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Abstract— Passive sensing with ambient WiFi signals is a
promising technique that will enable new types of human-
robot interactions while preserving users’ privacy. Here, we
present PresSense, a system for human respiration sensing
in noisy environments. Unlike existing WiFi-based respiration
sensors, we employ a human presence detector, improving the
robustness in scenarios where no human is present in an Area
Of Interest (AOI). We also integrate our novel feature, Peak
Distance Histogram (PDH), with other classic WiFi features to
achieve better accuracy when someone is present in the AOI.
We tested our system using commodity WiFi devices in an office
room. Our PresSense outperforms the state of the arts in both
respiration rate estimation and presence detection.

I. INTRODUCTION

To enable robots to sense the surrounding environment,
numerous types of sensors have been developed, including
ranging sensors [1], [2], haptic sensors [3], proximity sen-
sors [4] and inertial sensors [5]. In this paper, we explore the
potential of commodity WiFi devices as a type of passive
sensor for detecting human presence and respiration rates.
In fact, WiFi sensing has been used for localization of hu-
mans [6], [7] and robots [8], pinpointing personal devices [9],
trajectory tracking [10] and activity recognition [11]. With
the ability to cover a wide area and to penetrate through
objects and walls, it can provide a cost-effective and low-
power sensing solution. In particular, passive WiFi sensing
may also offer a new approach for human-robot interac-
tions with its ubiquitousness and privacy-preserving ability,
providing the autonomous agent with the awareness of the
human’s presence, state of activity and location, without
using intrusive sensors such as cameras and LiDARs.

Mounting a WiFi sensor on the robot will allow it to “hear”
patterns in the WiFi signals. These patterns generally come
from environment changes or moving objects that cause
distortions in the multipath propagation of WiFi signals.
In particular, the regular motion of a human chest during
respiration causes a regular shortening and lengthening in
the paths reflected from the chest to the receiver. This can
be recovered as a periodic pattern in the received signals
(see Figure 1). Unlike large motions, such as walking or
waving, which can be effectively detected using a decision
threshold [6], the subtle respiration of a stationary human
can be easily confounded with background noise. A series
of advances in sensing with commodity WiFi devices has
developed various techniques to accurately estimate the res-
piration rate across arbitrary locations of the human body
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Fig. 1: An example of a WiFi propagation path reflected
off the human chest during respiration, causing a periodic
pattern in the measured WiFi signal (CSI phase).

for smart home and hospital environments [12]–[21]. Recent
work has also pushed the sensing range up to house level
(8-9 meters) [22].

The existing systems estimate the respiration rate based
on the peak/valley distances in the detected periodic patterns
with strong signal strength. However, they operate under the
scenarios where there is one and only one person in the
entire sensing area. Realistic scenarios may involve several
people outside of an Area Of Interest (AOI) conflicting with
the respiration signal of interest, or acting as impostors
in an empty AOI. We further improve the single-person
scenario with a novel WiFi feature, Peak Distance Histogram
(PDH), which captures the occurrence of periodic patterns
in the received signal. Then, using respiration as an intrinsic
indicator of human presence and vice-versa, we extend the
system to realistic scenarios by combining presence detec-
tion and respiration sensing. Our system, PresSense, uses
respiration information extracted from PDH in concert with
other existing features and learns a Respiration rate selector
and a presence detector. The latter is used to confirm the
existence of a valid respiration, and thus avoid to detect a
“ghost breather” in an empty AOI. Our solution demonstrates
improved accuracy and robustness for both presence detec-
tion and respiration sensing.

In summary, our contributions are twofold:
• We propose the design of a passive WiFi sensing sys-

tem, PresSense, that outperforms the state of the arts in
both presence detection and respiration rate estimation.
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• We present a novel WiFi feature, Peak Distance His-
togram (PDH), capturing the occurrence of periodic
patterns in the signal. Our experiment demonstrates the
improved accuracy in the aforementioned tasks when
the feature is used in PresSense.

II. BACKGROUND

WiFi sensing has been proved as a promising technique
in various applications, including identifying users [23] and
estimating respiration rates [22]. More importantly, the above
missions can be accomplished in a device-free manner,
meaning that users are not required to carry any devices.
To achieve this, instead of using classic triangulation-like
methods, a WiFi sensing system extracts the distortions that
humans cause on the ambient WiFi signals, and learns the
association between these distortions and human information
(e.g., locations, activities and respiration rates).

