
Plug-and-Play SLAM: A Unified
SLAM Architecture for Modularity and Ease of Use

Mirco Colosi Irvin Aloise Tiziano Guadagnino
Dominik Schlegel Bartolomeo Della Corte Kai O. Arras Giorgio Grisetti

Abstract—Simultaneous Localization and Mapping (SLAM) is
considered a mature research field with numerous applications
and publicly available open-source systems. Despite this maturity,
existing SLAM systems often rely on ad-hoc implementations or
are tailored to predefined sensor setups. In this work, we tackle
these issues, proposing a novel unified SLAM architecture specifi-
cally designed to standardize the SLAM problem and to address
heterogeneous sensor configurations. Thanks to its modularity
and design patterns, the presented framework is easy to extend,
maximizes code reuse and improves computational efficiency.
We show in our experiments with a variety of typical sensor
configurations that these advantages come without compromising
state-of-the-art SLAM performance. The result demonstrates the
architecture’s relevance for facilitating further research in (multi-
sensor) SLAM and its transfer into practical applications.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) has be-
come a mature research field and enabling technology for
many applications ranging from autonomous vehicles to aug-
mented reality. While there are robust solutions for well-posed
use-cases such as laser-based localization of wheeled robots
in planar environments [1], [2], there are scenarios in which
either the robot, the environment or the operating conditions
are so challenging that a large amount of further fundamental
research is needed, as also pointed out by Cadena et al. [3].

SLAM with multiple sensors is one approach to address
such challenging scenarios as it leverages redundant or com-
plementary information about the environment. Typical ex-
amples include the combination of image with range data
from cameras, laser range finders or RGB-D sensors and
the fusion with propioceptive sensors such as Visual-Inertial
Odometry (VIO). Multi-sensor SLAM has been studied in
several research communities and typical state-of-the-art sys-
tems support two or more sensors at the same time. The
majority of these systems, however, are meant to be used with
a predefined combination of sensors and are not designed for
easy extensibility with other sensors or systems. This lack of
flexibility and modularization makes it difficult to analyze,
for example, the performance impact of individual sensors,
different sensor combinations, alternative components within
a SLAM system and to compare state-of-the-art (multi-sensor)

Mirco Colosi, Irvin Aloise, Tiziano Guadagnino, Dominik Schlegel, Bar-
tolomeo Della Corte, Giorgio Grisetti are with the Department of Computer,
Control, and Management Engineering ”Antonio Ruberti”, Sapienza Univer-
sity of Rome, Rome, Italy, Email: {colosi, ialoise, guadagnino,
schlegel, dellacorte, grisetti}@diag.uniroma1.it.

Mirco Colosi and Kai O. Arras are with Robert Bosch Corporate
Research, Stuttgart, Germany. {mirco.colosi, kaioliver.arras}
@de.bosch.com.

This work has been partially supported by Robert Bosch GmbH.

Fig. 1: Result of three different SLAM pipeline configurations set up using
our architecture. On the top row, from left to right, a stereo camera Visual
SLAM system running on kitti-00, and a RGB-D Visual SLAM pipeline
performing SLAM on icl-lr-0. Bottom row shows the map produced by
the 2D LiDAR pipeline on simulated data.

SLAM systems with each other. Such questions, however, are
key for researchers to further advance the field as well as for
practitioners who seek the best cost-benefit solution given a
use-case.

In this paper, we propose a novel unified SLAM architecture
that overcomes these limitations and aims at standardizing
single-sensor and multi-sensor SLAM. Building upon past
work [4] in which we introduced a taxonomy of building
blocks of graph-based SLAM, we extend the architecture to
multiple sensors and enable users to deploy and combine
sensory modalities in a plug-and-play fashion. Thanks to its
modularity and separation of the core SLAM modules, the ar-
chitecture improves code reuse, efficiency, and usability. New
sensory cues, for example, can be integrated by simply editing
a configuration file. We evaluate our architecture in several
experiments using multiple 2D LiDARs, wheel odometry,
stereo and RGB-D cameras, and achieve performance results
similar to those of state-of-the-art systems (see also Fig. 1).
The framework is open-source and written in C++1.

The remainder of this paper is organized as follows:
Sec. II discusses the literature on multi-sensor SLAM systems,
Sec. III summarizes our taxonomy of SLAM building blocks
which is then extended in Sec. IV to multiple sensors. Sec. V
contains the experiment and results, Sec. VI concludes the
paper.

