fig. 4 as the final configuration. The number of vacancies
extracted is guaranteed to be not less than the number of
modules in the current configuration.

The obstacle’s OctoMap contains cubes of various sizes,
and they are impossible to match the squares in Figure 8(a).
So for the calculated vacancies surrounding the obstacle,
we need to adjust their positions in turn following the
connection order {1→ 2→ 3→ 4→ 5}, as shown in Fig.
8(b). For example, No. 1 vacancy pans forward a distance
until collision with the OctoMap. No. 3 vacancy also pans
forward the same distance as No. 1 but needs to rotate around
the panned No. 2 vacancies by an angle to collide with the
OctoMap. Thus we have the remark 2.

Remark 2: The final configuration fits the obstacles repre-
sented by cubes of different sizes by adjusting the positions
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Fig. 7. An example explains the calculation of 4 candidate actions for two times. The yellow trajectory represents the first calculated candidate actions,
and the red arrow represents the second calculated actions.
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Fig. 8. The obstacle-crossing strategy. (a) Extract a layer of vacancies just
surrounding the obstacle. (b) Adjust the position following the connection
order to fit obstacles represented by cubes with different sizes. (c) Jointing
two consecutive self-reconfiguration processes. To reverse the connection
order, the electromagnet on the inner trolley demagnetizes at the beginning
of the operation, and the magnetic pole is changed after half the time.

and angles of goal vacancies following the connection order.
After the above two steps, a single reconfiguration process

can control the movement of MSRR from the initial configu-
ration to the adjusted final configuration shown in Fig. 8(b).
To overcome obstacles, we also need sequential operations
to reverse the connection order from {1→ 2→ 3→ 4→ 5}
to {5 → 4 → 3 → 2 → 1}, as shown in the Fig.
8(c). For example, No. 1 in Fig. 8(c) must climb 180◦

upwards. When it climbs to 90◦, it changes the magnetic
pole of the electromagnet to attract the upper magnet for
upward traction. Next, at the moment No. 2 starts to act, its
magnetism is canceled for leaving. We call those operations
the Jointing transitions. With the Jointing transition to
reverse the connection order, module No. 1 is not Attached
but Free in the reconfiguration feedback control scheme in
Fig. 5, so that it can climb up along No. 2 and No. 3 in turn.
In other words, another reconfiguration process is happening.

B. Smoothing

Since the self-reconfiguration algorithm is based on dis-
crete motion space, we need to calculate the corresponding
continuous routes to navigate the trolley inside the sphere
module. The method of calculating continuous routes of
each type of action is similar. The information used includes
the two direction vectors at the beginning and end of each
action, {Ms

1 ,W
s
1 ,M

s
N ,W s

N}. For example, the cross product
of two direction vectors can be used as a rotation axis.
Note that Ms−1

N = Ms
1 , which means the orientation of the

electromagnet at the beginning of the action is the same as

the orientation at the end of the previous step.
For different kinds of basic actions or combined actions

collected by Algorithms 1 and 2, the rotation axis and
rotation angle are used to calculate the increment 4R
between the current step s and the previous step s-1, so
that the orientation in the current step can be calculated
as Rs = 4R × Rs−1. The translation in the current step
P (t), t = 0, . . . , N is calculated based on the diameter d
of the sphere module and the rotation angle. Eq. (17) and
(18) show the smoothing of the Corner transitions in the
Fig. 6(c). The |Ms−1| in Eq. (18) means taking the absolute
value of each element, rather than the determinant of Ms−1.
The smoothing of the Jointing transitions is similar, but
the calculation of fitting obstacles in Fig. 8(b) requires the
collision detection with the OctoMap in order to calculate
the panning distance or rotation angle of each goal vacancy
in turn.

Rotation Axis = W s
1 ×Ms−1

N

Rotation Angle Θ =
t

N
· 90◦

(17)

P (t) =([1, 1, 1]T − |Ms
1 |) · (P s−1 + W s

1 · d sin Θ)

+ |Ms
1 | · (P s−1 + Ms

1 · d(1− cos Θ))
(18)

V. SIMULATION

We conduct two types of simulations in Gazebo, using
ROS packages to control each module. In Gazebo, the
position and orientation information is directly read from the
topic \gazebo\model states, and the OctoMap of obstacles
in the environment is created by a Lidar at the same starting
position of the MSRR, as shown in Fig. 9.

(a) (b)

Fig. 9. The simulation scene. (a) A cuboid composed of N×5×2 modules
and three types of obstacles. (b) The OctoMap of the obstacles.