To see how this can be achieved, we next present some
necessary background on WiFi standards and Channel State
Information (CSI). According to the IEEE 802.11n standards
[24], a WiFi channel is divided into 64 subcarriers using
the Orthogonal Frequency-Division Multiplexing (OFDM)
technology. Every subcarrier can carry one data symbol. Two
adjacent subcarriers are overlapping (50%) and orthogonal
with each other, as illustrated in Fig. 2(a). In this way, more
subcarriers can be placed into a limited bandwidth, and thus
more data can be transmitted. In addition, WiFi supports
spatial multiplexing, where different data can be transmitted
on different spatial streams, as illustrated in Fig. 2(b). A
spatial stream, or stream for short, is the signal flow between
a transmission antenna and a receiving antenna.

The WiFi CSI describes how the WiFi signal propagates
on the subcarriers through these streams. Denote the complex
data signal transmitted on the ith subcarrier and the jth
stream as ai,j , and denote the corresponding received signal
as bi,j . The received signal bi,j is basically the transmitted
signal ai,j altered by the WiFi channel, i.e.,

bi,j = hi,j · ai,j , (1)

where hi,j is the complex-value CSI.
The value of a CSI can be affected by every object in

between the transmitter and the receiver, and is very sensitive
to small movements like human respiration. For example, in
Fig. 1, by looking at the phases of CSI, we can find some pe-
riodic patterns corresponding to inhalations and exhalations.
A straightforward solution would be running peak/valley
detection algorithms on the CSI phases and extracting the
intervals between peaks/valleys as the respiration periods.
However, in the real scenarios, the CSI readings could be
much noisier than those in the above example. Moreover, the
changes caused by respiration could be easily overwhelmed
by other human movements and by unobservable phase
offsets introduced by the hardware.

III. DESIGN

We consider the case when the AOI is an office with
several people sitting and walking nearby, and that it can

(a) WiFi frequency subcarriers. (b) WiFi streams.

Fig. 2: WiFi frequency and spatial multiplexing.

either be empty or occupied by one person with a stationary
posture. PresSense estimates the underlying states of the
AOI (i.e.: occupied or empty, and the respiration rate if
occupied) conditioned on the measurable WiFi signals of
ns = 2 streams and nx subcarriers over a period of time.
We consider that normal respiration ranges between 10 to 37
breaths per minute (bpm) [13]. The architecture of PresSense
is illustrated in Fig. 3.

Upon observing a sequence of n ∈ N∗ CSI measurements,

X = (H[1], H[2], . . . ,H[n]), (2)

where each H[t] denotes a complex CSI matrix of dimension
nx × ns collected at time t ∈ {1, . . . , n}, the measurements
are first passed through a CSI Cleanser module for phase
offsets and noise filtering. The subsequent Feature Extractor
extracts relevant features for presence and respiration rate
sensing, combining existing WiFi features with our PDH. A
portion of the features is passed to a leaning model for binary
classification. Another overlapping portion is passed to our
Respiration Rate Selector module to select our best rate
estimate according to the amount of noise in the environment.
Finally, if human presence is detected, our selected rate
estimate will be outputted.

A. CSI Cleanser

Currently, we are aware of no techniques to perfectly
remove the noise induced by the phase offsets without hard-
ware modification. Existing techniques include multiplying
one stream by the complex conjugate of the other (CM) [25],
and dividing one stream by the other (CSI ratio) [22]. CM
leaves some residue of the noise while the CSI ratio loses its
scale. Therefore, we apply both techniques on X , creating
XCM and XR, respectively. Note that these processes collapse
X into one stream.

Fig. 3: The architecture of PresSense.
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To filter out high frequencies that are unrelated to human
respiration, we apply the Savitzky-Golay Filter (SGF), as
in [21], [22], which fits successive subsequences of the CSI
measured within some time window tw, with polynomials
of a low-degree d using linear least squares. We use tw = 1
second and d = 3 in our experiment, creating X ′CM and X ′R
from XCM and XR, respectively.

