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Abstract— In recent years, there has been a growing research
focus on continuum robots due to their high flexibility and
safety. Nevertheless, the inherent nonlinearity of the flexible
structure of continuum robots has increased the complexity of
their motion control. In this work, we propose a method based
on model predictive control (MPC) to achieve the closed-loop
motion control of a tendon-driven continuum robot. The robot
has two bending degrees of freedom (DOFs) and the constant
curvature model is used as the kinematic model. Selective laser
sintering (SLS) technology is utilized to fabricate the entire
continuum robot system, while a tracking camera is used to
measure the robot position to provide the real-time feedback
for the MPC controller. Experiments are also conducted, in
which the continuum robot is actuated to move along different
predefined plane trajectories. As a result, the position error
of the MPC-based controller is much smaller than that of
an open-loop controller, which demonstrates the good control
performance of the proposed method.

I. INTRODUCTION

Continuum robot is a type of robotic system composed
of a flexible and deformable structure. Unlike conventional
rigid-link robots, continuum robots are capable of achieving
continuous and adaptable motions, allowing them to explore
complex environments and perform tasks that require flexi-
bility and dexterity. A typical application of the continuum
robots is the minimally invasive surgery [1], as their flexible
body can navigate through narrow and winding passages in
the body, enabling procedures such as endoscopic surgeries
and targeted interventions. Continuum robots also play an
important role in search and rescue operations [2], where
their flexibility allows them to navigate through rubble and
debris to locate and aid trapped individuals. Furthermore,
continuum robots have shown promise in the field of reha-
bilitation [3], assisting patients with mobility exercises and
providing therapeutic interventions.

Due to the high flexibility of their continuum body, it is
not easy to model and control continuum robots. Currently,
the most commonly used kinematic model is the constant-
curvature model [4], which simplifies the analysis and control
of the robot’s motion by approximating the bending shape of
a continuum robot as a series of constant-curvature segments.
Other high-fidelity modeling methods, such as the finite
element method (FEM) [5], [6] or some deep learning-based
methods [7], can improve the modeling accuracy of contin-
uum robots, but they also increase the computational cost for
motion control. As for control strategies, the proportional-
integral-derivative (PID) controller was widely used in both
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Fig. 1. A 3D-printed tendon-driven continuum robot with two segments.

open-loop and closed-loop control of continuum robots [8].
In order to further enhance the ability of continuum robots
to interact with external environments, some researchers also
proposed adaptive controllers [9], [10]. On the other hand,
different sensors such as optical camera [9], magnetic sen-
sor [11] and fiber bragg gratings (FBG) [12], were often used
in the literature to provide shape estimation of continuum
robots for closed-loop control.

In this work, we propose a model predictive control (MPC)
based closed-loop approach to improve the control perfor-
mance of continuum robots. An optical camera is utilized to
generate position feedback. The MPC approach was chosen
because it can also take into account the future changes of the
desired motion trajectory when making control actions [13].
In addition, a 3D-printed two-segment continuum robot (see
Fig. 1) was used to evaluate the performance of the proposed
control method.

The rest of this paper is organized as follows. Section II
describes the kinematic model of the two-segment continuum
robot. The MPC-based controller is illustrated in Section III.
Section IV presents the results of the control experiments.
Conclusion is drawn in Section V.

II. KINEMATIC MODEL OF THE CONTINUUM ROBOT

A. Geometry Design of the Robot

As is shown in Fig. 1, the tendon-driven continuum
robot consists of two bending segments, which include two
bending degrees of freedom (DOFs) in total. The entire
continuum robot is constructed as a monolithic structure and
a series of bio-inpired flexure joints [14], [15] are integrated
to realize the flexible bending movements. In this work,
we used the Solid Geometry (SG) Library [16], [17] in
MATLAB for geometry modeling and the created 3D model
of the continuum robot is presented in Fig. 2. Here, four cable
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Fig. 2. 3D geometry model of the continuum robot in this work.

TABLE I
VALUES OF THE GEOMETRY PARAMETERS FOR THE CONTINUUM ROBOT

Parameter Symbol Value
Length of segment 1 L1 58.5mm
Length of segment 2 L2 43.5mm
Distance between cable hole and disk center rc 4.5mm
Distance between disk center and marker dm 15mm
Radius of the pulley on the servo motor rp 12.5mm

holes are constructed in each rigid disk along the continuum
backbone, so that two pairs of cables can be routed for the
robot actuation. As shown in Fig. 1, the cable 1 and 3 (pair 1)
are attached to the circular pulley of a servo motor to realize
the bending motion of segment 1, while the segment 2 is
actuated by cable 2 and 4 (pair 2). L1 and L2 are the length
of the bending segment 1 and 2, respectively. rc indicates
the distance between the cable hole and the disk center. The
radius of the pulley is denoted by rp. In addition, the distance
between the disk center and the position tracking marker is
denoted by dm. Table I shows the values of the geometry
parameters.

