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Abstract—We present a neural point cloud rendering pipeline
through a novel multi-frequency-aware patch adversarial learn-
ing framework. The proposed approach aims to improve the ren-
dering realness by minimizing the spectrum discrepancy between
real and synthesized images, especially on the high-frequency
localized sharpness information which causes image blur visually.
Specifically, a patch multi-discriminator scheme is proposed for
the adversarial learning, which combines both spectral domain
(Fourier Transform and Discrete Wavelet Transform) discrimi-
nators as well as the spatial (RGB) domain discriminator to force
the generator to capture global and local spectral distributions
of the real images. The proposed multi-discriminator scheme
not only helps to improve rendering realness, but also enhance
the convergence speed and stability of adversarial learning.
Moreover, we introduce a noise-resistant voxelisation approach
by utilizing both the appearance distance and spatial distance
to exclude the spatial outlier points caused by depth noise. Our
entire architecture is fully differentiable and can be learned in an
end-to-end fashion. Extensive experiments show that our method
produces state-of-the-art results for neural point cloud rendering
by a significant margin.

Index Terms—Point cloud, rendering, spectrum discrepancy,
discriminator.

I. INTRODUCTION

Photo-realistic rendering is important for intelligent robot
manipulation control, which is able to provide augmented
view/angle feedback and observations [1], [2]. It has attracted
increasing attention as point cloud is a well-accepted format
that is widely used in robot control vision tasks. However, due
to the inherent irregularity and discontinuity, view rendering
from 3D scene involve complex graphic pipelines that include
multiple pre-processing and post-processing steps. Traditional
model-based rendering [3] aims to reconstruct surfaces and
render on the mesh by employing the physical properties of
lighting, texture, material, etc., which is generally computa-
tionally heavy. Image-based rendering [4] attempts to generate
the novel view from images only, and recent point-based
rendering [5]–[8] further simplifies the geometry constructions
in rendering. Deep learning approaches [9]–[11] are widely
adopted in view of its superior performance in almost all kinds
of image reconstruction tasks.
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Fig. 1. Deep rendering network trained by direct supervision often lacks high-
frequency details. We propose a multi-frequency-aware adversarial learning
approach to minimize such frequency discrepancy so that to improve the
sharpness and realness. The bar chart shows the sharpness comparison using
the image sharpness measure proposed in [12]. Our method is visually also
more well-defined: The glass mug, window shades, chair arm-rest appear
much more defined with our method.

To achieve photo-realistic rendering, existing neural point
cloud rendering approaches mostly emphasize on the recon-
struction performance in RGB (spatial) domain only while
overlooking image fidelity in the spectral domain. It is also
well reported that convolutional neural network based im-
age reconstruction approaches often fail to generalize high-
frequency artifacts [13]–[15], causing the synthesized image to
suffer from a lack of high-frequency sharpness. This spectrum
discrepancy issue is a performance-limiting factor that is
common to image reconstruction and generation tasks as well
as neural point cloud rendering tasks. Existing techniques from
image generation and super-resolution make use of a Fourier
regularization term [16] or loss [17] on top of the Generative
Adversarial Networks (GAN) to overcome the frequency dis-
crepancy limitation for image generation and super-resolution
tasks. However, as it is well-known Fourier transform lacks of
spatially-localized frequency information to capture the abrupt
signal changes, existing methods still inhibit the full utilization
to well capitalize spectral domain discrepancy and recover
high-frequency sharpness information.

Moreover, different with most image-to-image translation
vision tasks, point cloud rendering requires a voxelisation
projection step to extract the view-related 3D points according
to the given rendering viewpoint. [7] directly projects 3D
points onto the 2D plane, which is sensitive to the spatial
occlusion and noise. Multi-plane projection [5] is proposed as
a remedy by considering the spatial distance of 3D points as a
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measure in the feature aggregation. However, with regards to
the sensor characteristics of an RGB-D device being used to
produce the initial colored point cloud, it is well-known that
depth channel is generally associated with more significant
noise especially for those commonly-used low-cost RGB-
D cameras. Therefore, we argue that the appearance (RGB)
feature of each 3D point is more robust than its spatial
location, which could be utilized in the aggregation for robust
view rendering.