The subtle periodic respiration pattern is better captured
in X ′R than in X ′CM as CM is more vulnerable to noise. To
further reveal these patterns in X ′R, we adopt the method
from [22] that projects each the complex CSI subcarrier to
real and applies autocorrelation on these projections, creating
Y ′R. The projection axes are chosen such that the respira-
tion signal is more emphasized based on the Respiration-
to-Noise-Ratio (RNR) metric. RNR, as proposed by [26],
defines the ratio of the respiration power over the overall
power and it is computed using Fast Fourier Transform
(FFT). The autocorrelation function measures how similar
a signal is to a delayed version of itself. When applied to a
periodic signal, the autocorrelation is also periodic with the
same period [27]. Y ′R is often smoother and easier to extract
the peaks than X ′R. Finally, all XCM, XR, X ′CM, X ′R and Y ′R
are passed to the Feature Extractor.

B. Feature Extractor

There exist various WiFi features to describe the signal
patterns and the activity in the sensing area. This module
extracts features inspired from [7], [21], [22], [28] and our
novel respiration sensing feature PDH. Note that we have
also tested other features that are excluded from this paper
and empirically choose the ones presented below. Table I
shows the complete list of features that we pass to the
subsequent modules.

1) Variance and magnitude (VM): Empirically, the vari-
ance and magnitude of the CSI capture the dynamic and
static components in the multipath propagation. The variance
is expected to increase according to the amount of motions
and the magnitude is expected to change depending on the
configuration and the objects/people present in the sensing
area. For each XCM and X ′CM, we extract the median variance
across each CSI subcarrier (σCM and σ′CM) and the median
magnitude (|XCM| and |X ′CM|). We also extract ∆σCM =
σCM − σ′CM and ∆|XCM| = |XCM| − |X ′CM|, which capture
how much of σCM and |XCM| are related to the filtered out
high frequencies.

2) Principal component analysis (PCA): If the variation
of the CSI subcarriers is highly correlated due to some
underlying factor, then PCA can be applied to evaluate such
correlation. We apply PCA across the subcarriers and extract
the sum of the explained variance of the first 3 components
(PCA3). PCA3 value for empty AOI is expected to be lower
than for occupied AOI.

3) Mean Doppler spectrum (MDS): The motion of the
human chest can create Doppler frequency shifts (DFS)
extractable from the CSI using FFT. MDS captures the
strength of DFS averaged over all CSI subcarriers. When
there is no motion, a narrow and sharp peak at 0Hz in the

MDS is expected. When motion is present, it may have a
wider peak as in the example in Figure 4(a). This quality of
MDS can be measured using the Spectral Centroid (SC) and
Spectral Spread (SS) as defined in [28].

4) Respiration-to-Noise-Ratio and autocorrelation (RN-
RxA): Since Y ′R captures the periodicity in the CSI, the
state of the art respiration sensing system, FarSense [22],
combines Y ′R with relatively high RNR into one signal by
weighted averaging based on their RNR, and use the time
of the first peak to estimate the respiration rate (BR′R). See
example in Figure 4(b). Our Feature Extractor extracts the
mean RNR of Y ′R (Bµ′R) the autocorrelation value (BP′R) of
the first peak that derived BR′R and the prominence (BPP′R)
of that peak. The peak prominence measures how much
the peak stands out relative to the sounding values. When
respiration is present, the first peak is expected to be positive
and prominent.

5) Power Spectral Density (PSD): An alternative to RNR,
the portion of Y ′R to use for rate estimation can be selected
using PSD, which describes the power of the frequencies
present in the signals. We adopt the method from [21], which
selects the subcarrier with the maximum PSD power within
the valid respiration rate range, and uses the mean peak dis-
tance to estimate the respiration rate. Our Feature Extractor
extracts the estimated rate (PR), the standard deviation of
the power from the selected subcarrier (PPσ), the latter’s
maximum power (PP) and the frequency corresponding to
the maximum power in the PSD (PF).

6) Peak Distance Histogram (PDH): BR′R, as reported
by the state-of-the-art respiration sensing method [22], is
derived using the weighted average of multiple signals which
can be constructive or destructive depending on their in-
phase or out-of-phase relationship. This can cause a major
problem in a noisy environment with multiple respiration
sources outside of the AOI. In our experiment, we have found
that PR′R, derived from the subcarrier with the largest PSD
power in Y ′R, often gives us a higher accuracy than BR′R.
However, it is possible that the signal with the largest power
is not fully descriptive of the ground truth due to possible
stronger respiration outside of the AOI or the small bias
induced by the SGF [29]. In this case, we can consider the
respiration signal that is the most frequently observed in Y ′R.
This leads us to develop PDH.

