
A Neural Primitive model with Sensorimotor Coordination for Dynamic
Quadruped Locomotion with Malfunction Compensation

Azhar Aulia Saputra, Auke Jan Ijspeert, and Naoyuki Kubota

Abstract— In the field of quadruped locomotion, dynamic
locomotion behavior, and rich integration with sensory feedback
represents a significant development. In this paper, we present
an efficient neural model, which includes CPG and its sensori-
motor coordination, and demonstrate its implementation in a
quadruped robot to show how efficient integration of motor and
sensory feedback can generate dynamic behavior and how sen-
sorimotor coordination reconstructs the sensory network for leg
malfunction compensation. Additionally, we delineate a network
optimization strategy and suggest sensorimotor coordination as
a strategy for controlling speed and regulating internal and
external adaptation. The rhythm generation representing the
leg injury was inactive, stimulating the sensorimotor system
to reconstruct the network between CPG and feet force af-
ferent without any commanding parameter. The performances
of the simulated and real, cat-like robot on both flat and
rough terrains and the leg malfunction tests demonstrated the
effectiveness of the proposed model, indicating that a smooth
gait-pattern transition could be generated during sudden leg
malfunction.

Index Terms— Neural-based Locomotion, Sensorimotor Co-
ordination, Malfunction Compensation, Quadruped Robot

I. INTRODUCTION

Locomotive capacity is essential for movement in a dy-
namic environment; animals exemplify this, having to move
efficiently to conduct their activities. Quadruped animals,
specifically, produce dynamic locomotion patterns ranging
from walking to galloping. These patterns are generated
by CPG structures using sensory feedback and spinal re-
flexes [1]. Primitive CPG structures generate dynamic pat-
terns even when sensory feedback and signal command-
ing are absent [2]. In the last two decades, integrating
neuroscience and robotic locomotion has been considered
as an alternative approach to dynamic locomotion. Many
researchers have proposed CPG concepts in the service of
robot locomotion [3], [4], [5]. However, the question of the
best way of controlling quadruped locomotion has yet to be
resolved.

Quadruped locomotion based on CPG is a part of var-
ious strategies for controlling speed and direction. Some
researchers have used mapping selection of the CPG network
to generate various gait patterns [6], [7], [8], [9], [10]. Our
previous research used a generic locomotion model that

This work was partially supported by a Grant-in-Aid for Scientific
Research (18J21284) from Japan Society for the Promotion of Science.

Azhar Aulia Saputra and Naoyuki Kubota are with the Graduate School
of System Design, Tokyo Metropolitan University, 6-6 Asahigaoka, Hino,
Tokyo, 191-0065, Japan (e-mail: azhar-aulia-saputra@ed.tmu.ac.jp; kub-
ota@tmu.ac.jp;).

Auke Jan Ijspeert is with Biorobotics Laboratory, Ecole Polytechnique
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enabled the generation of various gaits using simple param-
eter changes made by selecting designed coupling matrices.
Sensory feedback affects the CPGs change-of-the-state pace
[8], [11]. Furthermore, we used an optimization model to
identify the appropriate CPG structure for the desired gait
pattern [12]. Other researchers have also used CPG for
pattern generation [13]. In [13], CPG generated a signal to
stimulate a certain leg to perform a stepping movement; the
stepping pattern had been mapped beforehand. Kimura et
al. developed various CPG that were integrated with sensory
feedback to generate torque [14] and gait-pattern modulation
[9]. However, CPG has been reconstructed as development
changes the individual body (e.g., infants to mature, frog)
[15]. Generating different gait patterns without abruptly
reconstructing the network is still challenging: creating an
efficient structure that can generate dynamic patterns and
developing integration of sensory feedback to establish swing
timing have still not been achieved [5], [16].

In some cases, the spinal cord systems of humans and
animals regulate locomotion when a leg is injured, changing
the role of sensory feedback within the locomotion network
[17], [18]. In the field of robotics, Ren et al. have considered
the leg-injury compensation in the hexapod robot using
multiple chaotic CPG and a master-client strategy [19]. Some
researchers tend to use conventional approaches to solving
leg malfunction problems in the legged robots [20]. Still,
conventional models need to consider many aspects, leading
to a high computational cost, and it has proven difficult to
find the correct strategy for compensating a broken leg using
CPG in quadrupedal locomotion. Considering the sensori-
motor coordination mechanism is important for developing
dynamic locomotion in cases of malfunction.

