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Abstract— Humans and robots are increasingly sharing their
workspaces to benefit from the precision, endurance, and
strength of machines and the universal capabilities of humans.
Instead of performing time-consuming real experiments, com-
puter simulations of humans could help to optimally orchestrate
human and robotic tasks—either for setting up new production
cells or by optimizing the motion planning of already installed
robots. Especially when human-robot coexistence is optimized
using machine learning, being able to synthesize a huge number
of human motions is indispensable. However, no solution exists
that automatically creates a range of human motions from a
high-level specification of tasks. We propose a novel method that
automatically generates human motions from linear temporal
logic specifications and demonstrate our approach by numerical
examples.

I. INTRODUCTION

Properly setting up robots that share their workspace with
humans is challenging since experiments involving humans
are expensive and time-consuming. Consequently, one often
wishes to synthesize realistic human motion from high-level
specifications and optimize the setup and behavior of robots
in computer simulations, e.g., to analyze the safety and
throughput of the considered production cell. We review
existing techniques for synthesizing human motion, identify
research gaps, and summarize our contributions.

A. Related Work

There exists much work on synthesizing human mo-
tion from recombining motion capture data and physical
simulations—both methods are often supported by machine
learning techniques. However, there is only very little work
on synthesizing motions from formally specifying high-
level tasks, while there exists some work using non-formal
specifications, such as annotations [1], verbs and adverbs
[2], or even natural language [3], [4]. These works and other
related works on human motion synthesis are reviewed below
in the categories behavior planning, data-driven synthesis,
simulation of physical models, and motion synthesis in
industrial environments.

1) Behavior Planning: One of the simpler methods to
create high-level behaviors is to use rule-based agents [5].
A more compact modeling formalism are behavior trees [6],
which are used for robotic planning and character animation
alike. Also, finite state machines are often used to create
relevant behaviors [7]. When larger crowds of humans are
simulated, one typically uses force models [8] or motion
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planning models with collision avoidance capabilities [9].
While crowd simulations typically focus on goal reaching,
optimization-based methods also consider cost functions
and constraints [10], and sometimes even annotations [1].
To explicitly consider probabilistic uncertainty in decision
making, decision networks are used in [11] for high-level
task generation. When acquisition of knowledge should be
considered as well, cognitive models can be used [12]; these
models have been combined with planning techniques in
[13]. However, knowledge acquisition does not play a major
role in repetitive tasks of human workers in factories. Yet
another technique is to teach agents using programming-
by-demonstration, where an agent learns a policy through
observing experts [14].

2) Data-driven Synthesis: The aforementioned works per-
form the high-level behavior planning, but typically do not
provide the exact movement of the human skeleton. One of
the main reasons is that directly planning with all degrees
of freedom in complex environments is computationally
infeasible. Thus, one often uses motion capture techniques
to adapt or learn typical movements of the human body.

Motion graphs are a popular way to combine segments
of recorded motions through automatically-generated move-
ments connecting closely-related motions [15]; an extension
of this concept is presented in [16]. Besides recombining
motion segments, one can also interpolate them, which is
often referred to as motion blending [17] — techniques
based on barycentric interpolation, radial basis functions,
k-nearest neighbors, and inverse blending optimization are
compared in [18]. By annotating motions with high-level
characteristics, one can also interpolate between these [2].

Yet another possibility to synthesize motions from data is
to complement sparse recordings. For instance, when only
the position of the hands and feet are recorded, one can
reconstruct likely poses of the entire body, which is also
known as the inverse kinematics problem. Several learning-
based approaches for this problem have been developed
rather recently for variations of scaled Gaussian process
latent variable models [19], [20] and Gaussian process dy-
namical models [21]; fully independent training conditional
approximation has been used as well [22]. Inverse kinematics
is combined with the aforementioned motion graphs in [23].

Inspired by the success in other domains like image
processing and natural language processing, recurrent neural
networks have been recently applied to motion synthesis.
An autoencoder is used in [24] to learn a manifold of human
motion so that unrealistic motions can be repaired; this work
has been extended by stacking a deep feedforward neural
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network on top of the trained autoencoder [25]. For gait
synthesis in rough terrain, a phase functional neural network
has been proposed [26]. A variational generative model
is learned in [27] to change the style of human motions.
Some works can even synthesize human motion from natural
language [3], [4].