1Source code at http://srrg.gitlab.io/srrg2.html

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 5051

II. RELATED WORK

In the context of SLAM, sensor fusion indicates the capabil-
ity of a system of processing multiple cues at the same time.
Multi-sensor SLAM could dramatically improve the system
performances in various scenarios, especially when those are
highly dynamic. In the past years, the community addressed
this topic, investigating ways of integrating multiple cues in
the same system. A possible way of exploiting multiple cues
is to have a main sensor and a supplementary one. The latter
supports the system initialization or provides specific cues
such as the scale. In the context of Visual-Inertial SLAM,
this scenario is very common nowadays. Many state-of-the-
art systems combine the use of a monocular camera and an
Inertial Measurement Unit (IMU) to perform SLAM [5]–[8].
The IMU data is integrated over time [9] to produce a coarse
estimate of the relative motion between two frames and to infer
the scale not observable by a monocular camera. Similarly, in
the work of Pire et al. [10], the wheel odometry computed
from encoder readings might be used to provide a prior in the
registration of two frames when using stereo cameras. Lately,
Rosinol et al. [11] developed Kimera, a SLAM framework
which combines camera images (either from a monocular or
stereo setup) with IMU data to build 3D metric-semantic maps.
In the context of LiDAR-based SLAM, Zhang et al. [12]
proposed to integrate range measurement and RGB data to
estimate the sensor motion. More specifically, the system
initially computes the ego-motion through Visual Odometry
(VO) (high frequency but low accuracy) and then refines it
exploiting scan-matching based LiDAR Odometry (LO) (low
frequency, high accuracy). Newman et al. [13], instead, used
the additional cue coming from RGB camera to compute
loop-closure through feature-based Visual Place Recognition
(VPR).

Currently, the maturity of SLAM as a research field has
motivated the research community to also explore system and
software aspects such as standardization and modularization
of SLAM systems. In this sense, highly coupled architectures
entailed to specific sensor settings and operating scenarios
leave room to dynamic multi-sensor systems. Our work inves-
tigates along this research direction. In this context, Schneider
et al. [14] proposed maplab, a framework to manage VIO
in every aspect. Therefore, maplab is a Visual-Inertial Map-
ping and Localization framework which unifies state-of-the-art
VIO implementations and map management or localization
routines, allowing multi-mission sessions - i.e. a single map is
generated and refined from multiple physical data acquisitions.
The authors offer various off-the-shelf implementations of
state-of-the-art algorithms and provide an architecture that al-
lows the user to integrate his own package in the framework. In
particular, maplab allows to create a single open-loop map for
every mission in VIO mode, then stores the map and performs
its refinement using efficient off-line algorithms. As in our
case, the user can interact with maplab through a console
and provide its own configuration. Still, this framework is not
intended to deal with multiple sensors other than a camera and

an IMU.
More recently, Blanco-Claraco proposed MOLA [15], a

modular, flexible and fully extensible SLAM architecture.
MOLA combines in a single system multi-sensor capabilities
and large map management while being completely customiz-
able by the user. Examples of configuration parameters can be
the type of variable that represents the system state or the back-
end in charge of performing global optimization. MOLA has
different types of independent sub-modules, each of which has
a specific role. In this sense, input modules process raw sensor
readings, and act as data sources for front-end modules. The
latter exploit standard SLAM algorithms to create nodes and
edges of the factor graph, while the back-end creates a unified
interface to the underlying global optimization framework -
that can be chosen arbitrarily. Finally, map-storage modules
are in charge of storing and managing the map. These modules
can also dynamically serialize part of the total map to reduce
memory usage. MOLA allows the user to define the front-
end module, by overriding handlers of keyframe and factor
creation. In our work, instead, we detected some “atomic”
modules and their connections to generate expected behaviors,
resulting in a more structured architecture that encourages the
reuse of sub-modules.

Similarly, Labbé et al. [16] proposed a multi-sensor graph
SLAM system called RTAB-Map. The modularity is intrinsi-
cally granted by the use of Robot Operating System (ROS),
by which every processing module is a ROS node. RTAB-
Map was originally designed to be an appearance-based loop
closure detection approach [17], that was focused on memory
management to deal with long-term mapping sessions. Sub-
sequently, RTAB-Map has been highly expanded, resulting
now in a Visual/LiDAR SLAM open-source library. RTAB-
Map can be used in two modalities. The first one consists
of a “passive” map manager, which takes as input odometry
measurements - generated by some external system - along
with raw visual information. In this case, the system maintains
the map, detects loop closures and provides highly efficient
memory management. In the “active” modality, RTAB-Map is
able to generate itself the odometry information, processing
LiDAR or Visual data. In this sense, a great variety of cues
can be simultaneously used by a single framework. Still, to
extend the system, one has to completely develop a processing
module that given raw sensor readings provides ego-motion
estimation.