This paper responds to the current challenges facing
developing CPG for quadruped locomotion, presenting an
efficient, robust CPG model that is dynamically integrated
with sensory feedback to generate various gaits while also
considering leg malfunction compensation without involving
too many parameters. The model uses two sensorimotor-
coordinationbased mechanisms [18], [17]: 1) because sensory
feedback is critical for adjusting CPG modulation, proprio-
ceptive signals from the leg force and swinging phases are
integrated with rhythm-generator neurons (RG) in the CPG;
2) because leg malfunction affects the integration of sensory
feedback and RG, a neuron representing a certain injured leg
sends a signal and influences the effect of the sensory signal
on RG. The proposed models novel contributions follow:

1) Developing a robust CPG model with an efficient
structure that can generate various gait patterns.
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Fig. 1. Design of the single rhythm CPG model with two-layered CPG. Every leg has three sensory-feedback-to-all RG, a force sensor, a pain receptor,
and a swing sensor

2) Integrating sensory feedback that substantially impacts
the CPG-modulation output.

3) Considering dynamic sensorimotor integration to com-
pensate leg injuries at various speeds.

Furthermore, to demonstrate the proposed models effective-
ness, we have used a cat-like robot that performs in various
contexts, including in different terrains, at different speeds,
and with leg injuries.

This paper is organized as follows: the proposed CPG
model with sensorimotor coordination is presented in Section
II; the strategy for finding the optimum structure is delineated
in Section III; Section IV presents the experimental results;
finally, in Section V, we conclude the research and discuss
the prospects of the proposed model.

II. CPG WITH SENSORIMOTOR COORDINATION

The CPG model dynamically generates locomotion pat-
terns. In cat studies, two-layered CPG has been observed,
incorporating rhythm generators (RG) and pattern formation
(PF) [21]. We have designed a single-model CPG where one
RG represents one legs movement pattern, and one PF neuron
represents the activation of one muscle. Since each leg uses
four muscles (flexor and extensor muscles of the hip and knee
joints), there is one RG neuron and four PF neurons for each
CPG structure. Our model uses two CPG pairs; every pair
represents the forelimb and hindlimb for another pair. Fig. 1
shows the complete design of the proposed CPG model.

Rhythm-generator neurons generate oscillation signals re-
sponsible for controlling the patterns of a certain leg. All
of the RG are interconnected and control the timing of the
legs swing action. We used the Matsuoka neural-oscillator
model to generate a dynamic signal. The inner state of the

RG neuron is as follows:

τ
d
dt

xi =

(
υi− xi−

n

∑
j=1

wRG,i jy j +αi−bvi

)
(τ f ∗SST IM) (1)

The received-inhibition effect of its self-adaptation (vi) and
the signal from other RG neurons (y j) influenced by synaptic
weight (wi j). yi is calculated as yi = max(xi,0) and vi is
calculated as follows:

T
d
dt

vi = (yi− vi)(τ f SST IM) (2)

The inner-state and self-adaptation effects are respectively
influenced by time constants τ and T . The RG neuron is
also influenced by sensory feedback (αi) from ground-force
afferent, swing-related afference, and nociceptors.

αi = αi,0 +
n

∑
j=1

(FiwFR,i j) +
n

∑
j=1

(
GST IMSi(wSR,i jN jwNS,i j)

)
(3)

where, αi,0 is the basic stimulation of the ith neuron, wFR,i j
and wSR,i j are the synaptic weights of the force afferent (Fi)
and the swing-phase afferent (Si) of the ith leg to the jth
RG neuron. Swing-afferent feedback is influenced by the
nociceptor (Ni); its weight is represented by wNS. The noci-
ceptor (Ni) is a pain receptor that detects the condition of leg
damage and sends damage stimuli to RG neurons, affecting
sensory stimulation from the ground-force afferent to the RG
neurons and from the swing-related afferent to the RG neu-
rons. Parameter GST IM is the gain parameter controlling the
relationship between speed stimulation SST IM and the sensory
network. The gain parameter is assumed to differently affect
the forelimbs and hindlimbs. Based on preliminary tests, the
GST IM for hindlimbs is calculated as GST IM = µHL/(1 +
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exp(−λHLSST IM +ηHL)) and the GST IM for hindlimbs is
calculated as GST IM = exp(log(µHL)(λFLSST IM−ηFL)