3) Simulation of Physical Models: A disadvantage of
data-driven methods is that the created movement might
not be physically possible and that force-based interactions
between humans themselves or between humans and the
environment are not properly considered. An early work
used physical models for animating human athletics [28].
Since then, physical models have gained interest in com-
puter animations for the movie and game industry [29]. A
challenge of physics-based animation is the computational
complexity. Several works have addressed this challenge:
By using objective functions and constraints that lead to
linear time analytical first derivatives, computation times
can be significantly reduced [30]. Another method is to
find a low-dimensional space capturing the properties of the
high-dimensional joint space of humans to run optimization
algorithms on low-dimensional problems [31]. Yet another
approach is to perform optimization in the joint space rather
than using muscle activations by transforming constraints
on muscle inputs to constraints in the joint space [32].
Parameters for realistic physical models are learned in [33]
from motion-capture data.

Because it is difficult to develop the required control
strategies for physics-based simulation so that characters
can fulfill high-level tasks, machine learning methods are
increasingly incorporated in physics-based simulation. In
[34], a low-level controller for gait control and a high-level
planner for step control is learned. Reinforcement learning
is used in [35], [36] to find suitable control strategies.

4) Motion Synthesis in Industrial Environments: Most
previous work for human motion synthesis has been per-
formed for the movie and game industry, while only very
few works exist on human motion synthesis in production
settings. In [37], a 3D simulation for production environ-
ments with humans and robots is presented. Human motion
synthesis for virtual maintenance is presented in [38], which
is useful for maintainability design, supportability planning,
and personnel training.

B. Contributions

We present the first work for synthesizing human motion
given a rich temporal specification language. In particular,
our contributions are:
• Synthesizing high-level task sequences from linear tem-

poral logic.
• Creating variations of possible motions satisfying the

temporal specification.
• We provide a modular framework so that motions can

be generated from data-driven methods or physics-based
simulation.

• Demonstrating the usefulness of our approach for a
realistic production scenario.

This paper is organized as follows: Sec. II presents our
high-level task specification and generation, from which we
synthesize motions in Sec. III. We demonstrate the ability of
our method for an industrial scenario in Sec. IV, followed
by conclusions in Sec. V.

II. SPECIFICATION AND SYNTHESIS OF HIGH-LEVEL
TASKS

We specify human tasks in production systems using linear
temporal logic (LTL) [39] since it resembles natural language
so that one can obtain LTL formulas from structured English
[40].

A. Linear Temporal Logic

Since linear temporal logic is a formal specification lan-
guage, there are no ambiguities compared to other forms of
specification [41]. Given a sequence of states, let us introduce
the operator Xφ stating that φ holds in the next state and
φ1Uφ2 stating that φ1 holds until φ2 holds. Given the set
of atomic propositions AP , LTL formulas φ are constructed
from atomic propositions a ∈ AP by the following grammar
[42, Def. 5.1]:

φ ::= a|¬φ|φ1 ∧ φ2|Xφ|φ1Uφ2. (1)

Given a word σ and σi as the suffix of σ starting in the
(i+1)th symbol, the semantics of LTL is defined inductively
as [42, Fig. 5.2]:

σ |= a ⇐⇒ a ∈ σ0
σ |= ¬φ ⇐⇒ σ 6|= φ

σ |= φ1 ∧ φ2 ⇐⇒ σ |= φ1 and σ |= φ2

σ |= Xφ ⇐⇒ σ1 |= φ

σ |= φ1Uφ2 ⇐⇒ ∃j ≥ 0 s.t. σj |= φ2 and
∀ 0 ≤ i < j we have σi |= φ1.

Other Boolean and temporal operator can be defined from
the ones introduced above [42, Sec. 5.1]:

φ1 ∨ φ2 = ¬(¬φ1 ∧ φ2)

φ1 =⇒ φ2 = ¬φ1 ∨ φ2
φ1 ⇐⇒ φ2 = (φ1 =⇒ φ2) ∧ (φ2 =⇒ φ1)

true = φ ∨ ¬φ
Fφ = trueUφ (“in the future φ holds”)
Gφ = ¬F¬φ (“φ holds globally”)

The unary operators bind stronger than the binary ones,
¬ and X bind equally strong, and the temporal operator U
takes precedence over ∧, ∨, and =⇒ .