In Colosi et al. [4] we introduced a taxonomy of a generic
graph-based SLAM system which identifies and defines build-
ing blocks or components that are clearly specified by their
inputs, outputs and task. Here, we extend this work to multiple
sensors. The partition of a SLAM system into components
is also investigated in the survey of Younes et al. [18].
The authors propose a generic Keyframe-based SLAM (K-
SLAM) flowchart made up by several building blocks. For
each of them, they specify the expected functionalities and give
currently available state-of-the-art implementations. However,
this work is only restricted to monocular camera systems
although the idea behind the architecture is reasonably general

5052

and might be extensible to a more generic graph-based SLAM
system as proposed in this paper.

III. TAXONOMY OF A GRAPH-BASED SLAM SYSTEM

A modern SLAM system is generally composed of a col-
lection of modules that process a set of shared data structures.
Each module is in charge of performing a relatively isolated
task that takes some input data, processes them and produces
some output quantities. For a graph-based SLAM approach,
the outcome of a SLAM system can be represented through a
factor graph [19]. In this approach, the estimated trajectory of
the robot is represented through a pose graph, a specialization
of a generic factor graph in which each variable represents
a robot pose, while factors encode spatial constraints be-
tween a pair of poses. To avoid unbounded growth of the
factor graph, nodes are generally spawned according to some
heuristic, e.g. when the distance between poses is higher than
a threshold. Variables in the graph correspond to the robot
poses in these key frames. The system can “attach” additional
information about the structure of the environment to each key
frame forming a so called landmarks. Thus, each variable in
the graph represents a rigid body that we also refer to as local
map.

In Colosi et al. [4] we analyzed how a generic single-sensor
SLAM system can be composed of recurring building blocks.
In the remainder of this section, we review these concepts,
while in the next section we extend them to multiple sensors.

A. Core Modules

The workflow of a generic SLAM system should i) process
raw sensor readings and generate data in a canonical format
for the rest of the system, ii) estimate the relative motion
between two sensor readings, iii) generate a trajectory and
manage landmarks to create a consistent map, and finally, iv)
detect loop closures and perform global optimization on the
factor graph. Specifically, the core modules for these tasks are
as follows:

RAW DATA PRE-PROCESSOR: as the name suggests, this
module takes as input a raw sensor reading and extracts
suitable data structures that can be used in the other modules.
For example, given a RGB-D image, its output may consist
of 3D points with visual features attached. We use the term
measurement for the output of this module.

ALIGNER: this module computes the relative motion be-
tween two comparable entities, e.g. two measurements or a
measurement and a local map. The Aligner is agnostic to the
current system state since it operates only on the two entities
given as input and possibly an initial guess of their offset. An
example implementation is an ICP-based algorithm for point
clouds registration, e.g. using as fixed the one extracted from
the current sensor reading and as moving the previous one or
the current local map.

TRACKER: is in charge of managing and updating the
current local map and generating the robot pose estimate.
Methods like VO or scan matching are typical instances of
this module.

GRAPH-SLAM: arranges local maps in a factor graph, de-
tects loop-closures and eventually triggers global optimization.

B. Support Modules

Each core module owns and uses submodules to break
down its task into sets of isolated subtasks, enhancing code
reusability and modularity. A core module’s capabilities or
behavior can vary by using support modules with different
algorithms to solve their respective subtasks. The input-output
definition ensures that a module’s overall role in the system is
unaffected when switching between different support modules.
In our taxonomy, the support modules of a generic SLAM
system are as follows:

CORRESPONDENCE FINDER: given two compatible enti-
ties, it computes associations between them. Many implemen-
tations of this module have been proposed, either based on
their appearance [20], [21] or geometry [22], [23].

MERGER: its task is to incorporate new measurements
extracted from the current sensor reading in a local map.
Depending on the inputs, different mapping approaches can be
exploited also in this case, e.g. for scan matching algorithms
a merging method is proposed in [24].