2)
Given the RG neurons control the movement-pattern phase

for each leg, they transmit the firing signal (pi) to all PF
neurons in a certain leg to activate swing behavior. This is
calculated as follows:

pi =

{
1 if (yi +hre f

i )≥Θ

0 0therwise
(4)

where Θ is the firing threshold. The value of hre f
i is calcu-

lated as follows:

hre f
i (t) =

{
γre f ·hre f

i (t−1)−R if pi(t−1) = 1
γre f ·hre f

i (t−1) otherwise
(5)

When the RG signal is fired, R is subtracted from the hre f
i (t)

value of neuron i. R > 0 , re f is a discount rate of hre f
i ,

and 0γre f 1. The firing value of the ith RG neuron pi(t) is
generated for all PF neurons in the ith leg.

Upon receiving the firing signal from RG neurons (pi), PF
neurons perform the swing behavior by activating muscle
stimulation explained in [22]. The PF neurons control the
timing of each muscle contraction. The activation signal
generated by PF neurons is calculated as follows: (To control
the speed, speed stimulation is adjusted from parameter
SST IM , which influence Eqs. (1) and (3))

θi,k(t) = e

(
log(0.5)×( |PFi−µ|

(µ×w)

3
)
)

(6)

where, PFi neurons are calculated as PFi(t) = PFi(t− 1)+
pi, dOpt represents the starting control, calculated by µ =

(30− φ
(LEG
i )/30, w represents the time of the activation

signal, calculated as w = ψ
(LEG
i /50. φ

(LEG
i , and ψ

(LEG
i is the

parameter for controlling swing activation and the timing
of the ith PF neuron in certain LEG; F for forelimb and
H for hindlimb. The values of φ and ψ were optimized in
our previous research using a multi-objective evolutionary
algorithm.

III. OPTIMIZATION STRATEGY

To find the best CPG structure, we optimized the weights
representing the interconnection of RG neurons (wRG) and
those representing interconnection with sensory feedback
(wFR, wSR, wNS) using a single-objective evolutionary al-
gorithm (SOEA). There were two optimization steps: 1)
building a dynamic gait pattern; 2) building a malfunction
compensator.

A. Dynamic Gait Pattern Optimization

This optimization aims to identify the best interconnection
of RG neurons, and integration with sensory feedback,
for generating dynamic gait patterns without changing the
interconnection structure. We optimized a matrix parame-
ter, representing the interconnection of RG neurons (wFR),
the connection between force sensory feedback and RG
neurons wSR, and the swing-phase-to-RG-neuron feedback
(wNS). Those parameters are represented by 23 parameters

TABLE I
REPRESENTATION OF OPTIMIZED PARAMETER

(r1,r2,r3, · · · ,r23) optimized using SOEA; Table 1 shows a
detailed representation of the parameter I. The value of A,
B, and C identify the RG neurons calculated from parameter
r1.

We minimized errors of speed oscillation, desired speed,
and speed stimulation. For each evaluation process, we
performed the robot simulation six times at different speed
stimulations compared to parameters τ f in Eq. (1); each per-
formance required 1000 time cycle processes. We recorded
the distance achieved (di) by each performance. The evalu-
ation function is as follows:

f =
5

∑
i=1

(
1

1+ exp(di−di+1)

)
+

1
T

T

∑
t=1

√
(α(t))2 (7)

where, T is the number of time steps, defined as 1000, and
α(t) is the torso acceleration for time step t.

B. Malfunction Compensation Optimization

After optimizing the dynamic gait pattern, we optimized
the connection between nociceptor and RG neurons (wNS).
For this optimization, we found the best motion pattern was
the leg malfunction condition. We used the optimized wRG,
wSR, and wFR. We assume that the nociceptor may stimulate
each RG neurons with a different effect. There were 16
parameters: (wNS,1−1,wNS,1−2, · · · ,wNS,4−4,).

To evaluate each set of parameters, we performed the
simulation four times with different leg injuries. Under
normal conditions, the value of Ni was zero (N = {0,0,0,0}).
When the ith leg was injured, the value of Ni was one
(Ni = 1). There were four steps, where NST EP = 1. For every
step, we evaluated the performance of the robot as follows:

fST EP =
1

1+ exp(−dSAG
ST EP)

+
√

(dFRO
ST EP)

2 (8)

where fST EP is the fitness function of a particular step-
malfunction performance and dSAG

ST EP and dFRO
ST EP are the dis-

tance of the robot’s movement in the sagittal and frontal di-
rections. This optimization forces the robot to move straight
ahead with minimal frontal direction movement.

