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Abstract— Predicting human movements is vital to safely
control robots that physically interact with humans. However,
predictive neuromuscular models that are fast enough for real-
time control applications have proven challenging, due to the
complexity of the neural and musculoskeletal systems. Non-
linear optimization-based prediction of movements in a muscu-
loskeletal model is prohibitively slow. On the other hand, highly
simplified models based on linear control theory cannot handle
complexities of the human musculoskeletal system. Model Pre-
dictive Control (MPC) can potentially fill the gap between these
two modeling extremes, by taking into account physiological
nonlinearities, constraints, and redundancies while keeping
computations fast through its receding horizon formulation.
This study presents a new predictive model for the human
movements based on MPC, which can control activity of four
muscles acting on an inertia in a two-dimensional space to
generate movements. The MPC results are compared to that of
the prominent human motor control model in the neuroscience
literature, which is based on linear quadratic regulator. The
predicted movements are similar between the two controllers
and are qualitatively similar to human behavior. MPC achieves
these results while satisfying physiological constraints on muscle
activities and ranges of motion – features that are not present
in the existing models. These results demonstrate promise and
potential for MPC controllers to accurately predict human
neuro-muscular activities for the next generation controllers
for human-robot interaction.

I. INTRODUCTION

Human-robot interactions are becoming increasingly pop-
ular in industrial and medical settings [1]. With advance-
ments in robotic hardware, there is special interest in using
such devices to aid in neuromuscular rehabilitation [1,2].
However, for a robot to physically interact with a human
in a safe and intuitive manner, it is necessary to construct
mathematical representations for the human neuro-muscular
control to enable the robot to predict the user’s behavior and
facilitate natural user interactions.

One of the biggest challenges in this area is that only a
few accurate models for the neuromuscular control of human
movements exist. One major hurdle in building these models
is the complexity, high-dimensionality, and nonlinearity of
the human neural musculoskeletal systems. While there
has been promising development in large-scale nonlinear
optimization-based musculoskeletal models to predict move-
ment and muscle activities [3-6], these models are too slow
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to be useful in real-time control of robots. These models tend
to take 30 min to 1 hour or longer to run [3].

Unlike biomechanists who focus on detailed muscu-
loskeletal models to predict movements, neuroscientists often
dedicate their attention to isolating the fundamental prin-
ciples of movement control, which has led to significant
discoveries. A prominent model of human motor control
is the application of linear optimal control to a highly
simplified model of human neuro-muscular systems [7,8].
In these models, which is based on a modified Linear
Quadratic Gaussian (LQG) controller, patterns of human
movements, e.g., that of the hand, is well predicted in a
variety of settings [9-15], including hand motion along a
flat 2D surface [10] and virtual cursor control via 1D hand
dynamics [12]. However, this implementation of the LQG
controller for predicting human behavior is only applicable
to linear models of the human musculoskeletal systems—an
assumption that is far from reality. The neural and muscu-
loskeletal systems are highly nonlinear and are subject to
major physiological constraints. Existing LQG-based models
cannot handle nonlinearities nor constraints, which play a
major role in shaping human behavior.

To overcome these limitations, this study introduces the
implementation of a Model Predictive Controller (MPC) to
model neuromuscular control. Unlike the LQG, the MPC
controller has the ability to handle nonlinear system dynam-
ics and can implement constraints onto the state and input
variables. Examples of constraints present in the muscu-
loskeletal system include the maximum and minimum force
that a muscle can produce, physiological ranges of joint
positions, and maximum velocities—parameters that could
not be included in the linear optimal control models.

With an MPC controller, optimal input variables are
determined by the minimization of a cost function over a
prediction horizon while satisfying the constraints on control
and state variables. Through these horizons, the predicted
trajectory of the system is used to determine the best input
values that will achieve the desired outcomes. This predictive
methodology is analogous to preplanning a course of action
prior to executing that behavior, such as planning the path
taken to grab an object [16].

This study develops a human motor control model based
on an MPC algorithm. While MPC can handle nonlinear
systems, a linear model is implemented due to its relative
simplicity and its ability to be compared with current LQG
models [10,17]. Both the MPC and LQG models simulate
motion of a point mass in two-dimensional space actuated
by linear, independent muscle models. A two-dimensional
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space represents the task space in point-to-point reaching
movements [18]. The LQG model does not include any
constraints, while the MPC model takes into account the
bounds on muscle activities and ranges of motion, more
indicative to physiological muscles.