LOOP DETECTOR AND VALIDATOR: these two modules
are in charge of detecting loop-closures and run additional
checks to reject false associations. Each accepted loop-closure
will be turned to a new factor in the graph.

GLOBAL OPTIMIZER: it is in charge of performing non-
linear optimization on the generated graph and to compute the
variables configuration that best explains the factors. Note that
this could also be extended to pose-landmark configuration to
accomplish map refinement. This module can be implemented
using any optimization library available. Our implementation
embeds the graphical solver presented in [25].
Many other smaller components can be isolated in a SLAM
system. Examples of them are the Map Clipper, which gener-
ates a local view of the input map, the Local Map Splitter,
that triggers the creation of a new local map, or specific
components to bootstrap the SLAM system - e.g. a module
that performs Structure from Motion (SfM) in monocular
configuration.

Given this overview of the generic taxonomy of SLAM sys-
tems, in the next section we propose our design to seamlessly
embed multiple heterogeneous cues in a unified architecture.

IV. A UNIFIED MULTI-SENSOR SLAM ARCHITECTURE:
OUR APPROACH

The core idea behind our approach is that the computa-
tion performed with the data coming from all the sensors
contributes in estimating a single quantity: the current robot
pose. Therefore, referring to Sec. III-A, the only core modules
involved in this paradigm shift are the Aligner and the Tracker.
Still, to allow heterogeneous sensors to coexist in a unique ar-
chitecture, one should also define an appropriate data structure
to represent multi-sensor measurements and local maps. Note
that all the support modules are relatively agnostic to the fact

5053

(a) Multi-sensor architecture.

CorrespondenceFinder

factor()

corrs

CorrespondenceFinder

factor()

corrs

factor()

meas_containerlocal_map

Solver

(b) Multi-aligner.

Multi-Aligner

RawData

PreProcessor
Clipper

RawData

PreProcessor
Clipper

Merger Merger

local_map

updated_local_map

sensor#1 sensor#2

meas_container clipped_local_map

meas_1 meas_2

(c) Multi-tracker.

Fig. 2: Top image: blueprint of our multi-sensor SLAM architecture. Each sensor will contribute to populate the measurement property container; this is fed
into the Multi-Aligner to compute the relative motion of the robot; lately, the Multi-Tracker properly embeds each cue of the measurement property container
into the scene property container; finally, the Graph-SLAM module arranges the local map into a factor graph, detects loop closures and optimizes the graph.
Fig. 2b and Fig. 2c, instead, show a close-up of the secondary modules involved in the Multi-Aligner and Multi-Tracker, respectively.

that the system works in a single or multi-sensor configuration.
Hence, in the remainder of this section, we first provide our
design to store and manage heterogeneous measurements and
local maps, then we address the changes in the aforementioned
core modules.

A. Multi-Sensor Data Structures

At the basis of our architecture, we have the concept of
Property. A Property is an introspectable, serializable data
element which is characterized by a data type, a value and
a name within a containing structure called Dynamic Property
Container (DPC). Properties can represent anything, from
Plain Old Data (POD) structures - e.g. a number or a point
cloud - to entire modules - named Configurables. Thanks to
the introspection, accessing at runtime a specific Property in
a DPC requires only the knowledge of its name within the
container. Hence, we can store different types of measurement
in a single DPC, resulting in what we call a measurement
property container. This will contain the output of all Data
Pre-processors currently instantiated in the pipeline. We can
reuse the same machinery to store a multi-sensor local map
- here indicated as scene property container. In this way, we
are able to isolate different cues in a modular fashion, while
at the same time, we can provide a single input/output data
structure to the core modules.

B. Multi-Sensor Core Modules

Once addressed how to store dynamic and multi-sensor data,
we tackle in this section the problem of processing them. In
this scenario, the foundation of our approach relies on the
concept of slice. A slice is a partial processing module, in
charge of treating a specific cue of the architecture. Therefore,
the Aligner and Tracker modules can cope with different
sensor readings types by adding multiple slices to their design.

More in detail, a Multi-Sensor Aligner, called Multi-Aligner
for brevity, is composed by a set of aligner-slices and a
single Iterative Least-Squares (ILS) solver. These slices are
in charge of producing factors out of sensor readings. Factors
are embedded into a single factor graph that is optimized by
the aforementioned ILS solver. As in the single-sensor case,
the only variable to estimate is the robot relative motion. Still,
all factors concerning different sensors will concurrently affect
the estimation process.