B. Constant-Curvature-Based Kinematic Model

To formulate the forward kinematics of the created 2-DOF
continuum robot, we should first define the parameters of its
actuator space, configuration space, and task space.

Since we utilize two servo motors to actuate the continuum
robot, the rotation angle ϕ1 and ϕ2 of the motors are chosen
to represent the actuator space q:

q =

(
ϕ1

ϕ2

)
(1)

The resulted length changes {∆li}i=1,...,4 of the four cables
can be formulated as:

∆l1
∆l2
∆l3
∆l4

 = rp ·


ϕ1

ϕ2

−ϕ1

−ϕ2

 (2)

Based on the constant-curvature principle, the two bending
segments can be described as two arcs with the curvature k1
and k2 (see Fig. 3 and Fig. 4), which are selected to represent
the configuration space k =

(
k1 k2

)T
. Here, we denote the

bending angles of the two segments as θ1 and θ2. p1 and p2

represent the coordinates of marker 2 and 3. In the Cartesian
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Fig. 3. Schematic diagram of the kinematic model of bending segment 1.

𝜃! 𝑥!

𝑦!

𝑟! =
1
𝑘!

𝐩𝟐

Segment 2

Marker 2

Marker 3

Fig. 4. Schematic diagram of the kinematic model of bending segment 2.

coordinate system of x1y1z1 (as in Fig. 3), the relationship
between the radius and length of the arc can be formulated
as:

θ1 =
r1 − rc
L1 −∆l1

=
r1
L1

=⇒ rc
r1

=
∆l1
L1

(3)

where r1 = 1
k1

is the bending radius of segment 1. Substi-
tuting (2) into (3) yields to:

k1 =
1

r1
=

rpϕ1

rcL1
(4)

For the segment 2 in the coordinate system x2y2z2 in Fig. 4,
a similar relationship as (4) can be obtained:

k2 =
1

r2
=

rpϕ2

rcL2
(5)

As is shown in Fig. 3 and Fig. 4, the local coordinates of
marker 1 and 2 in the coordinate system x1y1z1 and x2y2z2
(1p1 and 2p2) can be written as:

1p1 =

 0
−( 1

k1
− d1) · sin θ1

( 1
k1
− d1) · (1− cos θ1)

 (6)

2p2 =

 1
k2
· (1− cos θ2)

− 1
k2
· sin θ2
0

 (7)
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Fig. 5. Schematic diagram of the MPC-based control process.

The rotation matrix 1A2 between the two coordinate systems
can be calculated based on the rotation angle θ1:

1A2 =

1 0 0
0 cos θ1 sin θ1
0 − sin θ1 cos θ1

 (8)

In this work, we take x1y1z1 as the global coordinate
system. According to the chain rule, the global coordinate
of marker 3 (1p2) can be calculated by using the following
equation:

1p2 = 1p1 + 1A2 · 2p2 (9)

Here, we define 1p2 as the task space f , which can be
obtained by substituting (6), (7), (8) into (9):

f =

 1
k2
· (1− cos θ2)

−( 1
k1
− d1) · sin θ1 − 1

k2
· sin θ2 · cos θ1

( 1
k1
− d1) · (1− cos θ1) +

1
k2
· sin θ2 · sin θ1

 (10)

where θ1 = k1L1 and θ2 = k2L2.
By calculating the first-order derivative of f with respect

to q, the Jacobian matrix J of the forward kinematics can
be calculated as:

J(q) =
∂f

∂k
· ∂k
∂q

(11)

which describes the relationship between the end effector
velocity ḟ and the angular velocity q̇ of the motor as:

ḟ = J(q) · q̇ (12)

III. MPC-BASED CONTROL STRATEGY

The basic concept of our MPC-based control strategy is
to use an optimization-based algorithm to determine the
control input for the 2-DOF continuum robot, which takes
into account not only the current position measured by the
tracking camera, but also the future positions predicted by
using the kinematic model from Section II-B. Fig. 5 shows
the workflow of the proposed control strategy.