II. METHODS

A. Physical Model

The plant model under consideration for the MPC-based
and LQG-based human motor control simulation is depicted
in Fig. 1(a) and 1(b), respectively. The MPC model is
a simplified version of two pairs of antagonistic muscles
working together to move a point mass in both the vertical
(y) and horizontal (x) directions. One end of each muscle
is attached to a fixed support for while the other end is
directly attached to the mass. This model is restricted to
two-dimensional motion.

(a)

(b)

Fig. 1. The 2D plant model for motor control design. (a) The 4-muscle
plant model with constraints for the MPC model. (b) The unconstrained
2-muscle plant model for the LQG model.

It is assumed that all muscles are only able to produce
a pull force on the mass, consistent with physiological
muscles. Further, each muscle has a maximum force that
it can produce on the mass. Gravitational effects and any
other external forces that may be applied to the system are
neglected. The interaction between tendon and muscles are
also neglected.

The dynamics of this system can be expressed through a
summation of forces in the horizontal and vertical direction.
These dynamics can be expressed as:

ẍ =
Fr

m
− Fl

m
(1)

ÿ =
Fu

m
− Fd

m
(2)

Here, x and y are the positions along the horizontal and
vertical axes respectively, m is the mass of the arm, and F are
the muscle forces in the left, right, up, and down directions.

All muscle forces can be expressed as a proportion of the
maximum force that each muscle could exert. Let muscle
activation, a, with appropriate subscripts represent the ratio
of the muscle force F to its maximum force capacity Fmax:

Fr = arFr,max (3)

Fl = alFl,max (4)

Fu = auFu,max (5)

Fd = adFd,max (6)

The activation of muscle force is not instantaneous. It takes
time for the muscle force to change. For simplicity, a time
constant τ is utilized to represent the activation dynamics as
a first-order filter:

ȧr =
1

τ
ur −

1

τ
ar (7)

ȧl =
1

τ
ul −

1

τ
al (8)

ȧu =
1

τ
uu − 1

τ
au (9)

ȧd =
1

τ
ud −

1

τ
ad (10)

Here, u represents the neural excitation to the muscle, and
is the input to the plant model that is directly controlled by
the MPC (see section II.B).

This model is converted to a standard state-space form for
control purposes:

Ẋ(t) = AX(t) +Bu(t) (11)

with

X(t) =
[
x(t) ẋ(t) ar(t) al(t) y(t) ẏ(t) au(t) ad(t)

]T (12)

u(t) =
[
ur(t) ul(t) uu(t) ud(t)

]T
(13)

A =



0 1 0 0 0 0 0 0

0 0
Fr,max

m −Fl,max

m 0 0 0 0
0 0 − 1

τ 0 0 0 0 0
0 0 0 − 1

τ 0 0 0 0
0 0 0 0 0 1 0 0

0 0 0 0 0 0
Fu,max

m −Fd,max

m
0 0 0 0 0 0 − 1

τ 0
0 0 0 0 0 0 0 − 1

τ


(14)

B =


0 0 1

τ 0 0 0 0 0
0 0 0 1

τ 0 0 0 0
0 0 0 0 0 0 1

τ 0
0 0 0 0 0 0 0 1

τ


T

(15)

It is further assumed that the plant is fully observed,
accomplished through vision (positions and velocities) and
proprioception (positions, velocities, and muscle forces).
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Therefore, the outputs Y(t) are equivalent to the state
variables:

Y(t) = X(t) (16)

Finally, this continuous-time state-space is transformed
into discrete-time with a time step of 0.02 s.

B. The MPC Formulation

The MPC Controller is based on the formulations given
by Maciejowski [19]. The goal of the MPC controller is to
determine the optimal values of control increments, ∆û that
minimizes the quadratic cost function:

V (k) =
Hp∑
i=1

(
X̂ (k + i|k)− r (k + i)

)T

Q
(
X̂ (k + i|k)− r (k + i)

)
+

Hu−1∑
i=0

(∆û (k + i|k))T R (∆û (k + i|k)) (17)

where Hp represents the length of the prediction horizon
(in number of time steps), Hu is the length of the control
horizon, X̂ (k + i|k) is the predicted state variable at time
(k + i) given the observation of the outputs at time k,
r (k + i) is the reference trajectory (i.e. the desired setpoint)
at time k+ i, ∆û (k + i|k) are the unknown change in input
values at time k+ i given the current states at time k, and Q
and R are weight matrices associated with the state error and
input terms, respectively. The Q and R matrices are diagonal
matrices with elements on the diagonal. Q is defined as
3 × 10−5+i/20 for positions, 3 × 10−7+i/20 for velocities,
and 3× 10−2 for muscle activations, where i increases by 1
at each time step across the prediction horizon. R is defined
as 1 across its diagonal. Through mathematical manipulation
[8], this cost function is transformed into the cost function
of (18), which is only in terms of controls and can be solved
using Quadratic Programming.