The same reasoning is applied to the Multi-Sensor Tracker
- shortened as Multi-Tracker. It is composed of a single scene
property container as local map and multiple tracker-slices.
Given a measurement property container and the local map,
each tracker-slice will process and manage the appropriate cue
from the containers. Fig. 2 provides a schematic illustration
of the entire multi-sensor workflow.

5054

(a) [24] (b) Our.

Fig. 3: Qualitative result of a real mapping session. Laser scans are recorded at 40Hz while odometry measurements at 50Hz. The output of system [24] is
reported on the left image; the mean processing frame-rate is 34Hz. On the right image is reported the result obtained with our approach; in this case, the
mean frame-rate is 256Hz - more than 5 times faster compared to sensors’ frame-rates.

APPROACH
STAGE-0 STAGE-1 STAGE-2 STAGE-3

l = 43.191 [m] l = 79.146 [m] l = 480.741 [m] l = 627.709 [m]

SRRG MAPPER2D
ATE = 0.258 [m] ATE = 0.295 [m] ATE = 0.287 [m] ATE = 0.251 [m]
RPE = 0.656 [m] RPE = 0.777 [m] RPE = 1.860 [m] RPE = 1.529 [m]

71.57 [Hz] 67.28 [Hz] 39.56 [Hz] 28.35 [Hz]

OUR - SINGLE LIDAR
ATE = 0.037 [m] ATE = 0.041 [m] ATE = 0.109 [m] ATE = 0.110 [m]
RPE = 0.059 [m] RPE = 0.073 [m] RPE = 0.298 [m] RPE = 0.245 [m]

289.51 [Hz] 278.07 [Hz] 251.51 [Hz] 189.58 [Hz]

OUR - DOUBLE LIDAR
ATE = 0.047 [m] ATE = 0.032 [m] ATE = 0.072 [m] ATE = 0.047 [m]
RPE = 0.084 [m] RPE = 0.077 [m] RPE = 0.256 [m] RPE = 0.127 [m]

153.88 [Hz] 149.94 [Hz] 144.42 [Hz] 125.65 [Hz]

TABLE I: Comparison of Absolute Trajectory Error (ATE) and Relative Pose Error (RPE) between [24] and our approach. All approaches exploit also wheel
odometry together with LiDAR data. For each approach, the last row reports the mean processing frame-rate.

To give a more practical insight of the architecture, we can
address the case of having a 2D LiDAR pipeline with two
rangefinders - one front-facing and the other one rear-facing
placed at the same height. Therefore, the system will have two
separate Data Pre-processors. Accordingly, the measurement
property container will hold the two produced measurements
and the local map will be composed of a single point cloud
where to merge both the measurements. The Multi-Aligner is
composed of two slices, one for the front rangefinder and the
other for the rear one. Both of them will compute the data
association between their current measurements and the local
map. Each of the two slices will expose a set of constraints
coming from the associations, that will be used by the Multi-
Aligner to estimate the motion. The same applies to the
Multi-Tracker. Both slices will take a point cloud from the
measurement property container and will integrate it in the
unique point cloud of the local map.

Note that thanks to this design, every other module in
the architecture remains agnostic to the number of sensors
involved in the pipeline. This means that one can potentially
mix-up different modules in a plug-and-play fashion, without
the need of further modification to the architecture.

C. Complementary Features

Besides the SLAM related benefits of such architecture, the
design pattern that we employed brings advantages to other
contexts. In this sense, thanks to the native serialization of each
Property, we can automatically store the graph and the local
map on disk. This is carried on by our custom-built library,
which supports format-independent serialization of arbitrary

data structures - called Basic Object Serialization System
(BOSS). Furthermore, each processing module - named Con-
figurable - exposes its parameters through Properties. This
allows us to use BOSS to write a module configuration
automatically on storage. Note that since Configurables can
be stored in Properties, we are able to instantiate an entire
pipeline reading from the configuration file. Although such a
file is written in a human-readable format - based on JSON -
editing a complex configuration by hand might result difficult.
Still, thanks to the native introspection of the Property, we
developed a graphical editor to edit BOSS configuration files
on-the-go. We exploit the same Property features to provide
the user with a shell to load, edit and run configurations.
Finally, Configurables allow us to expose, via command-line,
specific actions that can be triggered at runtime. For example,
one can pause the pipeline and save the factor graph on storage
at runtime, simply typing commands in our shell. Note that the
proposed architecture embeds our custom optimization frame-
work as back-end [25] that shares the same core functionalities
- e.g. configuration management, serialization library. In this
sense, also the graph-optimization module remains consistent
with the rest of the architecture.