In this work, we present a neural point cloud rendering
pipeline that aims to bridge the above-mentioned gaps. A novel
multi-frequency-aware patch adversarial learning scheme is
proposed to supervise the point cloud rendering generation,
which is specifically designed to promote the high-frequency
generalization capability to minimize the local frequency
discrepancy. Different from existing Fourier transform based
frequency-aware adversarial learning, we explore the Discrete-
Wavelet Transform (DWT) based learning as DWT is known to
capture the abrupt changes of a signal more effectively, which
provides additional spatially-localized high-frequency infor-
mation for adversarial discrimination. Therefore, we propose
a multi-discriminator strategy embedding with both Fourier
domain and DWT domain discriminators as well as the spatial
domain discriminator to force the generator to capture global
and local spectral distributions of the real scene images. This
not only helps to improve realness of localized artifacts, but
also enhance the convergence speed and stability of adversarial
learning. Moreover, a noise-resistant voxelisation approach is
proposed by utilizing both the appearance feature distance
and spatial distance for robust voxel feature aggregation.
By incorporating the more stable appearance distance into
feature voting, the spatial outlier points caused by depth noise
can be excluded more efficiently. Our entire architecture is
differentiable and can be learned in an end-to-end fashion.

To summarize, the contributions of this paper are listed as
follows:

• We propose a multi-frequency-aware adversarial learning
scheme, which utilizes the under-explored DWT domain
to minimize the localized spectrum discrepancy between
generated images and real images.

• We introduce a combined feature and spatial distance
based noise-resistant voxelisation approach for robust
neural point cloud rendering.

• Our approach effectively enhances the realness and sharp-
ness of the generated images, and achieves state-of-the-art
results by a significant margin.

II. RELATED WORKS

A. Novel View Synthesis

Recently, several works have been proposed for view syn-
thesis of objects [18] and human faces [19]. A number of
image-based novel view approaches have been proposed for
scene rendering. For instance, Synsin [20] generates a latent
point cloud representation from a single image and produces a
target image. While this is highly effective for small deviations
of pose from the image, large deviations produce undesirable

artifacts at the corners. Other recent approaches regarding
image synthesis like Stable View Synthesis [21] and Free View
Synthesis [8] use a series of images to create a geometric
scaffold or a mesh followed by feature aggregation of a ray at
sampled positions on the mesh from different viewpoints and
rendering. Another work, NeRF [22], makes use of a hybrid
deep learning and classical volume rendering approach, and
several works inspired from NeRF such as [23], [24], [25],
[26] and [27] have been proposed for improved efficiency and
limited image data. Our work differs from these since we use
raw point clouds as input instead of images.

B. Neural Point Rendering

Deep novel view synthesis [6] extracts features from a point
encoder layer to encode an input point set and passes it on to
an image decoder followed by a refinement network. While
effective for sparse point clouds, the PointNet++ backbone
cannot capture local relationships effectively and requires large
paired data for refinement. Neural Point Graphics (NPG) [7]
proposes augmenting learnable neural descriptors for point
clouds and rasterizes it to a 2D image for multi-scale rendering
network. Using multi-plane projections significantly improves
performance and recent work such as [28] utilize the advantage
of a layered volume. [5] extends NPG by also using multi-
plane projections, which is the closest work to ours, and it is
used as a baseline for comparison in our experiments.

C. Spectral Domain Loss

With the variety of image generation/translation methods
in the literature, image blur along with lack of sharpness
or the presence of high-frequency artifacts is an observed
issue which limits the visual realness. [27] have shown that
neural networks tend to learn lower frequencies faster, and
overcome this by using Fourier mapping layers prior to pass
inputs to a multi-layer perceptron (MLP) network for higher
perceptual quality. Recent works [15] show that the realness
degradation is partly attributable to missing high-frequency
features due to the spectrum discrepancy. Furthermore, [16]
and [29] recognize that GAN based models, especially those
with upsampling layers, fail to generalize spectral data. To
alleviate this problem, works such as [16] have proposed a
Fourier transform as a regularization term. Arguing regulariza-
tion may lead to sub-optimal performance, [30] and [17] show
that using an additional discriminator based Fourier loss leads
to better performance. [15] uses the direct-cosine transform
as a better perceptual loss. [31] employs a Discrete Wavelet
Transform (DWT) module to keep frequency information as
a down-sampling module in the generator. Although it is also
a DWT-based GAN approach, our motivation and approach
are totally different from [31], [32] as we favour a patch
multi-discriminator strategy. We aim to reduce the frequency
discrepancy in both spectral (DWT and Fourier) and spatial
(RGB) domains, so that the generator can generalize better on
the source distribution to enhance the visual realness.
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Fig. 2. Method overview: we use point cloud and 3D pose to first voxelise the visible point frustrum into multi-plane projections using the proposed Noise-
Resistant Voxelisation approach. This voxelisation input is passed into the 3D U-Net generator to synthesize the view rendering image. This generator is
supervised through a multi-frequency-aware patch adversarial learning scheme as well as a standard perceptual loss, where a discriminator network is trained
simultaneously to differentiate between real and generated images. Uniquely, to better capture high-frequency discrepancy, we adopt a tri-discriminator network
that combines both spectral domain (Fourier Transform and Discrete Wavelet Transform) discriminators as well as the spatial (RGB) domain information to
minimize the frequency discrepancy.