B. Framework for Specifying Tasks of Human Workers

To guide the specification of human motion as much
as possible, we provide specifications that always have to
be considered and specifications that are specific to the
given production environment. Thereto, we require several
definitions: Given the continuous state x ∈ Rn of a human,
we introduce the operator occ(x) : Rn → P (R3) that returns
the set of points occupied by the human, where P () returns
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the powerset of a set. When only the occupancy of a body
part BP is required, we write occ(x,BP ). If the argument is
an object O, the occupancy of that object is returned. Let us
denote the space occupied by static and dynamic obstacles
at time t as O(t). We define the predicate for collision as

collision(x(t)) ⇐⇒ occ(x(t)) ∩ O(t) 6= ∅.
Let us further introduce the start region R0 ⊂ R3 as well
as ξ intermediate regions Ri ⊂ R3, which are regions the
human worker has to touch. We will trigger predicates when
entering certain regions, for which we define the predicate

enter(x(t),Ri) ⇐⇒ occ(x(t)) ∩Ri 6= ∅.
When only a certain body part BP is concerned, we have

enter(x(t), BP,Ri) ⇐⇒ occ(x(t), BP ) ∩Ri 6= ∅.
If the first argument is an object, we define that

enter(O,Ri) ⇐⇒ occ(O) ∩Ri 6= ∅.
When an object should be enclosed, we define

enclose(O,Ri) ⇐⇒ occ(O) ⊆ Ri.
In this work, we consider the action primitives in Tab. I for
an object O and regions Ri, where regions can be arbitrarily
small. Please note that we do not consider other actions1,
since they a) do not significantly change the occupancy of
the human, b) can be easily abstracted by describing hand
movements, or c) can be composed of other actions. To
formalize the action primitives, we further require the ball
B(ε) = {x ∈ R3| ‖x‖2 ≤ ε} of a small radius ε and the
Minkowski addition A ⊕ B = {a + b|a ∈ A, b ∈ B}. The
termination conditions in Tab. I are required to finish a task.

Once the predicates are evaluated for discrete points in
time tk = k∆t, where k ∈ N and ∆t ∈ R+, we can consider
them as atomic propositions of a word σ and remove the time
dependency. The following specifications always have to be
met:
• Initially, the human has to be part of the initial region:

enter(x,R0)

• In the future, the human should reach the final region:

F (enter(x,Rξ))
• The human should never collide with any obstacle:

G(¬collision(x))

• Some actions can only be performed exclusively, such
as wait.

Two examples of useful additional specifications are:

1Examples of actions for which one of the subsequent points a)-c)
holds are: a) turn head, foot motion (without leg motion), hand motion
(without arm motion), screw, drill, turn object, hold object, apply pressure;
b) cut, pick object, welding, grinding, bend object; c) tool preparation,
tool positioning, tool use, attach object, detach object, latch object, unlatch
object, check object, align object, remove object, assemble object, open
object, and close object.

• After grasping object O, immediately carry it to region
Ri:

G(grasp(O) =⇒ X(carry(O,Ri))
• At least once, after moving the right hand to Ri, either

insert object O1 in O2 or move object O1 to Rj :
F
(
rightHand(Ri)

=⇒ X(insert(O1, O2) ∨ move(O1,Rj))
)

Next, we show how to create task sequences from LTL
specifications.

C. Synthesis of Task Sequences

A naive way to construct task sequences of human workers
from LTL specifications is to randomly create task sequences
and rejecting sequences that do not fulfill the specification.
While checking LTL formulas is only linear in the length of
the word σ [43], the number of possible task sequences is
exponential in the length of the sequence.

To guide the creation of valid task sequences, we syn-
thesize an automaton that fulfills an LTL formula. This
problem, however, is double exponential in the length of
the given specification [44]. Since most of the specifications
we require are short, we did not suffer from this worst-case
complexity in practice. If one is just interested in a single
behavior and the specification can be formulated using the
GR(1) fragment of LTL, the computational complexity is
only polynomial with respect to the size of the state space
[45]; most specifications can be formulated using the GR(1)
fragment of LTL [45], [46].