In this work, the continuum robot is supposed to complete
the desired trajectory using t seconds with Nt steps. In each
time step, a control input shall be generated by the MPC
controller. Here, we denote ui as the control input (2 × 1
vector) at the i-th step. The update of the actuator space can
be expressed as:

qi = qi−1 + ui (13)

where qi and qi+1 represent the motor angles at the i-th and
(i + 1)-th step, respectively. With the help of (12), the end
effector position at the (i+ k)-th step can be approximated

Algorithm 1: MPC-Based Closed-Loop Control Al-
gorithm

Input: Desired trajectory {fi}i=1,...,Nt , Q, R, N ,
umax, umin

Output: Actuation sequence {qi}i=1,...,Nt

1 q1 ← f−1(f1);
2 Set the motor angles to q1;
3 for i = 2 : Nt do
4 if i+N − 1 > Nt then
5 N ← Nt + 1− i;
6 end
7 Get the end effector position fm,i from the

camera;
8 Calculate C using (14) and (15);
9 Calculate the optimized {ui, ...,ui+N−1} by

solving (15);
10 qi ← qi−1 + ui;
11 Update the motor angles using qi;
12 end

by using the measured i-th-step position fm,i and the control
sequence {ui+j−1}j=1,...,k:

f̃i+k ≈ fm,i +
∑k

j=1
J(qi+j−1) · ui+j−1 (14)

where f̃i+k represents the predicted (i+ k)-th-step position.
In order to obtain the optimal control input for the i-th step
(ui), we have defined the following optimization problem:

min
ui,...,ui+N−1

: C =

N−1∑
k=0

[Q · (f̃i+k − fi+k)
T (f̃i+k − fi+k)

+R · uT
i+k · ui+k]

s.t. : umin ≤ ui+j−1 ≤ umax,∀j ∈ {1, ..., N}


(15)

where C is the cost function and fi+k is the (i + k)-
th-step position of the desired trajectory. The upper and
lower bound of the control input are denoted by umax and
umin, respectively. Herein, the first part of C describes the
deviation between the desired trajectory and the real end
effector position over the N prediction steps, while the
second part depicts the control efforts for the N steps. Q
and R are two positive weighting factors for balancing the
two parts of C.

Here, by introducing the N prediction steps, the pre-
dicted future positions {f̃i+k}k=1,...,N−1 are taken into
account when computing the control input. It should be
mentioned that, although a series of control input increments
{ui, ...,ui+N−1} are calculated as the solution of the opti-
mization problem (15), only the first increment ui is taken as
the control input for the i-th time step. Algorithm 1 shows
the workflow of the proposed MPC-based control method,
where the optimization problem is solved using the fmincon
function from MATLAB (line 5).
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Fig. 6. Experimental setup for testing the MPC-based control method.

Algorithm 2: Open Loop Control Algorithm
Input: Desired trajectory {fi}i=1,...,Nt

Output: Actuation sequence {qi}i=1,...,Nt

1 q1 ← f−1(f1);
2 Set the motor angles to q1;
3 for i = 2 : Nt do
4 ui ← J−1(fi−1) · (fi − fi−1);
5 qi ← qi−1 + ui;
6 Update the motor angles using qi;
7 end

IV. EXPERIMENTS

A. Experimental Setup

Fig. 6 shows the experimental setup for evaluating the
performance of the proposed control method. The continuum
robot and its base were 3D-printed using selective laser sin-
tering technology (FORMIGA P100, EOS GmbH, Germany),
while two MG996R servo motors were used to drive the
pulleys and tendons. An Arduino UNO microcontroller was
chosen to actuate the motors. The end effector position of
the continuum robot was measured by an optical tracking
camera (Polaris Vicra, Northern Digital Inc., Canada), while
the measured position difference between marker M3 and
M1 was taken as fm,i. The microcontroller and the optical
tracking camera were both connected to a host computer,
where MATLAB was used to implement the proposed MPC
method.

In this work, the weighting factors Q and R were empir-
ically selected as 1 and 0.5, respectively, to achieve stable
control performance. The prediction step number N was set
to 4 to reduce the computational cost of the optimization
problem. umin and umax are set to

(
−2 −2

)T
and

(
2 2

)T
.

During the experiments, the continuum robot was controlled
to travel through ellipse, 8-shape and star-shape trajectories.
In addition, we also compared the path tracking results of the
proposed MPC method with an open-loop control method to
evaluate its control performance. The algorithm of the open
loop control method is presented in Algorithm 2, where J−1

is the inverse of the Jacobian matrix.

B. Path Tracking Results

1) Ellipse Trajectory: The first tracking path was an
ellipse trajectory, whose y-axis and z-axis coordinates can

(a) (b)

Fig. 7. Ellipse trajectory. (a) yz-plane. (b) xz-plane.

(a) (b)

Fig. 8. Tracking test results for the ellipse trajectory. (a) yz-plane. (b)
xz-plane.

be expressed as follows:{
y = ymax cos (

πt
40 ), t ∈ {0,∆t, ..., (Nt − 1)∆t}

z = zmax sin (
πt
40 ), t ∈ {0,∆t, ..., (Nt − 1)∆t} (16)

where ymax = 35mm and zmax = 45mm are the maximum
value of the ellipse trajectory on the y-axis and z-axis. ∆t =
1s is the period of a control step and Nt is set to 80. Fig. 7
shows the desired ellipse trajectory in yz-plane and xz-plane,
where the value of the x-axis coordinates is calculated by
using (10).