III. METHOD

A. Overview

The rendering problem studied in this work is formulated as
follows. Given a scene point cloud P = {p1, p2, · · · , pN} with
a set of M camera images taking from the same scene and
their corresponding camera poses, denoted as CM = {I, c}M ,
the goal of neural point cloud rendering is to learn a mapping
function f(·) that can render a virtual image Î from the point
cloud P with a random target camera pose c ∈ R3×4, i.e.,

Î = f(P, c), (1)

where the generated image Î is aimed to be perceptually
realistic as much as possible.

Fig. 2 shows our neural rendering pipeline in this work,
where we propose a frequency-aware patch adversarial learn-
ing to achieve the photo-realistic rendering. Our approach
learns a rendering generator G(·) through the adversarial
learning, which takes the voxelised 3D volume with the
target pose to synthesize the target image. A noise-resistant
voxelisation method is developed to produce consistent 3D
volumes even from noisy and irregularly sampled point clouds,
and a multi-frequency-aware patch discriminator scheme is
proposed in the adversarial learning to effectively capture the
high frequency visual information both locally and globally
through the Fourier domain and DWT domain.

B. Noise-Resistant Voxelisation

Following [5], we project the visible point cloud region
into multiple planes so as to avoid artifacts from occluded
regions. This projection helps to correct noise interference in
comparison with just using a one-plane rasterized image. For
a voxel centered at (p, h, w) that contains Nv number of sub-
voxel points with features as f i

p,h,w, the voxel feature F(p,h,w)

is calculated by aggregation of all sub-voxel points. [5] cal-
culates a weighted average of sub-voxel points by considering
the spatial distance between the vertical and horizontal planes.
However, such purely spatial distance based voxelisation is
sensitive to the noisy points closer to the centre, which could
hamper the rendering performance.

In contrast, the appearance feature of a point is generally
more robust than the spatial location considering the sensor
physical properties of RGB-D devices. Therefore, we propose
a noise-resistant voxelisation that incorporates the feature
distance as well to aggregate the voxel feature,

F(p,h,w) =

∑
i w

i
(p,h,w)f

i
(p,h,w)∑

i w
i
(p,h,w)

, (2)

where the blending weight wi considers both the spatial and
feature distances as

wi
(p,h,w) = µfD

i
f(p,h,w) + µsD

i
s(p,h,w)

Di
s(p,h,w) = (1−Di

1(p,h,w))
α(1 +Di

2(p,h,w))
β

Di
f(p,h,w) = (|f i

p,h,w − f̄p,h,w|1)
−1

(3)

174



where Di
s and Di

f are the spatial and feature inverse distances,
respectively, µf and µs are the weights controlling their ef-
fects. f̄p,h,w is the average of point color features for points in
voxel (p, h, w), f̄p,h,w =

∑N
i=0 f

i
p,h,w/N . α and β are hyper-

parameters to control the blending weight; D1 and D2 are
the distances of the point from center of voxel and minimum
depth point for a particular voxel, respectively. Overall, the
voxelisation can be represented as

F = V(P, c), (4)

where V denotes the proposed noise-resistant voxelisation
operation.