PDH which takes input Y ′R, uses a peak detection al-
gorithm with minimum peak distance of 1.5 seconds, and
counts the frequency of time distances between consecutive
peaks that correspond to at most 2 breaths away from the
valid respiration range (8 to 39 bpm). We use a bin step of
δ = 1/150, giving us nb = 4651 frequency bins. Given np
peak time distances [p1, . . . , pnp

] in seconds, the value for
each bin is defined as bi =

∑np

j=1 bi,j where i ∈ {1, . . . , nb},

bi,j = log
(

min{|fi − 1/pj |, 1− ε}+ ε
)
, (3)

fi = (i− 1)δ + f0, (4)

where f0 = 8/60 is the smallest respiration frequency
and ε = 1e−10 to avoid 0 in the logarithm. Different
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(a) Mean Doppler Spectrum (MDS). (b) Autocorrelation with the first peaks at
around 3 sec, giving us a respiration rate of
60/3 = 20 bpm.

(c) Peak Distance Histogram (PDH) with
the minimum value around 24 bpm
(HMR′

R), and the weighted average around
22 bpm (HR′

R).

Fig. 4: Example of MDS, autocorrelation and PDH when someone is present in the AOI.

from traditional histograms, Equation (3) allows us to count
each pj in multiple bins with appropriate weight, which is
more robust to noise. The min operation bounds the values
below 0. Then, we filter out the bins with value larger
than γ = (maxi(bi) + mini(bi))/2 and use the average
frequency weighted by the bin value (HR′R) as the estimate
the respiration rate:

HR′R = 60

nb∑
i=1

fiwi, (5)

wi =

{
γ−bi∑nb

j=1(γ−bj)
if bi < γ

0 otherwise
, (6)

where wi is the normalized weight according to the bin
value. We also extract descriptors of the PDH, namely,
the weighted bin average (Hb′R), the weighted frequency
standard deviation (Hσ′R), as defined below:

Hb′R =

nb∑
i=1

biwi, (7)

Hσ′R =

√√√√ nb∑
i=1

(
fi − HR′R/60

)2
wi, (8)

and the standard deviation of {HR′R,HMR′R} (HRσ′R) where
HMR′R is the rate computed using the frequency correspond-
ing to the minimum bin value. In addition, we extract the
standard deviation of all peak distances in bpm (HPσ′R).
Figure 4(c) show an example of PDH.

We believe that PDH is a generic WiFi feature and can be
easily adapted to different frequency ranges by tuning δ and
f0. It can be integrated into filtering algorithms and used in
applications for analyzing noisy periodic patterns.

C. Presence Detector

Table I lists the features that we pass to our Presence
Detector. The latter concatenates these features across k
consecutive and overlapping CSI sequences of length n

and uses Random Forest Classifier with 100 instances to
distinguish between an occupied and empty AOI. In our
experiment, k = 6, n = 15r and the overlap is n−2r, where
r is the sampling rate. This allows us to give more weight
to feature values that are common across the k sequences,
resulting in higher robustness to noise.

D. Respiration Rate Selector

Table I lists the features that we pass to our Respiration
Rate Selector. Our estimated respiration rate is set to PR′R
if SSCM > 5, SS′CM > 2, SCCM > 2, SC′CM > 1, |XCM| < 1 or
|X ′CM| < 1. Otherwise, it is set to HR′R. Empirically, the first
four conditions test if there are many respiration sources [28]
and the last two test if many WiFi propagation paths are
blocked by, for example, the human body standing near the
Line of Sight (LoS). Note that these rules are manually tuned
and may differ for different environments and WiFi devices.
Finally, if the estimated respiration rate is not within the valid
respiration range, we set it to 0.

IV. EVALUATION

We implemented PresSense in Python and evaluated it in
a real-world scenario in non-real-time as a proof of concept.

A. Experiment Setup

Our AOI is an office room with two tables and a chair,
shown in Fig 5. We created ambient WiFi signals in the
room by pinging a TP-Link AC1750 WiFi router with a
Dell Latitude E7440 laptop, on a 2.4GHz WiFi channel. The
pinging rate was r = 100 samples per second. We installed
the Linux CSI Tool [30] on the laptop to extract WiFi CSI.