V (k) =
1

2
∆U(k)T (2H)∆U(k) +GT∆U(k) (18)

Here ∆U (k) is defined as all predicted ∆û values across
the control horizon Hu, concatenated vertically. H and G
can be defined as follows:

H = ΘTQ+R (19)

G = −2ΘTQE(k) (20)

where E (k) represents the error associated with each of the
state output values at time k relative to the setpoint r [19]. Θ
is defined by the coefficients of the unknown control terms
∆û, defined in (21):

Θ =

Bd AdBd +Bd · · ·
∑Hu−1

i=0 Ai
dBd

∑Hu

i=0 A
i
dBd · · ·

∑Hp−1
i=0 Ai

dBd

...
...

. . .
...

... · · ·
...

0 0 · · · Bd AdBd +Bd · · ·
∑Hp−Hu

i=0 Ai
dBd


T

(21)

Here Ad and Bd are discretized versions of the A and B
matrices presented in (14) and (15), respectively.

Q and R are concatenated versions of the Q and R
weighted matrices associated with the error of the outputs
and inputs and are defined in (22) and (23), respectively.

Q =


Q (k) 0 · · · 0
0 Q (k+ 1) · · · 0
...

...
. . .

...
0 0 · · · Q (Hp)

 (22)

R =


R (k− 1) 0 · · · 0

0 R (k) · · · 0
...

...
. . .

...
0 0 · · · R (Hu − 1)

 (23)

The advantage of the MPC model over the existing
LQG counterpart (see section II.C) is its ability to satisfy
constraints on the state and input variables. The muscle
activations, a, must be between 0 (not activated) and 1 (fully
activated) to be consistent with the physiological muscle.
Since the dynamics between control input u and activation
a is first-order, this constraint is implemented onto the input
∆u.

Constraints are enforced in the MPC controller to prevent
muscle activations to exceed 1 or fall below 0, which take
the form of:

Ω∆U ≤ ω (24)

where Ω and ω are defined as:

Ω = F (25)

ω = −F1u (k − 1)− f (26)

where u (k − 1) is the previous time step inputs and f is a
8× 1 array of constraints on the inputs, defined as:

f =
[
ur,1 −ur,2 ul,1 −ul,2 uu,1 −uu,2 ud,1 −ud,2

]T
=

[
0 −1 0 −1 0 −1 0 −1

]T (27)

Here, ur,1, ul,1, uu,1, and ud,1 represent lower bounds
constraints and ur,2, ul,2, uu,2, and ud,2 indicate upper bound
constraints. F is a concatenated version of the coefficients
(termed Fj) of ∆û (k + i|k) in the constraint equations
across the control horizon Hu, as defined in (28):

Fi =

Hu∑
j=i

Fj (28)

where i represents the time step index within a control
horizon. F1 can be calculated by substituting i = 1 into (24).
Values of Fj are 1 for an upper-bound inequality constraint
and −1 for a lower-bound inequality constraint. For details
the reader is referred to [19]. The constrained MPC controller
is a quadratic program, which is solved using MATLAB’s
built-in ‘quadprog’ function.
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C. The LQG Formulation

The LQG-based motor control model is developed follow-
ing the formulation of [10,17]. The plant model for this LQG
controller is shown in Fig. 1(b) This plant model is similar to
the one used by the MPC controller; however, since the LQG
cannot consider the pull-only constraint on the muscle forces,
the pairs of antagonist muscles are replaced with just one
muscle that can push and pull. The rest of the plant model,
including the muscle dynamics and state-space formulations
are the same as the one used with the MPC. The LQG seeks
to minimize the quadratic cost function:

V =

N∑
i=1

(
X̂(i)TQiX̂(i) + u(i)TRiu(i)

)
(29)

where N is the total number of time-steps in the simulation,
and Q and R are the weight terms for the states and
controls, respectively. In this model, the Q and R matrices
are constant diagonal matrices; R has its diagonal elements
equal to 1. The Q matrix has penalty terms for the positions
3×10−3 and the velocities 3×10−5 along the diagonal, and
zeros otherwise. The Q and R matrices are tuned such that
the predicted movement becomes closer to human behavior.