C. Patch Adversarial Learning

For the rendering network, we employ the adversarial
scheme to learn the generator mapping from the voxelisation
input F to the synthesized image rendering Î , i.e., Î = G(F ),
which is a simple 3D U-Net. The adversarial counterpart is
a conditional patch discriminator array D(·), which takes the
input patch pairs to distinguish whether it is real camera image
or synthesized image. For the conditional pairs, we perform
a z-buffer rasterization of the multi-plane voxelisation and
concatenate it with either the synthesized or real image as
the input of D(·). Inspired by PatchGAN [10], the discrim-
inator adopts the patch approach to output Np × Np scores,
which penalizes the discrimination for each receptive region to
encourage the attention on high-frequency local information.
The patch loss is especially effective for our DWT frequency
discriminator since the spectral features are local and can be
better exploited to distinguish fake/real images to improve the
generator performance.

D. Frequency-Aware Multiple Discriminator

One major limitation of traditional view rendering, many
of which optimize either an L2 or L1 loss, is that it often
only captures the low frequency visual details, leading to
the sharpness degradation on high frequency abrupt changes.
Our adversarial scheme is designed to be frequency-aware
to effectively capture and generalize high-frequency visual
information. Our network uses a multi-discrimination strategy
that combines the RGB domain with frequency domain to
improve image synthesis quality indirectly. The strategy is
achieved by a Fourier discriminator that encourages the global
generalization of high frequencies, as well as a DWT discrim-
inator, which locally differentiates the frequency discrepancy
in the image. As the DWT and Fourier discriminators spotlight
contrasting aspects of discrepancy on frequency domain, the
two work in tandem to drive the generator to produce a more
photo-realistic rendering result.

Our multi-frequency-aware discriminator scheme is formed
as

D(·) = DRGB(·) +DFourier(·) +DDWT (·), (5)

where DRGB(·) is a patch discriminator on raw RGB
domain, which takes the input pair {Ir, I\Î} formed by
the rasterized image Ir with either the real image I or

generated image Î . DFourier(·) is a frequency discriminator
on Fourier domain, which takes the Fourier transformed
input pair {F(Ir),F(I)\F(Î)}, where F(·) denotes the
Fourier transform operation. It is well-known that Fourier
transform cannot well capture the abrupt changes of a
signal which is a limitation for measuring high-frequency
artifacts. To solve this issue, we propose using a DWT
discriminator DDWT in addition to DFourier in (5). The
DWT is aiming for those perceptually-important localized
frequency information, and we take three sub-bands,
i.e., HL (vertical), LH (horizontal), and HH (diagonal)
features from the DWT, as input to DDWT , denoted as
{HL(Ir),LH(Ir),HH(Ir),HL(I\Î),LH(I\Î),HH(I\Î},
where HL, LH, and HH denotes the respective components.

TABLE I
PERFORMANCE COMPARISON ON SCANNET AND MATTERPORT 3D

ScanNet Matterport 3D
Methods SSIM PSNR LPIPS SSIM PSNR LPIPS

Pix2Pix [10] 0.731 19.247 0.429 0.530 14.964 0.675
NPG [7] 0.84 22.911 0.245 0.622 22.911 0.597
MPP [5] 0.835 22.813 0.234 0.649 18.09 0.534

Ours 0.871 32.7 0.1012 0.672 25.95 0.24

E. Loss Functions

In the proposed frequency-aware patch adversarial learning,
each discriminator is supervised using least square patch loss,

LDπ
= EI

Np−1∑
i=0

Np−1∑
j=0

(Dπ(I)i,j − a)2

+ EF

Np−1∑
i=0

Np−1∑
j=0

(Dπ(G(F ))i,j − b)2

(6)

where π ∈ Π and Π = [RGB,Fourier,DWT ]. a and b are
the labels for fake data and real data, and D(·)i,j denotes the
i, j-th patch prediction. As a result, the overall objective for
the discriminator is

min
D

L(D) = min
Dπ

∑
π∈Π

L(Dπ). (7)

For the generator, we use a perceptual loss [33] for full
supervision in addition to the discriminators,

Lpercpt(G) = ||G(F )−I||1+
∑
l

λl||ϕl(G(F ))−ϕl(I)||1 (8)

where ϕl(·) is l-th layer output of pre-trained VGG-19 and λl

is a controlling weight. Therefore, the overall objective for the
generator is

min
G

L(G) = min
G

{
Lpercpt(G)

+ EF

∑
π∈Π

Np−1∑
i=0

Np−1∑
j=0

(Dπ(G(F ))i,j − c)2
}
,

(9)
where c denotes the value that G wants D to believe for fake
data following [34].
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Fig. 3. Visualization of rendering results on a ScanNet scene. Objects such as the fan, chair, and water bottle have more clearly defined edges in our rendered
image. Blurring artifacts such as the red colored tape on the cardboard box (fourth image from right) are also well recovered by our model.