B. Data Collection

We collected data on 6 participants (labelled as ID1 to
ID6). The statistics of the participants are presented in Fig. 6.
We asked each participant to stand at each of the positions
(P1 to P4) and to report to us the number of breaths taken
during 30 seconds. This process is repeated for three different
facing directions and two door states (open and closed).
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Module Input Features Category
PD σCM Median CSI variance

VM
both |XCM| Median CSI magnitude
RRS |X′

CM| Median CSI magnitude of the
low frequencies

PD ∆σCM CSI variance related to the
high frequencies

PD ∆|XCM| CSI magnitude related to the
high frequencies

PD PCA3′CM Sum of explained variance of
the top 3 principal components
of the low frequencies

PCA

PD PCA3′R Sum of explained variance of
the top 3 principal components
of the low frequencies in the
CSI ratio

RRS SCCM Spectrum Center

MDS

RRS SC′
CM Spectrum Center of the low

frequencies
both SSCM Spectrum Spread
RRS SS′

CM Spectrum Spread of the low
frequencies

PD SSR Spectrum Spread in the CSI
ratio

PD SC′
R Spectrum Center of the low

frequencies in the CSI ratio
PD SS′

R Spectrum Spread of the low
frequencies in the CSI ratio

PD Bµ′R Mean RNR
RNRxAPD BPP′

R Prominence of the first peak
after applying autocorrelation
and combining the subcarriers

PD BP′
R Value of the first peak after

applying autocorrelation and
combining the subcarriers

PD PF′
CM Frequency with the max power

in the PSD

PSDPD PF′
R Frequency with the max power

in the PSD computed from the
CSI ratio projections

PD PP′
R Maximum power in the PSD

computed from the CSI ratio
projections

PD PPσ′
R STD of the power in the PSD

computed from the CSI ratio
projections

RRS PR′
R Respiration rate estimated

from the subcarrier with the
largest power computed from
the CSI ratio projections

PD Hb′R Weighted bin average in PDH

PDH
PD Hσ′

R Weighted frequency standard
deviation in PDH

PD HMR′
R STD of detectable respiration

rates using the minimum or
weighted average of the bins
in PDH

PD HPσ′
R STD of the peak distances in

bpm
RRS HR′

R Respiration rate estimated us-
ing PDH

TABLE I: Input feature list for each downstream mod-
ule: Presence Detection (PD) and Respiration Rate Selector
(RRS).

Fig. 5: Experiment Setup.

In total, we collected 432K CSI measurements with the
participants and 144K with the room emptied. We treated
the data from ID1 and 84K of the data from the empty room
as the training set, and considered the rest as the testing set.

Note that, during our experiments, there were other people
outside the room working on their daily jobs. It is also
possible that the chair slightly changes position by accident.
Although our dataset is noisier compared to those collected
under more controlled environments [21], [22], it is more
representative of real-world scenarios.

Fig. 6: Weights and heights of participants.

C. Respiration sensing

1) Methods Compared: We compared the following res-
piration sensing methods.
• FullBreathe [21] employed PSD to find the respiration

signal with the largest power in the filtered CSI using
CM and SGF.

• FarSense [22] filtered the CSI using CSI ratio and SGF,
and estimate the respiration rate using the first peak in
the weighted average of the autocorrelations of signals
with large RNR.

• PresSense, the method proposed in this paper.
2) Accuracy: We compared the Mean Absolute Errors

(MAEs) of respiration sensing in Table II. When evaluated
on all the testing data, PresSense achieved a MAE of 5.1
bpm which outperformed FullBreathe and FarSense by 2.5
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times and 1.8 times, respectively. In particular, the improve-
ments were 1.7 times and 1.4 times, respectively, when the
room was occupied. When the room was empty, while the
proposed PresSense detected no respiration, FullBreathe and
FarSense sometimes falsely recognized noise sources (e.g.,
human motions and respiration outside the room) as valid
respiration. Therefore, they performed poorly when no one
was in the room.

MAE (bpm)
FullBreathe FarSense PresSense

All Testing Data 13.1 9.2 5.1
Occupied Room 10.3 8.2 5.9

Empty Room 29.7 15.4 0.0

TABLE II: MAEs of respiration sensing.

In fact, in the occupied room scenario, FullBreathe and
FarSense were also sensitive to the respiration/motions out-
side the AOI. We further analyzed the MAEs at different
positions when the room was occupied. From Fig. 7, we
confirmed that PresSense performed constantly better than
the other two methods across different positions.

Fig. 7: MAEs of respiration rates at different positions.

