
Towards Validation of Autonomous Vehicles Across
Scales using an Integrated Digital Twin Framework

Tanmay Vilas Samak∗, Chinmay Vilas Samak∗, Venkat Narayan Krovi

Abstract—Autonomous vehicle platforms of varying spatial
scales are employed within the research and development spec-
trum based on space, safety and monetary constraints. However,
deploying and validating autonomy algorithms across varying op-
erational scales presents challenges due to scale-specific dynam-
ics, sensor integration complexities, computational constraints,
regulatory considerations, environmental variability, interaction
with other traffic participants and scalability concerns. In such
a milieu, this work focuses on developing a unified framework
for modeling and simulating digital twins of autonomous ve-
hicle platforms across different scales and operational design
domains (ODDs) to help support the streamlined development
and validation of autonomy software stacks. Particularly, this
work discusses the development of digital twin representations
of 4 autonomous ground vehicles, which span across 3 different
scales and target 3 distinct ODDs. We study the adoption of these
autonomy-oriented digital twins to deploy a common autonomy
software stack with an aim of end-to-end map-based navigation to
achieve the ODD-specific objective(s) for each vehicle. Finally, we
also discuss the flexibility of the proposed framework to support
virtual, hybrid as well as physical testing with seamless sim2real
transfer.

Index Terms—Autonomous vehicles, digital twins, real2sim,
sim2real, simulation and virtual prototyping, verification and
validation.

I. INTRODUCTION

THE field of autonomous vehicles has witnessed increas-
ing contributions from a wide spectrum of research

and development programs, wherein the choice of underlying
autonomous vehicle platform(s) is heavily governed by spatial
constraints, safety considerations and cost limitations. How-
ever, deploying and validating autonomy algorithms across
varying operational scales presents challenges due to fac-
tors such as scale-specific dynamics, sensor integration com-
plexities, computational constraints, regulatory considerations,
environmental variability, interaction with other traffic par-
ticipants and scalability concerns, among others. Addressing
these challenges is imperative for the seamless integration of
autonomy algorithms across different vehicle platforms, which
may vary in size and target distinct operating environments.

Digital twins can help alleviate these challenges by pro-
viding virtual replicas of the real vehicles and their envi-
ronments. These autonomy-oriented digital twins, as opposed
to conventional simulations, must equally prioritize back-
end physics and front-end graphics, which is crucial for

∗These authors contributed equally.
T. V. Samak, C. V. Samak and V. N. Krovi are with the Automation,

Robotics and Mechatronics Laboratory (ARMLab), Department of Automo-
tive Engineering, Clemson University International Center for Automotive
Research (CU-ICAR), Greenville, SC 29607, USA. Email: {csamak,
tsamak, vkrovi}@clemson.edu

Fig. 1: Side-by-side comparison of real and virtual autonomous
vehicle platforms spanning across various scales and ODDs:
Nigel and F1TENTH (small-scale), Husky and Hunter SE
(mid-scale), and OpenCAV and RZR (full-scale).

the realistic simulation of vehicle dynamics, sensor charac-
teristics and environmental physics. By accurately modeling
the interconnect between vehicles, sensors, actuators and the
environment, along with traffic participants and infrastructure,
digital twins allow for more efficient and cost-effective vali-
dation of autonomous systems, thereby reducing the need for
extensive real-world testing and accelerating the development
process. Additionally, digital twins facilitate iterative design
improvements and enable predictive maintenance strategies,
ultimately enhancing the safety, reliability and scalability of
autonomous vehicle deployments.

However, in the context of digital twins, seamlessly moving
from reality to simulation and back to reality (real2sim2real)
requires a streamlined workflow in place. This work proposes
AutoDRIVE Ecosystem1 [1]–[4] as a unified framework for
modeling and simulating digital twins of autonomous vehicle
platforms across different scales and operational design do-
mains (ODDs), as depicted in Fig. 1. The aim is to streamline
the development and validation pipeline of autonomy software
stacks, making it agnostic to the physical scale or operating
conditions of the underlying vehicle(s). Central to this frame-
work is the development of digital twin representations for
a variety of autonomous ground vehicles, spanning multiple
scales and targeting distinct ODDs. By leveraging the said
digital twins, this paper explores the deployment of a leading
open-source autonomy software stack, namely Autoware2 [5],

1https://autodrive-ecosystem.github.io
2https://autoware.org

2024 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
July 15-19, 2024. Boston, MA, USA

979-8-3503-9154-1/24/$31.00 ©2024 IEEE 1068

with an aim of achieving end-to-end map-based navigation
tailored to the unique requirements of each vehicle’s ODD.
Additionally, this paper also discusses the versatility of the
proposed framework, emphasizing its capability to support vir-
tual, hybrid and physical testing paradigms [6] while ensuring
seamless sim-to-real transfer [7]. Through this comprehensive
approach, the framework aims to facilitate the efficient de-
velopment, validation and deployment of autonomous vehicle
systems across varying scales and operational contexts.