IV. EXPERIMENTAL RESULT

This experiment shows the results of the optimization
processes of dynamic gait pattern and malfunction compen-
sator in a computer simulation using an Open Dynamics
Engine (ODE). Following this, we demonstrated the dynamic
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Fig. 2. The CPG model can generate a dynamic gait pattern through differing speed stimulation SST IM . This increases the frequency of the CPG outputs
x of five different known gait patterns from slow speed to high speed. Parameter FHR, FFR, FHL, FFL shows the ground reaction force for every limb.

TABLE II
THE VALUE OF DEFINED PATTERN FORMATION PARAMETERS FROM

PRELIMINARY TEST

val. val. val. val.
φ
(F)
1 0.034 φ

(F)
2 12 φ

(F)
3 12 φ

(F)
4 0.034

φ
(H)
1 13 φ

(H)
2 0.012 φ

(H)
3 0.012 φ

(H)
4 13

ψ
(F)
1 20 ψ

(F)
2 10 ψ

(F)
3 10 ψ

(F)
4 20

ψ
(H)
1 0.034 ψ

(H)
2 0.013 ψ

(H)
3 0.012 ψ

(H)
4 0.034

µHL 1.676 µFL 0.501 T 1 .0 λFL 2.04
b 1.5 τ f 1.2 R 12.5 αi,0 3.45

movement of the robot in the contexts of simulation and real
robot implementation. For the robot simulation, we used a
cat-like robot with an implemented muscle-based actuator
model. The robots size was adjusted according to a cats size.
We have defined the parameters not optimized in Table II

A. Optimization of Dynamic Gait Pattern

This optimization process used SSGA, which features 128
individuals in every population, and we optimized until the
200 generation. This optimization performance was validated
to optimize neural interconnection [23]. Fig. 3 shows the
results, indicating the fitness value decreasing gradually. The
signal response to the gait pattern was evaluated using differ-
ent speed stimulations. We performed the robot simulation
in 6000 time steps (30 seconds). Fig.4, is a snapshot of the
robots performance; more robot performance documentation
is supplied in the supplementary video. We set SST IM from
zero and gradually increased it with the value of the time step
(SST IM = time step/1200); the result are presented in Fig. 2.
The CPG model can generate dynamic gait patterns from five
known gait patterns. These range from slow to high speeds:
walk; amble; pace; symmetrical walk; trot. However, the
symmetrical-walk pattern between pace and trot gaits does

Fig. 3. The graph shows the evolution of the fitness value of gait pattern

Fig. 4. The sample result in Open Dynamic Engines

not exist in animal locomotion. However, in the proposed
model, the symmetrical walk gait makes the transition from
pace to trot.

Furthermore, to demonstrate the sensory aspect of gait-
pattern generation, we tested the robot in rough terrain and
evaluated the RG signal. We set the SST IM at 0.5 so that
the robot would generate the walking gait normally; Fig. 5
shows the results. During movement on rough terrain, swing
time changed depending on contact time. Force feedback, or
the end of swing time, influenced the RG as well as the gait
pattern.

B. Optimization of Malfunction Compensation

This optimization used the best parameters from the
previous optimization. There were 64 individuals in each
population. We optimized up to 200 generations; that is,
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Fig. 5. The effect of sensory feedback in the RG during movement on
rough terrain. swHL is the swing phase condition of the left hindlimb. x
is the output signals of CPG calculated by Eq. 1. By analyzing the signal
pattern p, we can see the pattern is changing to respond to the different
force feedback or swing phase.

Fig. 6. The graph shows the evolution of the fitness value for malfunction
compensation

12800 evaluations. A similar evaluation was performed for
different leg injury conditions. The fitness functions results
are shown in Fig. 6 shows the results for this evaluation,
indicating that four fitness values were decreasing. The best
fitness value was achieved for the hindlimb condition.

To evaluate the optimized parameters effectiveness, we
performed the simulation in normal conditions and then
disabled one of the forelimbs or hindlimbs through injury.
We also gradually changed the speed stimulation (SST IM) to
evaluate the gait-pattern response during leg injury. Fig. 7
shows the results, indicating that the proposed CPG model
can respond to the leg injury signal through a smooth
transition to both forelimb and hindlimb leg injury. There
are different gait patterns under leg injury conditions. The
model changed the gait pattern by controlling the signal input
using sensory feedback. During leg injury, the model can
still generate dynamic gait patterns by stimulating a different
speed.