Fig. 8 shows the tracking test results for the ellipse tra-
jectory, where the green and blue curves represent the MPC-
controlled and open-loop-controlled tracking paths, respec-
tively. It can be seen that the MPC-controlled tracking path
is generally consistent with the desired trajectory, while the
open-loop-controlled path exhibits a shift (about 20mm) in
the negative direction of the z-axis of the desired trajectory.
The main reason for this phenomenon is that the gravity
force of the continuum robot is not included in the constant
curvature model, which leads to the z-axis position error
of the open-loop-controlled path. By introducing the optical
feedback and the proposed MPC algorithm, the z-axis error
can be effectively eliminated. The position error diagram
in Fig. 9 shows that the mean value of the error norm
of the MPC-controlled path (7.5mm) is much smaller than
that of the open-loop-controlled path (22.4mm), which also
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Step i

Fig. 9. Error norm of |fm,i − fi| for the ellipse trajectory.

(a) (b)

Fig. 10. 8-shape trajectory. (a) yz-plane. (b) xz-plane.

verifies the good control performance of the proposed MPC
algorithm.

2) 8-Shape Trajectory: The second tracking path was an
8-shape trajectory, whose y-axis and z-axis coordinates can
be expressed as follows:{

y = zmax · sgn (cos (πt40 )) · sin (
πt
40 ) · (cos (

πt
40 ))

2

z = zmax · sgn (cos (πt40 )) · (cos (
πt
40 ))

2

(17)
where zmax = 48mm is the maximum value of the 8-shape
trajectory on z-axis. The time range of t is the same as in the
first case, which is t ∈ {0,∆t, ..., (Nt − 1)∆t}. ∆t and Nt

are set to 1s and 80, respectively. Fig. 10 shows the desired
8-shape trajectory in yz-plane and xz-plane.

Fig. 11 shows the tracking test results for the 8-shape
trajectory. It can be noticed that, similar to the ellipse case,
the MPC-controlled tracking path is also close to the desired
trajectory, while the open-loop-controlled path exhibits a
shift (about 15mm) in the negative direction of the z-axis of
the desired trajectory. The position error diagram in Fig. 12
indicates that the mean value of the error norm of the MPC-
controlled path (7.5mm) is much smaller than that of the
open-loop-controlled path (21.3mm). Hence, for the 8-shape
trajectory, the proposed MPC algorithm also shows better

(a) (b)

Fig. 11. Tracking test results for the 8-shape trajectory. (a) yz-plane. (b)
xz-plane.

Step i

Fig. 12. Error norm of |fm,i − fi| for the 8-shape trajectory.

control performance than the open loop method.
3) Star-Shape Trajectory: The third tracking path was a

star-shape trajectory, whose y-axis and z-axis coordinates
can be expressed as follows:{

y = Ls · ( 25 · sin (
πt
10 )− sin (πt25 ))

z = Ls · ( 25 · cos (
πt
10 ) + cos (πt25 ))

(18)

where Ls is set to 25mm. The time range of t is the same
as in the first case, while ∆t and Nt are set to 1s and 100,
respectively. Fig. 13 shows the desired star-shape trajectory
in yz-plane and xz-plane.

The tracking test results in Fig. 14 shows that, similar
to the other two cases, the MPC-controlled tracking path is
close to the desired trajectory, while the open-loop-controlled
path exhibits a shift (about 15mm) in the negative direction
of the z-axis of the desired trajectory. The position error
diagram in Fig. 15 indicates that the mean value of the
error norm of the MPC-controlled path (7mm) is much
smaller than that of the open-loop-controlled path (18.5mm).
Therefore, the control performance of the proposed MPC
approach is also verified for the star-shape trajectory.
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(a) (b)

Fig. 13. Star-shape trajectory. (a) yz-plane. (b) xz-plane.

(a) (b)

Fig. 14. Tracking test results for the star-shape trajectory. (a) yz-plane.
(b) xz-plane.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a MPC-based closed-loop
method for controlling the motion of a 2-DOF tendon-
driven continuum robot. The constant-curvature model was
chosen for the kinematic modeling of the continuum robot,
and a optical tracking camera was used to provide position
feedback. Experimental results demonstrated that the pro-
posed method can effectively reduce the position error of the
continuum robot caused by external interference. In future
work, we will use more complex tracking paths and external
interference to further evaluate the feasibility of the proposed
control method. On the other hand, advanced structural
optimization [18], [19] will be performed on the continuum
robot to improve the modeling accuracy of the kinematic
model. In addition, we will further develop the MPC method
to explore its applicability to controlling continuum robots
with higher DOFs.
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