II. RELATED WORK

Automotive industry has employed simulators like Ansys
Automotive [8] and Adams Car [9] to simulate vehicle dynam-
ics at different levels, thereby accelerating the development of
its end-products. Since the past few years, however, owing
to the increasing popularity of advanced driver-assistance
systems (ADAS) and autonomous driving (AD), most of the
traditional automotive simulators, such as Ansys Autonomy
[10], CarSim [11] and CarMaker [12], have started releasing
vehicular autonomy features in their updated versions.

Apart from these, several commercial simulators specifically
target autonomous driving. These include NVIDIA’s Drive
Constellation [13], Cognata [14], rFpro [15], dSPACE [16]
and PreScan [17], to name a few. In the recent past, several
research projects have also tried adopting computer games like
GTA V [18]–[20] in order to virtually simulate self-driving
cars, but they were quickly shut down by the game’s publisher.

Finally, the open-source community has also developed sev-
eral simulators for such applications. Gazebo [21] is a generic
robotics simulator natively adopted by Robot Operating Sys-
tem (ROS) [22]. TORCS [23], another open-source simulator
widely known in the self-driving community, is probably one
of the earliest to specifically target manual and autonomous
racing problems. More recent examples include CARLA [24],
AirSim [25] and Deepdrive [26] developed using the Unreal
[27] game engine along with Apollo GameSim [28], LGSVL
Simulator [29] and AWSIM [30] developed using the Unity
[31] game engine.

The aforementioned simulators pose three key limitations:
• Firstly, certain simulation tools prioritize graphical photo-

realism at the expense of physical accuracy, while others
prioritize physical fidelity over graphical realism. In con-
trast, the AutoDRIVE Simulator achieves a harmonious
equilibrium between physics and graphics, offering a
variety of configurations to suit diverse computational
capabilities.

• Secondly, the perception as well as dynamics of varying
scales of vehicles and environments differ significantly
from each other. Existing simulation tools prefer to target
a single vehicle size and ODD. Consequently, transition-
ing autonomy algorithms from one vehicle platform to
the other necessitates considerable additional effort to re-
calibrate the autonomy algorithms.

• Thirdly, existing simulators may lack precise representa-
tions of real-world vehicles or environments, rendering
them unsuitable for “digital twinning” applications.

III. METHODOLOGY

The core deliverable of this research project was inte-
grating the Autoware Core/Universe stack with AutoDRIVE
Ecosystem to demonstrate end-to-end map-based navigation
tailored to the unique requirements of 4 different autonomous
vehicle platforms, spanning across 3 scales and 3 ODDs. Par-
ticularly, we demonstrate small-scale Autoware deployments
using Nigel (1:14 scale) [32] and F1TENTH (1:10 scale) [33],
two small-scale autonomous vehicle platforms with unique
qualities and capabilities. While Nigel targets the autonomous
parking ODD, F1TENTH naturally targets the autonomous
racing ODD. Mid-scale Autoware deployments are realized
using Hunter SE (1:5 scale) [34], which target two different
ODDs. We employ the Hunter SE to demonstrate autonomous
parking in a structured simplistic environment as well as off-
road navigation in an unstructured realistic environment. To
the best of the authors’ knowledge, this is the first-ever off-
road deployment of the Autoware stack, thereby expanding
its ODD beyond on-road autonomous navigation. Finally, we
demonstrate full-scale Autoware deployments using OpenCAV
(1:1 scale) [35], which target the autonomous parking ODD
in structured simplistic and realistic scenarios.

As a precursor to Autoware deployments, this work dis-
cusses the development of vehicle and environment digital
twins, which span across different scales and operational
design domains. The development of these autonomy-oriented
digital twins using AutoDRIVE Ecosystem was, therefore, the
primary objective of this research project. This step involved
developing geometric as well as dynamics models of vehicles
and calibrating them against their real-world counterparts.
Additionally, physics-based models for interoceptive as well
as exteroceptive sensors and actuators were developed based
on their respective datasheets. Finally, creating physically and
graphically realistic on-road and off-road environments across
scales marked the completion of this objective.