IV. EXPERIMENTS

A. Datasets

We perform extensive experiments on two public datasets
ScanNet [35] and Matterport 3D [36] to evaluate our perfor-
mance. The ScanNet dataset contains RGB-D scans in over
1500 environments, and we use the RGB-D scans and the 3D
camera pose annotations for registering the point cloud. The
Matterport 3D dataset is much more challenging with larger
spread-out scenes, along with very large variation of poses. We
pre-process both datasets following the same setting in [5].

B. Rendering Evaluation

To establish the benchmarking, we consider three methods
that capture ideas of image translation and point rendering
techniques. Our first baseline is the well-known standard
Pix2Pix network [10] (denoted as Pix2Pix), which use a
classical z-buffer rasterized image as input, and the trans-
lation task is to convert it to a realistic view. While this
potentially interprets the distribution of noise and sparsity of
point-clouds, it is unable to capture any information about
pose and/or scene depth. Our next two baselines are Neural
Point-based Graphic [7] (denoted as NPG) and Multi-Plane
Projection Rendering [5] (denoted as MPP), which capture
pose information and depth information by using learnable
point descriptors with multi-plane information.

To evaluate the performance of different approaches, we
compare the quantitative evaluations for our method with
all three baselines mentioned above. We adopt three perfor-
mance metrics same as [5], namely Structural Similarity Index
(SSIM), Peak-Signal to Noise Ratio (PSNR), and Learned
Perceptual Image Patch Similarity (LPIPS). The evaluation
results are provided in Table I. It can be observed that for
ScanNet, Pix2Pix leads to sub-optimal results with SSIM of

only 0.73, and both of NPG and MPP lead to SSIM around
0.83∼0.84. Our proposed method significantly increases the
SSIM to 0.871, and similarly attains the best PSNR and
LPIPS scores. We attribute this significant improvement to
the combination of spectral and spatial domain losses, which
leads to better perceptual quality whilst improving the Signal
to Noise Ratio. As a result, our approach generates sharper
and more realistic images. Fig. 3 shows some comparison of
visualization results on ScanNet dataset. Our rendering is able
to define sharper object boundaries and inpaint colored fea-
tures in areas missed out by the traditional rendering approach,
making our synthesized image closer to the ground truth.
Similar outperformance trend can be observed for Matterport
3D dataset as shown in Table I.

TABLE II
ABLATION STUDY WITH DIFFERENT DISCRIMINATOR MODULE

Discriminator Type SSIM PSNR LPIPS
No Discriminator 0.835 22.813 0.234
Spatial only 0.854 32.37 0.1147
Fourier only 0.859 31.15 0.1042
Spatial+Fourier 0.864 31.56 0.0985
Spatial+DWT 0.866 31.91 0.1010
Spatial+Fourier+DWT 0.871 32.7 0.1012

C. Ablation Studies - Discriminator Modules

Since our multi-discriminator adversarial learning employs
spatial, Fourier, and DWT discriminators, we conduct ablation
studies on different combinations of the multi-discriminator
strategy using ScanNet dataset. Table II summarizes the results
and demonstrates the importance of incorporating all three
domains. We observe a drop in performance in the absence
of one of the spectral discriminators, and achieve the most
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significant improvement from using a combination of the three
discriminators.

V. CONCLUSION

In this paper, we present a multi-frequency-aware adversar-
ial learning scheme to achieve neural point cloud rendering,
which is realized by a tri-discriminator scheme from RGB,
Fourier, and DWT domains. While Fourier transform has
been shown effective to regularize frequency-aware learning, it
lacks sufficient generalization capabilities regarding localized
high-frequency abrupt features. We combine Fourier and DWT
domains with the spatial domain to achieve high fidelity and
photorealistic rendering for novel view synthesis. In addition,
we also introduce a noise-resistant voxelisation to reduce the
impact of spatial outliers. Our model outperforms existing
baselines and achieve the state-of-the-art performance on the
ScanNet and Matterport 3D datasets with a significant margin.
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