C. Real Robot Implementation

To demonstrate the effectiveness of the proposed model,
we implemented the proposed model in the cat-like robot
AQuRo-v3. The robot is rendered in Fig. 8. The robot is
made from 3D printed material and features 21 degrees of
freedom (5 degrees of freedom for each of the 4 legs, and 1
degree of freedom for the neck) actuated by a servo motor.
The robot used a NUC PC core i5 with four force sensors
(one sensor for one leg), an inertial measurement unit (IMU),
and four time-of-flight sensors.

The robots gait pattern has been controlled by the proposed

(a)

(b)

Fig. 7. The generated gait patterns in malfunction conditions and the speed
stimulation responses. The signal pattern (p) is changing to respond to the
absence of CPG signals. The time phase decreases after a leg is injured.
a) malfunction of the right forelimb at time step 1380. During injury, the
model tends to generate a pattern with the same phase difference at a lower
speed. At high speeds, left and right hindlimbs feature the same phase. b)
malfunction of the left hindlimb at time step 1400. In this condition, the
left and right forelimbs feature the same phase at a higher speed.

Fig. 8. The appearance of the robot

CPG model. We used similar parameters for the simulation
performance. First, we operated the robot with different
speed stimulations on different terrains. The robot was able
to move on both terrains with a dynamic gait pattern. There is
a supplementary video of the robots performance, while Fig.
9 shows a sample snapshot. The robot was able to generate
four gaits: walk, amble, pace, and trot.

Furthermore, we demonstrated the effectiveness of mal-
function compensation by conducting tests in two conditions:
injured forelimb and injured hindlimb. In these tests, the
robot first moves normally. Then, after a few seconds, one of
the legs was set to injured. The robot could generate a gait
transition without falling in both conditions. We operated
the robot on both flat and natural terrain. Fig. 10 is a
snapshot of the robots performance; more detail is shown
in the supplementary video provided or otherwise located at
https://youtu.be/C_XEsahqjpA.
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Fig. 9. Snapshots of the robot performance show the dynamic gait pattern:
a) the robots performance on flat terrain; b) the robots performance on
natural terrain.

Fig. 10. Snapshots of the robots performance shows the dynamic gait
pattern during leg injury: a) the robots performance on the flat terrain with
a forelimb injury; b) the robots performance on flat terrain with a hindlimb
injury; c) the robots performance on natural terrain with a forelimb injury;
d) the robots performance on natural terrain with a hindlimb injury.

V. CONCLUSION AND DISCUSSION

This paper has presented an efficient dynamic-gait-pattern-
generationbased CPG mechanism with sensorimotor coor-
dination. The model developed features substantial integra-
tion of CPG and sensory feedback, indicating that sensory
feedback has a role in gait-pattern generation. The CPG
structure uses a two-layer CPG model comprising a single
RG and PF pools. Each leg is represented by a single CPG.
Four RGs represent the four limbs. There are three sensory
neurons in every leg: force sensor, swing phase, and pain
receptor neurons. Section II explained the assumption of the
integration of sensory neurons and RG neurons. However, it
required optimization to achieve the best integration.

We used SOEA to optimize the network, a process sep-
arated into two steps: 1) gait pattern optimization; 2) mal-
function compensation. There were two steps to optimizing
integration and structure under normal conditions before
manipulating the malfunction problem, enabling the model
to generate a dynamic gait pattern through stimulation from
only a single parameter (SST IM). There are five patterns gen-
erated by robot performance: walk, amble, pace, symmetrical
walk, and trot gait. Force feedback also has a big influence on
generating gait pattern; this was demonstrated by the robots
performance on rough terrain (see Fig. 5). The RG signal
changed dynamically with changes to sensory input, and the
proposed model generated gait transition between normal and
injured conditions. It was also shown to generate dynamic
gait during leg injuries.

In the real implementation, a cat-like quadruped robot
demonstrated the effectiveness of the proposed model on
steep terrain. Actuator control levels differed between the
real robot and the simulation. However, these were controlled
by the same gait pattern and did not impact the effectiveness

of the proposed CPG model.
In future work, the proposed model should be applied

to more challenging behavior, such as transitioning from
ground movement to water movement. For this next step,
understanding the role of sensory feedback for cat or dog
water movements would be critical.
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