A secondary objective of this research project was to
develop cross-platform application programming interfaces
(APIs) and human-machine interfaces (HMIs) to connect with
AutoDRIVE Ecosystem, which would aid in AutoDRIVE-
Autoware integration. This objective, in conjunction with
the primary objective, enabled the development of a stream-
lined real2sim2real framework with deployment demonstra-
tions across varying scales and ODDs.

IV. DIGITAL TWIN FRAMEWORK

The automotive industry has long practiced a gradual transi-
tion from virtual, to hybrid, to physical prototyping within an
X-in-the-loop (XIL; X = model, software, processor, hardware,
vehicle) framework. More recently, digital twins have emerged
as potentially viable tools to improve simulation fidelity and to
develop adaption/augmentation techniques that can help bridge
the sim2real gap. In the following sections, we delve into the
development of high-fidelity digital twins of 4 different au-
tonomous vehicles and their operating environments, wherein
we also discuss the integration of these with APIs and HMIs
for developing autonomy-oriented applications.

1069

Fig. 2: Autonomy-oriented vehicle digital twins across scales and ODDs: Nigel (1:14 scale), F1TENTH (1:10 scale), Hunter
SE (1:5 scale), and OpenCAV (1:1 scale) platforms for on/off-road autonomy.

A. Vehicle Models

The vehicles (refer Fig. 2) are conjunctly modeled using
sprung-mass iM and rigid-body representations. Here, the to-
tal mass M =

∑
iM , center of mass, XCOM =

∑ iM∗iX∑
iM and

moment of inertia ICOM =
∑

iM ∗ iX2, serve as the linkage
between these two representations, where iX represents the
coordinates of the sprung masses. Each vehicle’s wheels are
also modeled as rigid bodies with mass m, experiencing
gravitational and suspension forces: im∗ iz̈+ iB ∗ (iż− iŻ)+
iK ∗ (iz − iZ).

1) Powertrain Dynamics: For small and mid-scale vehicles,
which usually implement an electric motor for propulsion,
the front/rear/all wheels are driven by applying a torque
iτdrive = iIw ∗ iω̇w, where iIw = 1

2 ∗
imw ∗ irw2 repre-

sents the moment of inertia, iω̇w is the angular acceleration,
imw is the mass, and irw is the radius of the i-th wheel.
The actuation delays can also be modeled by splitting the
torque profile into multiple segments based on operating
conditions. For full-scale vehicles, however, the powertrain
comprises an engine, transmission and differential. The en-
gine is modeled based on its torque-speed characteristics.
The engine RPM is updated smoothly based on its current
value RPMe, the idle speed RPMi, average wheel speed
RPMw, final drive ratio FDR, current gear ratio GR,
and the vehicle velocity v. The update can be expressed
as RPMe := [RPMi + (|RPMw| ∗ FDR ∗GR)](RPMe,v)

where, [F]x denotes evaluation of F at x. The total torque
generated by the powertrain is computed as τtotal = [τe]RPMe

∗
[GR]G#

∗ FDR ∗ τ ∗ A . Here, τe is the engine torque, τ is
the throttle input, and A is a non-linear smoothing operator
which increases the vehicle acceleration based on the throttle
input. The automatic transmission decides to upshift/downshift
the gears based on the transmission map of a given vehicle.
This keeps the engine RPM in a good operating range for
a given speed: RPMe = vMPH∗5280∗12

60∗2∗π∗Rtire
∗ FDR ∗ GR. It is

to be noted that while shifting the gears, the total torque
produced by the powertrain is set to zero to simulate the
clutch disengagement. It is also noteworthy that the auto-
transmission is put in neutral gear once the vehicle is in
standstill condition and parking gear if handbrakes are engaged
in standstill condition. Additionally, switching between drive

and reverse gears requires that the vehicle first be in the
neutral gear to allow this transition. The total torque τtotal
from the drivetrain is divided to the wheels based on the drive

configuration of the vehicle: τout =

{
τtotal
2 if FWD/RWD
τtotal
4 if AWD

.