This LQG controller has an optimal Kalman filter gains
for state estimation, and an optimal control gain for control.
For details the reader is referred to [17,18].

III. RESULTS

All simulations are performed in MATLAB 2024a with
numerical values of the parameters as shown in TABLE I.

TABLE I
PARAMETER NUMERICAL VALUES USED IN SIMULATIONS

Parameter Numeric Value Reference
System Inertia m 2 kg [20]

Maximum Muscle Force Fmax 1, 000 N [21]
Muscle Dynamics Time Constant τ 60 ms [11]

Discretization Time Step ∆t 20 ms [22]
Number of Time Steps N 76

For both the MPC and LQG simulations, the point masses
start at either the (x, y) coordinate of (−0.45,−0.20) m
or (0.45,−0.20) m from rest, and must reach the location
of (0, 0) m with zero velocity after roughly 1 s. These
distances were utilized in a previous experiment [23]. All
muscle activations initially start at 0. The MPC controller
uses a prediction and control horizon of 76 time-steps. The
results of the first and second set of distance simulations
are shown in Figs. 2 and 3, respectively. The experimentally
observed velocity profiles [23] are also compared with the
simulated ones in Figs. 2(c) and 3(c).

As shown in both distance simulations, the MPC and LQG
controllers determined that the optimal path from the initial
to final position was a straight connection between the two
locations in approximately 1 s, consistent with experimental
data [23]. Both controllers overshot the set point position at

(a) (b)

(c) (d)

Fig. 2. LQG and MPC Simulation of point mass travelling from
(−0.45,−0.20)m to (0, 0)m. (a) 2D path of point mass. (b) Position
curves of LQG and MPC controllers. (c) Velocity curves of LQG, MPC,
and experimental data from [23]. (d) Muscle forces predicted by LQG and
MPC.

(a) (b)

(c) (d)

Fig. 3. LQG and MPC Simulation of point mass travelling from
(0.45,−0.20)m to (0, 0)m. (a) 2D path of point mass. (b) Position curves
of LQG and MPC controllers. (c) Velocity curves of LQG, MPC, and
experimental data from [23]. (d) Muscle forces predicted by LQG and MPC.

approximately 0.75 s, then steadily approach the targeted
position. The masses’ positions overlapped considerably
between the LQG and MPC controllers from both initial
start positions, demonstrating the similarity between the two
controllers.

The velocity and muscle force profiles between the LQG
and MPC controllers for both initial positions are similar,
with small discrepancies. These parameters for the first and
second simulation are tabulated in TABLE II and III, respec-
tively. In all simulations, the maximum velocity values of the
MPC simulation tended to be slightly larger in magnitude and
occur slightly later than the LQG controller. These velocity
profiles are also similar to the experimental data [18,23],
though a slight forward skew in velocity profiles is present
in the LQG and MPC simulations. A change in weights in
the Q and R matrices have the potential to change the slew
in mass velocity profiles.

An important contrast between the LQG and MPC models
are the muscle activation forces. Unlike the LQG case, the
MPC model applies an active minimum-force constraint of
0 N , enabling the system to behave similar to physiological
human muscles. In Fig. 2(d), the constraints are shown to
be active on the down and left muscles when the up and
right muscles are active. The down and left muscles in the
MPC simulation become active when the LQG vertical and
horizontal muscle forces both become zero at 0.28 s. This
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TABLE II
SUMMARY OF LQG AND MPC SIMULATION RESULTS; START

POSITION (−0.45,−0.20) m

LQG MPC
Parameter Time Value Time Value
Vx,max

a 0.30 s 1.02 m/s 0.36 s 1.07 m/s

Vy,max
b 0.28 s 0.45 m/s 0.36 s 0.48 m/s

Fr,max
c 0.10 s 13.12 N 0.16 s 10.59 N

Fl,max
d 0.54 s −4.83 N 0.54 s 6.10 N

Fu,max
e 0.08 s 5.96 N 0.16 s 4.74 N

Fd,max
f 0.58 s −2.26 N 0.54 s 2.73 N

aMaximum horizontal velocity
bMaximum vertical velocity
cMPC - Maximum right force; LQG - Maximum positive horizontal force
dMPC - Maximum left force; LQG - Maximum negative horizontal force
eMPC - Maximum up force; LQG - Maximum positive vertical force
fMPC - Maximum down force; LQG - Maximum negative vertical force