Furthermore, we provide also a unified viewing system
based on OpenGL, that decouples processing and viewing.
Using this API, one can either run the SLAM pipeline and
its visualization on the same machine in two separate threads
or run a SLAM pipeline on a cheap embedded system and
stream the visual information to a more powerful machine that
will act as a passive rendering viewport. Switching between

5055

APPROACH
KITTI-00 ICL-LR-0 EUROC MH-01

l = 3724.187 [m] l = 6.534 [m]

PROSLAM
ATE = 1.390 [m] ATE = 0.049 [m] ATE = 0.138 [m]
RPE = 0.036 [m] RPE = 0.003 [m] RPE = 0.051 [m]

53.58 [Hz] 62.97 [Hz] 88.11 [Hz]

ORB-SLAM2
ATE = 1.256 [m] ATE = 0.007 [m] ATE = 0.038 [m]
RPE = 0.029 [m] RPE = 0.004 [m] RPE = 0.050 [m]

14.26 [Hz] (4 threads) 45.28 [Hz] (4 threads) 16.62 [Hz] (4 threads)

OUR
ATE = 1.654 [m] ATE = 0.016 [m] ATE = 0.140 [m]
RPE = 0.032 [m] RPE = 0.002 [m] RPE = 0.051 [m]

44.06 [Hz] 49.98 [Hz] 35.66 [Hz]

TABLE II: Comparison of ATE and RPE between ProSLAM [26], ORB-SLAM2 [27] and our approach. For each approach, the last row reports the mean
processing frame-rate.

these two modalities does not require changes in the code.
Currently, the multi-process viewing system relies on the ROS
communication infrastructure to share data. The attached video
shows the use of some of the features present in this section.

V. EXPERIMENTS

In this section, we provide both qualitative and quantitative
results obtained though the instantiation of different SLAM
pipelines embedded in our architecture. In particular, we show
that completely different pipelines are able not only to coexist
together, but they also achieve competitive results, and thus,
using our architecture there is no apparent negative impact
on the system performances. Thanks to the modular design
of the proposed approach, the system natively allows us to
combine heterogeneous sensors - e.g. 2D LiDAR and RGB-D
- in a unique multi-sensor pipeline. In the remainder of this
section, we show the results obtained with 2D LiDAR, Stereo
and RGB-D SLAM pipeline instantiations, respectively. All
the experiments have been performed on a desktop computer
with Ubuntu 16.04 and GCC 7, equipped with an Intel i7-
7700K CPU @ 4.20GHz and 32GB of RAM. Note that all
the processing in our architecture is single-threaded.

A. 2D LiDAR

The 2D laser rangefinder is a very common sensor in SLAM
and it has been employed since many years. Nowadays, it can
be considered a cheap sensor and, thus, it is now spreading in
consumer Robotics. Many open-source systems are available
in this context [1], [2], [24], however, the majority of those
are designed to be used with only one sensor cue and their
extension might require a lot of effort. Our approach, instead,
can be arranged to work with multiple rangefinders and/or
in combination with wheel odometry by simply editing a
configuration file.

To check the performance of our pipeline, we used sim-
ulated data, gathered using ROS Stage [28]. We recorded
multiple sessions with different path lengths. The simulated
differential-drive platform is equipped with 2 laser rangefind-
ers (front and rear-facing, horizontally mounted) and wheel
encoders that provide wheel odometry - all streaming data at
10 Hz. In Tab. I we reported a comparison between the ap-
proach of Lazaro et al. [24] - referred to as srrg_mapper2d

- and our approach on the different sessions. Both the ATE
and RPE are lower than the one obtained with the reference
system. As expected, using the information coming from the
second rangefinder increases the accuracy, while system speed
remains more than 10 times faster than the platform sensor
frame-rate. Finally, in Fig. 3 we report a qualitative result of a
mapping session in our department. The map and the estimated
trajectory obtained with [24] and our approach are comparable,
however, our system has a higher frame-rate.