Possible task sequences, however, are infinite since LTL
specifies infinite traces. There exist synthesis approaches
for LTL specifications of finite traces [47]. However, the
synthesis of finite traces is not computationally cheaper [47]
so that we simply traverse the synthesized automaton for
the LTL specification in a way that terminal conditions are
rather quickly reached using coverage algorithms for testing
of systems [48].

III. SYNTHESIZING MOTIONS FROM TASKS

Given an ordered sequence of tasks S, such as
S = (walk(R1), grasp(O1), move(O1,R2), release(O1),
sit(chair), grasp(O2), carry(O2,R3)), it remains to
synthesize an appropriate motion. Most motion synthesis
algorithms surveyed in Sec. I use motion-capture data. To
focus on the novel aspects of synthesizing motions from
temporal logic, we use standard approaches to recombine
and adapt motion capture data as shown in [15].

A. Motion Automaton

We represent humans using marker positions selected
according to the CMU Mocap database2: a human pose
is given by the vector p ∈ R3m consisting of the x,y,z-
coordinates of each of the m markers.

Definition 1 (Motion Primitive): We define a motion
primitive as a tuple mp = (M,B, ta), where

2http://mocap.cs.cmu.edu/
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TABLE I
TASKS WHILE NOT WALKING, EXCEPT FOR WALK AND CARRY (O: OBJECT, LH: LEFT HAND, RH: RIGHT HAND, LK: LEFT KNEE, RK: RIGHT KNEE).

Termination
Name Description condition

wait(t) do not move much for duration t ∀δ ∈ [0, t] : x(t∗ + δ) ∈ x(t∗)⊕B(ε); t∗ is the time at which the task starts
move(O,Ri) move O to region Ri enclose(O,Ri)
leftHand(Ri) move left hand inside Ri enclose(x, lh,Ri)
rightHand(Ri) move right hand inside Ri enclose(x, rh,Ri)
insert(O1, O2) insert O1 into O2. enclose(O1, O2)
extract(O1, O2) extract O1 from O2. ¬enter(O1, O2)
grasp(O) grasp O. enter(x, rh, occ(O)⊕B(ε)) ∨ enter(x, lh, occ(O)⊕B(ε))
release(O) release O. ¬grasp(O)
sit(O) sit on object O. enter(x, buttocks, occ(sittingSurface(O))⊕B(ε))
standUp stand up. ¬enter(x, head, occ(ground)⊕B(chestHeight))
bend bend (no bending of knees). enter(x, head, occ(ground)⊕B(chestHeight))∧

¬enter(x, buttocks, occ(ground)⊕B(kneeHeight))
stoop stoop (bending of knees). enter(x, head, occ(ground)⊕B(chestHeight))∧

enter(x, buttocks, occ(ground)⊕B(kneeHeight))
kneel kneel. enter(x, lk, occ(ground)⊕B(ε)) ∨ enter(x, rk, occ(ground)⊕B(ε))
walk(Ri) walk to region Ri. enter(x(t),Ri)
carry(O,Ri) hold O while walking to Ri. enter(x,Ri) ∧ enclose(O,Ri)

• M ∈ R3m×ν is a motion concatenated by ν human
poses p ∈ R3m relative to a root marker (here: hip
marker).

• B ∈ R6×ν is the sequence of positions (x, y, z coordi-
nates) and orientations (around x, y, z coordinates) of
the root marker over time tk, k < ν.

• ta is a task from Tab. I associated with the motion
primitive. �

We distinguish between gait primitives (ta ∈
{walk, carry}) and all other primitives, which we
refer to as goal primitives. While the subsequent theory
applies to gait and goal primitives, we limit the search in
Sec. III-B to subproblems only containing gaits to prune the
search space.

Motion automata (aka maneuver automata [49] or motion
graphs [15]) are used to formalize which motion primi-
tives can be connected with each other; slight modifications
between similar concepts exist. In this work, the states
of the motion automaton refer to the motion primitives
and the transitions between states model the connectivity
between them. Since motions are represented by states of
the automaton, we do not define a separate motion alphabet
as in [49].