3) Ablation Study: Since PresSense borrowed some fea-
tures from FullBreathe (PSD) and FarSense (RNRxA), we
conducted an ablation study to better understand each of
them. In Table III, we listed the MAE of respiration sensing
on occupied room data, using different features. Comparing
row 1 and row 2, we found that using the PSD to select
the best signal in Y ′R achieve better results than combining
multiple signals in Y ′R. Comparing row 1 and row 3, we
found that adding our proposed PDH feature improved the
state of the art, FarSense, by up to 23.5%. Comparing
row 2 and row 3, we found that PSD and PDH were two
complementary features. While PSD achieving smaller errors
at some positions, PDH obtained better results at others.
Thereby, in the last row, by integrating all these features,
PresSense outperformed others.

4) Robustness to Different Users: Different people have
different body shapes and unique respiration patterns. These
factors may affect the accuracy of the estimated respiration
rates. Thus, we further evaluated the methods on different

Features MAE (bpm)
PSD (Full-

Breathe)
RNRxA
(FarSense)

PDH P1 P2 P3 P4

× © × 8.1 7.4 7.9 9.3
© © × 6.6 6.5 7.6 6.9
× © © 6.2 5.7 7.0 7.5
© © © 5.4 5.5 6.3 6.4

TABLE III: MAEs of respiration rate using different features.

participants to see if they were robust to user diversity. Fig. 8
presented the MAEs of respiration rates across different par-
ticipants. Among the three methods presented, FullBreathe
had the most unstable performance, with its MAE ranging
from 3.5 bpm for ID2 to 17.2 bpm for ID4. FarSense’s
performance also varied a lot. It could be the worst method
for ID1 to ID3, and at the same time could outperform the
other two for ID4. On the contrary, PresSense remained the
best method for all participants (except ID4). Hence, we con-
cluded that PresSense provided the most robust respiration
sensing.

Fig. 8: MAEs of respiration rates for different users.

D. Presence Detection

1) Methods Compared: Since existing respiration sensing
methods did not provide an explicit presence detection ser-
vice, we evaluated PresSense’s presence detection against the
following methods.
• MoFi [31] provided a motion detector based on thresh-

olds of CSI variance of variances (VoV).
• AutoFi [6] was a fingerprint-based indoor localization

method. In our experiments, AutoFi used the WiFi
fingerprints of from the same training set to train a
binary presence detector.

• PresSense, the method proposed in this paper.
2) Accuracy: Table IV presents the accuracy of presence

detection. MoFi was essentially a motion detector instead of
a presence detector. As a result, it achieved an acceptable
performance in empty-room scenarios, and yet experienced
lots of false negatives in the occupied-room scenarios. AutoFi
outperformed MoFi with its binary presence classifier in the
occupied-room scenarios. However, it was overfit to ID1’s
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data (the training data), and thus performed poorly in the
empty-room scenarios. By learning from more generic user-
independent features, the classifier in PresSense achieved the
highest accuracy in all scenarios.

Detection Accuracy
MoFi AutoFi PresSense

All Testing Data 18.0% 70.1% 92.4%
Occupied Room 7.5% 73.3% 91.1%

Empty Room 81.0% 50.8% 100.0%

TABLE IV: Accuracy of presence detection.

3) Ablation Study: PresSense obtained high presence de-
tection accuracy by integrating a diversity of features. Next,
we conducted an ablation study on these features to illus-
trate their contributions. Table V summarizes the presence
detection accuracy using different sets of features. In row 1
and row 2, we could see that, when the room was empty,
PDH related features performed better than VM related
features. The results were reversed when someone was in
the room. Comparing row 1 and row 3, it was confirmed
that using multiple features that are not specifically analyzing
respiration patterns provided higher accuracy than using just
one. Comparing row 3 and row 4, it was confirmed that
adding information about respiration from PDH improves
the accuracy when someone was in the room. From row 1 to
row 7, we can see that integrating different features allowed
us to absorb their advantages. The more features we used,
the better the performance we obtained. Comparing row 6
with row 7, we found that the proposed PDH related features
helped further increase the accuracy.

V. RELATED WORK

In this section, we discuss WiFi-based approaches for
respiration rate sensing, presence detection and motion de-
tection.