We define one step as the isometric time required for every
action in the basic action set and the combined action set. The
total steps are related to (1) the number of modules, (2) the
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Fig. 10. The simulation results for N × 5 × 2 modules moving over a
4 module-diameter distance on flat ground. One step is the isometric time
required for a single basic action or combined action.

morphological difference between the initial configuration
and the final configuration, (3) the center distance between
the initial configuration and the final configuration. Among
them, the influence of variable 3 is obviously proportional.
Our first type of simulation explores the relationship between
the total steps and variable 1 under the control of variable 2.
As shown in Figure 9(a), the initial configuration is a cuboid
with length, width, and height of N×5×2(N ∈ [1, 20]), and
the final configuration is also a N×5×2 cuboid. The center
distance is controlled to be 4 module-diameter distances in
the direction of the width of the cuboid. The experimental
results by adjusting the length N from 1 to 20 are shown
in Fig. 10. Fig. 3(b) shows the routes before smoothing in
the case of N = 20. The slope of the green curve, the
required steps over the number of modules, in Fig. 10 is
fitted as 0.126. This is an optimal value due to the parallel
movement of many modules in one step, incorporated with
the maximum gradient described in Remark 1 to achieve
fast reconfiguration. The cost of this parallel movement is
an increase of the amount of calculation, as shown in the
yellow curve in Fig. 10.

Because the hardware drive of each modular robot is
different, we can only get a rough sense of the comparison of
the algorithms. let us compare the similar simulation result
of the sliding cube [3]. The required steps of the sliding cube
in the simulation of 125(5×5×5) modules are 69 steps. Our
simulation data are 31 steps for 130(13 × 5 × 2) modules
but 105 steps for 125(5 × 5 × 5) modules. Our algorithm
is slower than the sliding cube controlled by reinforcement
learning in the self-reconfiguration of 5-layer configurations.
Because the rolling sphere can only choose actions on one
face but six faces as for the sliding cube, the rolling sphere
cannot utilize the advantages of parallel movement when the
configuration height is 5 layers as thoroughly as the sliding
cube. When the rolling spheres compress the height and
expand the length and width to facilitate parallel movement, a
similar obstacle-crossing speed with the reinforcement learn-
ing method is obtained. The improvement of our algorithm
over the sliding cube is that we can adapt to obstacles of
different sizes using 2 layers configurations, as shown in
Remark 2, instead of obstacles that are all composed of

TABLE I
THE SIMULATION RESULTS

The obstacle type The total steps The computing time per step (s)
Stairs 53 0.3672± 0.01

Combs 40 0.2901± 0.01
Fences 46 0.3065± 0.01

module-sized cubes.
The second type of action is to explore the influence of the

morphological difference between the initial configuration
and the final configuration using 50(5×5×2) modules. Table
I shows the simulation results for crossing three different
types of obstacles. The final or initial configuration is now
determined by the shape of the obstacle, as described in
Remark 2. Take the stairs as an example. The obstacle-
crossing strategy is jointing two reconfiguration processes.
The first process starts from the initial configuration shown
in Fig. 9 to the final configuration in Fig. 11(f) that adapts to
obstacles. Fig. 11(e) shows all the routes before smoothing
of the first reconfiguration process. After the adaptation to
the different obstacles and the Jointing operation shown
in Fig. 8, the configuration in Fig. 11(f) can be obtained.
This configuration is adapted to the stair, such as the three
corners of the stairs marked as Adapted in Fig. 11(f).
The bottommost module in Fig. 11(f) starts to climb up
along the other modules in order, which is the first step of
the second self-reconfiguration process. The second process
takes the final configuration of the first process as the initial
configuration, and the configuration that can adapt to any
subsequent obstacles as the final configuration. It can be
found in Fig. 11(a)(b)(c)(d) that the entire obstacle-crossing
processes makes full use of parallel movement and can well
adapt to the shape of the stairs. Except for the obstacle
types in Fig. 11(f)(g)(h), there is at least one obstacle that
this algorithm cannot handle. That is, an over-hanging [3]
obstacle similar to the edge of a table. The OctoMap of this
obstacle is not enough to extract the final configuration that
can be used to climb it.

VI. CONCLUSIONS AND FUTURE WORK

We propose an obstacle-crossing strategy based on a
new class of sphere modular robots to overcome obstacles
composed of cubes of different sizes. This obstacle-crossing
strategy includes jointing multiple self-reconfiguration pro-
cesses that have achieved a large gradient, and adjusting
the discrete final configuration to fit the OctoMap of the
obstacle. In this article, we detail the three formulas to obtain
large gradients in the self-reconfiguration process and how to
adjust the sphere modules that make up a chain connection
order to fit obstacles composed of cubes of different sizes.
Future work will focus on using distributed computing to
reduce the computational load of each module and trying to
overcome unusual obstacles such as overhanging obstacles
and gaps.
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(a) The first SR process (b) The second SR process (c) The second SR process (d) The third SR process

(e) Rough paths (f) Stairs (g) Combs (h) Fences

Fig. 11. The obstacle-crossing strategy. (a)(b)(c)(d) Three self-reconfiguration processes used to cross stairs. (e) The routes before smoothing of the first
self-reconfiguration process. (f) The first step of the second self-reconfiguration process. In this step, the bottommost modules start to climb up along the
other modules, which have adapted to the stair whose length and width are not an integer multiple of the module diameter. (g)(h) the other two obstacles.
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