TABLE III
SUMMARY OF LQG AND MPC SIMULATION RESULTS; START

POSITION (0.45,−0.20) m

LQG MPC
Parameter Time Value Time Value
Vx,max 0.28 s −1.00 m/s 0.36 s −1.07 m/s

Vy,max 0.30 s 0.47 m/s 0.36 s 0.48 m/s

Fr,max 0.48 s 4.76 N 0.54 s 6.10 N

Fl,max 0.10 s −12.99 N 0.16 s 10.59 N

Fu,max 0.10 s 5.83 N 0.16 s 4.74 N

Fd,max 0.52 s −2.07 N 0.54 s 2.73 N

intersections signifies the correlation of muscle activations
between the MPC and LQG controllers, with the added
benefit of non-negative muscle forces produced by the MPC.
Between 0.28 s and 0.50 s, the up and right muscles
deactivate while the down and left muscles activate for the
MPC controller. This region signifies the time-dependency
of antagonist muscles working in opposition of one another,
a feature that the LQG controller omits. From 0.28 s to 1.1 s
the LQG and MPC muscle forces correlate, with activity in
the MPC left and down muscles and negative activity in the
LQG horizontal and vertical muscle forces.

The muscle force peaks are also similar between MPC and
LQG (Figs. 2(d), 3(d) and TABLES II and III). Generally,
the LQG simulation will reach peak muscle forces a few
cs sooner than the MPC simulation. For the first distance
simulations, LQG and MPC had peak right and upper muscle
activations between 0.08 s and 0.16 s, and had peak left and
down muscle activations between 0.48 s and 0.58 s. The
same peak muscle activation times occurred for the second
distance simulation. LQG muscle forces tended to be greater
in magnitude than the MPC case for the first muscle force
peak. However, MPC muscle forces tended to be greater
in magnitude than the LQG case for the second muscle
force peak. These differences in muscle force peaks may
be indicative of the agonist-antagonist interaction that is at

play for the MPC simulation. The LQG case has only one
muscle to actuate the system while the MPC has two muscles
that can interact with one another to reduce the initial peak
force required to move to the targeted location. Larger second
muscle force peaks in the MPC case may compensate for the
lower muscle activity during the first phase of the motion,
reducing the overall largest peak muscle forces of the system.

IV. DISCUSSION

This study aimed to simulate neuromuscular control of a
point mass actuated by independent muscle forces in a 2D
space. This simulation was conducted via an LQG controller,
the current model for neural motor control, and the proposed
MPC controller, an advanced controller capable of handling
anatomically correct constraints that the LQG controller fails
to include. Due to the lack of constraints, the LQG-controlled
model had two muscles actuating the mass compared to four
utilized by the MPC-controlled model.

The MPC approach for the described system resembles
much similarity to the LQG model and experimental data.
Mass position and velocities express a smooth transition from
the start and end positions, correlating to the experimental
results of [22,23]. Peak velocities occur slightly sooner than
halfway through the task, with both MPC and LQG over-
shooting the targeted position, then cautiously readjusting.
Incorporating multiple muscles in a direction produce similar
results, with discrepancies in peak muscle activations and
timing. With the linear plant model, MPC correlates strongly
to the results produced by the LQG, the leading neuroscien-
tific model for motor control [7], while expanding upon the
neuromuscular control framework by adding complexity in
multi-muscle relationships and their restrictions to produce
more realistic human neuromuscular activity. The simulation
time of the MPC controller is approximately 4.2 s. This time
may be too slow in some human-robotic interactions where
actions must be produced in milliseconds [22]. Suggestions
to decrease the computational time is to introduce explicit
MPC [24] to prevent large-scale optimizations at each time
step, especially when a large, nonlinear system is introduced.
These results are significant in the framework of human-
robotic interactions by verifying the MPC controller as a
method to obtain kinematic and muscle activation parameters
comparative to experimentally-gained values. Robotic sys-
tems can use these results and future applications of the MPC
controller to understand how a human will biomechanically
behave under certain pretexts. The MPC model opens new
possibilities in accurately predicting human neuromuscular
control that can establish the framework for next-generation
human-interactive robots.

V. CONCLUSION

The MPC formulation of predicting human neuromuscular
control enhances the realism of human motion models, pro-
viding the tools necessary for the much-needed improvement
for human-robotic interactions. When utilized with a heavily
simplified linear plant model, the MPC predicted similarly to
that of the experimentally verified LQG approach, with the

86



added benefit of incorporating agonist muscles with active
constraints. Further improvements to the MPC formulation
and the model design to handle complex, nonlinear dynamics
will prove useful in providing the models necessary for
robots to appropriately respond to human behavior in more
advanced settings.
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