B. Visual SLAM: RGB-D and Stereo

Cameras are among the most frequently used sensors for
SLAM, in particular stereo and depth cameras (e.g. IR and
ToF) are increasingly being used in a variety of domains from
robotics, automated driving to consumer electronics. In the
proposed architecture, we addressed both Stereo and RGB-D
data in a single-sensor fashion. To evaluate the performance of
our framework we compare the results obtained on the KITTI
dataset [29], on the ICL-NUIM dataset [30] and on the EuRoC
MAV dataset [31] with two state-of-the-art systems namely
ProSLAM [26] and ORB-SLAM2 [27]. In Tab. II we reported
the values of the ATE and RPE on the considered sequences,
while in Fig. 4 we show the plots of the trajectories computed
with our system in three different scenarios. The comparison
confirms that our architecture is able to achieve results com-
parable with other more mature state-of-the-art systems. For
further comparisons and results of our experiments, we refer
the reader to the repository wiki page2.

VI. CONCLUSIONS

In this paper, we present a novel architecture that aims
to standardize single- and multi-sensor SLAM. To achieve
this goal, we analyzed the recurrent patterns in the context
of SLAM systems, generating a taxonomy of sub-modules.
Then, we exploited such taxonomy to provide the user with
the ability to easily integrate heterogeneous sensors in a single
unified pipeline. The paper exposes the design patterns and
the data structures used in our implementation, presenting a
modular and easy-to-extend architecture. In our opinion, the
latter could also have a major educational impact.

2Wiki: https://github.com/srrg-sapienza/srrg2 slam interfaces/wiki

5056

(a) ICL lr-0. (b) KITTI 00. (c) EuRoC MH-01.

Fig. 4: Trajectories generated by our architecture using visual SLAM with Stereo and RGB-D.

Finally, we conducted a set of comparative experiments to
show that our architecture has no drawbacks on the accuracy
of the estimation nor on the runtime performances. In fact,
even if pure benchmarking is out of the scope of this work,
the results obtained are comparable with ad-hoc state-of-the-
art implementations of 2D LiDAR, RGB-D and Stereo SLAM.

REFERENCES

[1] Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. Improved
techniques for grid mapping with rao-blackwellized particle filters. IEEE
Trans. on Robotics (TRO), 23(1):34–46, 2007.

[2] Wolfgang Hess, Damon Kohler, Holger Rapp, and Daniel Andor. Real-
time loop closure in 2d lidar slam. In IEEE Intl. Conf. on Robotics &
Automation (ICRA), pages 1271–1278. IEEE, 2016.

[3] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scara-
muzza, José Neira, Ian Reid, and John J Leonard. Past, present, and
future of simultaneous localization and mapping: Toward the robust-
perception age. IEEE Trans. on Robotics (TRO), 32(6):1309–1332, 2016.

[4] Mirco Colosi, Sebastian Haug, Peter Biber, Kai O Arras, and Giorgio
Grisetti. Better Lost in Transition Than Lost in Space: SLAM State
Machine. In IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS). IEEE, 2019.

[5] Simon Lynen, Markus W Achtelik, Stephan Weiss, Margarita Chli, and
Roland Siegwart. A robust and modular multi-sensor fusion approach
applied to mav navigation. In 2013 IEEE/RSJ international conference
on intelligent robots and systems, pages 3923–3929. IEEE, 2013.

[6] Agostino Martinelli. Closed-form solution of visual-inertial structure
from motion. Int. J. of Computer Vision, 106(2):138–152, 2014.

[7] Raúl Mur-Artal and Juan D Tardós. Visual-inertial monocular slam with
map reuse. IEEE Robotics and Automation Letters (RA-L), 2(2), 2017.

[8] Tong Qin, Peiliang Li, and Shaojie Shen. Vins-mono: A robust and
versatile monocular visual-inertial state estimator. IEEE Trans. on
Robotics (TRO), 34(4):1004–1020, 2018.

[9] Christian Forster, Luca Carlone, Frank Dellaert, and Davide Scaramuzza.
Imu preintegration on manifold for efficient visual-inertial maximum-a-
posteriori estimation. Georgia Institute of Technology, 2015.

[10] Taihú Pire, Thomas Fischer, Gastón Castro, Pablo De Cristóforis, Javier
Civera, and Julio Jacobo Berlles. S-ptam: Stereo parallel tracking and
mapping. Robotics and Autonomous Systems, 93:27–42, 2017.

[11] Antoni Rosinol, Marcus Abate, Yun Chang, and Luca Carlone. Kimera:
an open-source library for real-time metric-semantic localization and
mapping. IEEE Intl. Conf. on Robotics & Automation (ICRA), 2020.