A. Respiration rate sensing

One of the main challenges in using CSI is to extract
consistent consecutive measurements since commodity WiFi
devices suffer from several time-varying phase offsets [32].
Previously, many respiration detection systems [12]–[15],
were based only on the CSI amplitude. X. Wang et al.
developed phase-based systems, TensorBeat [16] and Phase-
Beat [17], using the phase difference between two antennas
to cancel out the offsets, giving that the offsets are the
same across the same WiFi card. However, this method
can be constructive or destructive depending on whether
the two signals are in-phase or out-of-phase. D. Zhang et
al. also proposed a phase-based system, BreathTrack [18],
leveraging the conjugate multiplication (CM) of the CSI
from two antennas to remove the offset, a phase cleaning
method proposed by [25]. The above-mentioned respiration
rate sensing systems are all based on detecting a periodic
pattern in either the CSI amplitude or the CSI phase, but
they are oblivious to why different human locations and
orientations can lead to drastically different waveforms.

H. Wang et al. [19] introduced a theoretical model based
on the Fresnel Zone (FZ) to explain an alternating sensitivity
of CSI amplitude and CSI phase across the sensing area.
P. Wang et al. developed TinySense [20] using multiple
transceiver pairs to increase the density of the Fresnel Zone
and hence, enhance the sensitivity of the CSI amplitude. Y.
Zheng et al. [21] demonstrated the complementary prop-
erty of CSI amplitude and phase. Their proposed system,
FullBreathe, estimates a respiration rate from either the CSI
amplitude or phase, resulting in a consistent detection across
the sensing area. Recent work by Y. Zheng et al. [22]
introduced CSI ratio to remove the phase offset. They
demonstrated that the noise present in the raw CSI can be
mostly cancelled out by the division between two antennas,
and hence, the resulting CSI ratio is more sensitive to fine-
grained subtle movement. Their proposed system, FarSense,
made a significant improvement in the sensing range.

The aforementioned systems operate in relatively quiet
environments with the assumption that there is one and only
one respiration source. In our work, we relax this assumption
by combining presence and respiration rate sensing into one
system, improving its robustness to noise.

B. Presence and Motion detection

Presence/motion detection has been utilized as the trigger
of succeeding services such as respiration detection, local-
ization or activity recognition. For example, X. Chen et
al. in [6] developed a CSI-variance based motion detection
method, which was used to trigger the update of their WiFi
localization system AutoFi. W. Xi et al. in [33] monitored the
Percentage of nonzero Elements (PEM) in the CSI matrix,
and used this metric to infer the number of people in the area
of interest. S. Domenico et al. in [28] estimated the presence
and the crowd number by extracting spectral descriptors from
the Mean Doppler Spectrum (MDS) of the CSI, using a Naive
Bayes classifier. K. Qian et al. in [34] directly used raw CSI
magnitudes and phases to train an SVM, which detected the
presence of moving humans.

The errors in detecting human presence and/or motion
would largely affect the quality of the succeeding services.
However, such an error propagation has not been extensively
analyzed prior to this work. By incorporating a robust
presence detector in the design, PresSense further improves
the accuracy of respiration rate sensing.

VI. CONCLUSION

Passive respiration sensing via ambient WiFi signals pro-
vides a new possibility for robots to sense human presence
and their state of activity. However, the subtle respiration
pattern is easily overwhelmed by noise and existing sys-
tems have limited performance in real-world scenarios. By
combining presence detection and respiration sensing, and
by using a new WiFi feature, Peak Distance Histogram
(PDH), for counting the occurrence of periodic patterns,
our proposed PresSense greatly enhances the sensing accu-
racy and robustness in noisy environments, outperforming
the state of the art by at least 28.0% for respiration rate
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Feature Category Presence Accuracy
VM PDH PCA MDS PSD RNRxA Occupied Room Empty Room

1 © × × × × × 62.7% 63.5%
2 × © × × × × 35.7% 88.9%
3 © × © © × × 84.1% 98.4%
4 © © © © × × 89.4% 98.4%
5 © © © © © × 88.3% 100.0%
6 © × © © © © 87.5% 100.0%
7 © © © © © © 91.1% 100.0%

TABLE V: Acurracy of presence detection using different features.

estimation and at least 17.8% for presence detection in our
experiment. We believe that our improvements in WiFi-based
passive respiration sensing can further help in enabling new
sensing technologies for human-robot interactions. Future
work includes presence and respiration sensing for multiple
person in an AOI, and generalization to different AOIs.
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