Definition 2 (Motion Automaton): In this work, a motion
automaton is a tuple MA = {MP,∆,MP0}, where
• MP is a finite set of motion primitives mpi, which are

the discrete states of the motion automaton;
• ∆ is the set of discrete transitions ∆ ⊆MP×MP . A

transition from mpi to mpj is denoted by (mpi,mpj);
• MP0 ⊂MP is a set of possible initial motions. �

The semantics of the motion automaton is described infor-
mally. Starting from a motion primitive mp0 ∈ MP0, the
possible successive motions are {mpi|(mp0,mpi) ∈ ∆},
which in turn have a set of successive motions.

We compute the set of transitions ∆ from a set of motion
primitivesMP as in [15] by an average distance over kcomp

time steps. After introducing M l
i as the lth pose of the

ith motion, we calculate the average distance between the
motion at the end of mpi (having νi poses) and the motion
at the beginning of mpj . Since our motion primitives are
invariant with respect to position and orientation of the root
marker within the floor plane, we apply a homogeneous
transformation using identical rotation matrices for each
marker around the y-coordinate represented by T ∈ R3m×3m

and the translation vector λ ∈ R3m shifting the x-coordinates
and z-coordinates of all markers identically:

dij = min
T,λ

1

kcomp

∑
k∈[1,kcomp]

||Mνi−kcomp+k
i −(T Mk

j +λ)||2.

We add edges (mpi,mpj) to ∆ if dij < δ, where δ is a user-
defined threshold. For simplicity, we use a global threshold δ
in this work, however, one can adjust this for different types
of movement, of course.

B. Motion Planning

For each task Si in the task sequence S, we have
to concatenate motion primitives according to the desired
actions and the motion automaton. We use A* search to
expand collision-free gait primitives in between tasks. Let
us introduce taj as the task of mpj . After each expansion
with a gait primitive mpq , we check whether a goal primitive
mpg ∈ {mpj |(mpq,mpj) ∈ ∆∧ taj = Si} for the next task
Si would reach the next intermediate region Ri.

The duration in between tasks ti+1 − ti is chosen as
the cost function for A* and the minimum remaining time
to the goal is chosen as the heuristic function h(ψ) =
dist(occ(ψ),Ri)/vmax, where ψ is a node of the A* search,
occ(ψ) returns the occupancy in node ψ, and dist() returns
the minimum Euclidean distance between two objects.

In practice, we found that choosing the absolute maximum
velocities led to a huge increase in nodes expanded. There-
fore, we relaxed the heuristic and chose lower velocities,
which no longer guarantee optimal paths. We consider this as
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an acceptable compromise since the cost function of humans
is rather unknown [50].

C. Motion Blending

Since transitions between motion primitives are not always
smooth, we blend motions between concatenated motion
primitives [15]. We use a third-order polynomial w(t) to
blend between consecutive motions Mi and Mj over a
specific number of frames nf . We ensure C1 continuity
of w(t) by setting its coefficients such that w(t0) = 1,
w(tnf ) = 0 and ẇ(t0) = ẇ(tnf ) = 0. The blended motion
Msyn for k ∈ [0, nf ] is obtained as:

Mνi−nf+k
syn = w(tk)Mνi−nf+k

i + (1− w(tk))Mk
j . (2)

Analogously, we blend the positions and orientations of the
root marker.

IV. NUMERICAL EXAMPLES

We demonstrate our approach using motion primitives
from the CMU Mocap database. To obtain gait primitives,
we split walking motions every 20 frames (corresponding to
166.6 ms) and goal primitives were manually generated by
specifying start times tstart and end times tend. Transitions
were added to the motion automaton if their distances were
below δ = 0.135. Due to limited space, we intentionally limit
our numerical examples to two specifications for an assembly
task using the shorthand assemble(Ri) = leftHand(Ri)∧
rightHand(Ri).

Specification 1 (S1: Assembling one part): The human
should repeatedly grasp a part O1 followed by assembling
it on the workbench in region R1. �

Specification 2 (S2: Assembling two parts): The human
should repeatedly grasp two parts O1 and O2 followed by
assembling them on the workbench in region R1. �

The object O1 is located at [−1, 0.2, 1.0]T , O2 at
[−1.5, 0.3,−1.2]T and the region R1 is specified as the
three-dimensional interval R1 = [0.9, 1.1]3. The LTL for-
mula for specification S1 requires the atomic propositions
g = grasp(O1) and a = assemble(R1):

g ∧G(a =⇒ F (g) ∧ g =⇒ F (a)) (3)

As mentioned in Sec. II-B, we do not have to explicitly
formulate the specifications that always have to hold, such as
collision avoidance and exclusive actions, i.e., G(¬(a∧ g)).
The specification of S2 can be formulated similarly.