[12] Ji Zhang and Sanjiv Singh. Visual-lidar odometry and mapping: Low-
drift, robust, and fast. In IEEE Intl. Conf. on Robotics & Automation
(ICRA), pages 2174–2181. IEEE, 2015.

[13] Paul Newman, David Cole, and Kin Ho. Outdoor SLAM using visual
appearance and laser ranging. In IEEE Intl. Conf. on Robotics &
Automation (ICRA), pages 1180–1187. IEEE, 2006.

[14] T. Schneider, M. T. Dymczyk, M. Fehr, K. Egger, S. Lynen, I. Gilitschen-
ski, and R. Siegwart. maplab: An open framework for research in visual-
inertial mapping and localization. IEEE Robotics and Automation Letters
(RA-L), 2018.

[15] Blanco-Claraco J.L. A Modular Optimization Framework for Localiza-
tion and Mapping. In Proc. of Robotics: Science and Systems (RSS),
FreiburgimBreisgau, Germany, June 2019.

[16] Labbé, Mathieu and Michaud, François. RTAB-Map as an open-source
lidar and visual simultaneous localization and mapping library for large-
scale and long-term online operation. Journal of Field Robotics (JFR),
36(2):416–446, 2019.

[17] Mathieu Labbe and Francois Michaud. Appearance-based loop closure
detection for online large-scale and long-term operation. IEEE Trans. on
Robotics (TRO), 29(3):734–745, 2013.

[18] Georges Younes, Daniel Asmar, Elie Shammas, and John Zelek.
Keyframe-based monocular slam: design, survey, and future directions.
Journal on Robotics and Autonomous Systems (RAS), 98:67–88, 2017.

[19] Giorgio Grisetti, Rainer Kummerle, Cyrill Stachniss, and Wolfram
Burgard. A tutorial on graph-based SLAM. IEEE Trans. on Intelligent
Transportation Systems Magazine, 2(4):31–43, 2010.

[20] Dominik Schlegel and Giorgio Grisetti. HBST: A hamming distance
embedding binary search tree for feature-based visual place recognition.
IEEE Robotics and Automation Letters (RA-L), 3(4):3741–3748, 2018.

[21] Gálvez-López, Dorian and Tardós, J. D. Bags of Binary Words for Fast
Place Recognition in Image Sequences. IEEE Trans. on Robotics (TRO),
28(5):1188–1197, October 2012.

[22] Jon Louis Bentley. Multidimensional binary search trees used for
associative searching. Comm. of the ACM, 18(9):509–517, 1975.

[23] Belur V Dasarathy. Nearest neighbor (nn) norms: Nn pattern classifica-
tion techniques. IEEE Computer Society Tutorial, 1991.

[24] Marı́a T Lázaro, Roberto Capobianco, and Giorgio Grisetti. Efficient
long-term mapping in dynamic environments. In IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), pages 153–160. IEEE, 2018.

[25] Giorgio Grisetti, Tiziano Guadagnino, Irvin Aloise, Mirco Colosi, Bar-
tolomeo Della Corte, and Dominik Schlegel. Least squares optimization:
from theory to practice. Robotics, 9(3):51, July 2020.

[26] Dominik Schlegel, Mirco Colosi, and Giorgio Grisetti. Proslam: Graph
slam from a programmer’s perspective. In IEEE Intl. Conf. on Robotics
& Automation (ICRA), pages 1–9. IEEE, 2018.

[27] Raul Mur-Artal and Juan D Tardós. Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras. IEEE Trans. on
Robotics (TRO), 33(5):1255–1262, 2017.

[28] R. Vaughan. Massively multi-robot simulation in stage. Swarm
Intelligence, 2(2-4):189–208, 2008.

[29] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun.
Vision meets robotics: The kitti dataset. Intl. Journal of Robotics
Research (IJRR), 32(11):1231–1237, 2013.

[30] A. Handa, T. Whelan, J.B. McDonald, and A.J. Davison. A benchmark
for RGB-D visual odometry, 3D reconstruction and SLAM. In IEEE
Intl. Conf. on Robotics & Automation (ICRA), Hong Kong, China, May
2014.

[31] Michael Burri, Janosch Nikolic, Pascal Gohl, Thomas Schneider, Joern
Rehder, Sammy Omari, Markus W Achtelik, and Roland Siegwart.
The euroc micro aerial vehicle datasets. The International Journal of
Robotics Research, 2016.

5057