A. Creating and Analyzing the Synthesized Motions

From the specification we synthesize automata with
SPOT3 whose possible executions return valid task se-
quences; the automaton for S1 is shown in Fig. 1. Its main
loop between states 3 and 4 lets the human grasp O1 and
assemble it over and over again; the self-transitions in states
2 and 3 can be used to realize other tasks. Snapshots from
the generated motions solving S2 are shown in Fig. 2 and
the matched goal primitives are listed in Tab. II.

1start 2

4 3

¬a ∧ g

a ∧ ¬g

¬a

¬a ∧ g
¬g

a ∧ ¬g

¬a

Fig. 1. Büchi automaton solving S1. Since we only require finite sequences,
we only ensure that the acceptance condition is passed at least once. The
absorbing state which is reached when violating the specification is not
shown for brevity.

TABLE II
MATCHED GOAL PRIMITIVES.

Task
Goal region center:
[x,y, z] in m

Matched goal primitive:
Clip nr. (tstart → tend)

Grasp [−1, 0.2, 1.0] 69 73 (250→ 530)

Grasp [−1.5, 0.3,−1.2] 64 26 (174→ 495)

Assemble [1.0, 1.0, 1.0] 62 06 (80→ 2480)

Grasp [−1.5, 0.3,−1.2] 69 73 (250→ 530)

Grasp [−1, 0.2, 1.0] 69 75 (228→ 474)

Assemble [1.0, 1.0, 1.0] 62 06 (80→ 2480)

As a first indicator for the quality of our synthesized
motion, we present the global position of the right hand of
the human in Fig. 3 for both specifications. The lack of jumps
indicates smooth and natural movements. Also, the motion
shows no overshoots so that the synthesized motion reaches
the goal region of the next task without major detours; this
indicates that the adapted heuristic returns almost optimal
paths. The second plot shows that there is variation in the
solution to S2, as either O1 or O2 may be picked up first for
assembly.

All computations have been performed in Python 3 on a
laptop with a 9th generation Intel i7 processor (2.6 GHz).
The computation times for both specifications are listed in
Tab. III. Currently, most of the computation time is spent on
motion planning and creating the human skeleton. We expect
that better heuristics and an improved implementation can
significantly reduce these times.

TABLE III
COMPUTATION TIMES.

Specification S1 S2

Synthesize Büchi automaton [s] < 0.1 < 0.1

Create task sequence [s] 1.0 1.1

Motion planning [s] 614.2 283.9

Create motion of human skeleton [s] 39.4 47.9

Total computation time [s] 654.7 333.0

3https://spot.lrde.epita.fr/
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2.170.33 3.9

10.53 15.37 19.67

Fig. 2. The synthesized motion for S2 at 0.033, 2.17, 3.9, 10.53, 15.37, and 19.67 seconds in a simple factory environment consisting of a green drill
press and a brown workbench. The screenshot at 0.033 [s] shows the avatar at its initial position. At 2.17 [s] it walks to O1, next O1 and O2 are grasped
at 3.9 [s] and 10.53 [s], respectively, at 15.37 [s] the avatar walks to the workbench, where at time 19.67 [s] its hands are assembling the object. The full
video is available at https://mediatum.ub.tum.de/1536881?show_id=1554326.
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Fig. 3. Right hand position (x, y, and z coordinates) over time complying with S1 (left plot) and S2 (right plot). Objects are picked up from the floor
every time the y position approaches a value close to zero. Longer stretches of small movements are where the assembly takes place.

V. CONCLUSIONS

We have presented the first approach that synthesized
human motion in production environments from linear tem-
poral logic specifications. Since linear temporal logic is
close to natural language and many specification patterns
for linear temporal logic exists, users can generate a variety
of motions without having to tediously modify recorded
motion primitives. We plan to use the generated motions
for analyzing and optimizing human-machine coexistence.
Other possible uses are planning of production facilities,
machine learning of robots for human-machine co-existence,
and estimation of cycle times for production cells.
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