The torque transmitted to wheels τw is modeled by dividing
the output torque τout to the left and right wheels based on the
steering input. The left wheel receives a torque amounting to
Lτw = τout ∗ (1− τdrop ∗ |δ−|), while the right wheel receives a
torque equivalent to Rτw = τout ∗ (1− τdrop ∗ |δ+|). Here, τdrop
is the torque-drop at differential and δ± indicates positive and
negative steering angles, respectively. The value of (τdrop∗|δ±|)
is clamped between [0, 0.9].

2) Brake Dynamics: The driving actuators for small and
mid-scale vehicles simulate braking torque by applying a hold-
ing torque in idle conditions, i.e., iτbrake =

iτidle. For full-scale
vehicles, the braking torque is modeled as iτbrake =

iM∗v2
2∗Dbrake

∗Rb
where Rb is the brake disk radius and Dbrake is the braking
distance at 60 MPH, which can be obtained from physical
vehicle tests. This braking torque is applied to the wheels
based on the type of brake input: for combi-brakes, this torque
is applied to all the wheels, and for handbrakes, it is applied
to the rear wheels only.

3) Steering Dynamics: The steering mechanism operates
by employing a steering actuator, which applies a torque τsteer
to achieve the desired steering angle δ with a smooth rate δ̇,
without exceeding the steering limits ±δlim. The rate at which
the vehicle steers is governed by its speed v and steering
sensitivity κδ , and is represented as δ̇ = κδ + κv ∗ v

vmax
.

Here, κv is the speed-dependency factor of the steering
mechanism. Finally, the individual angle for left δl and right
δr wheels are governed by the Ackermann steering geometry,
considering the wheelbase l and track width w of the vehicle:δl = tan−1

(
2∗l∗tan(δ)

2∗l+w∗tan(δ)

)
δr = tan−1

(
2∗l∗tan(δ)

2∗l−w∗tan(δ)

) .

4) Suspension Dynamics: For small and mid-scale vehicles,
the suspension force acting on each sprung mass is calculated
as iM ∗ iZ̈ + iB ∗ (iŻ − iż) + iK ∗ (iZ − iz), where iZ
and iz denote the displacements of the sprung and unsprung
masses, respectively, and iB and iK represent the damping
and spring coefficients of the i-th suspension. For full-scale

1070

vehicles, however, the stiffness iK = iM ∗ iω2
n and damping

iB = 2 ∗i ζ ∗
√
iK ∗ iM coefficients of the suspension

system are computed based on the sprung mass iM , natural
frequency iωn, and damping ratio iζ parameters. The point
of suspension force application iZF is calculated based on
the suspension geometry: iZF = iZCOM − iZw + irw − iZf ,
where iZCOM denotes the Z-component of vehicle’s center of
mass, iZw is the Z-component of the relative transformation
between each wheel and the vehicle frame (V Twi

), irw is the
wheel radius, and iZf is the force offset determined by the
suspension geometry. Lastly, the suspension displacement iZs
at any given moment can be computed as iZs =

iM∗g
iZ0∗iK ,

where g represents the acceleration due to gravity, and iZ0

is the suspension’s equilibrium point. Additionally, full-scale
vehicle models also have a provision to include anti-roll bars,
which apply a force on the left LFr = Kr ∗RZ−LZ and right
RFr = Kr ∗ LZ − RZ wheels as long as they are grounded
at the contact point Zc. This force is directly proportional to
the stiffness of the anti-roll bar, Kr. The left and right wheel
travels are given by LZ = −LZc−Lrw

LZs
and RZ = −RZc−Rrw

RZs
.

5) Tire Dynamics: Tire forces are determined based on the

friction curve for each tire
{
iFtx = F (iSx)
iFty = F (iSy)

, where iSx and
iSy represent the longitudinal and lateral slips of the i-th
tire, respectively. The friction curve is approximated using a

two-piece spline, defined as F (S) =
{
f0(S); S0 ≤ S < Se
f1(S); Se ≤ S < Sa

,

with fk(S) = ak ∗ S3 + bk ∗ S2 + ck ∗ S + dk as a cubic
polynomial function. The first segment of the spline ranges
from zero (S0, F0) to an extremum point (Se, Fe), while the
second segment ranges from the extremum point (Se, Fe)
to an asymptote point (Sa, Fa). Tire slip is influenced by
factors including tire stiffness iCα, steering angle δ, wheel
speeds iω, suspension forces iFs, and rigid-body momentum
iP = iM ∗ iv. The longitudinal slip iSx of i-th tire is
calculated by comparing the longitudinal components of its
surface velocity vx (i.e., the longitudinal linear velocity of
the vehicle) with its angular velocity iω: iSx =

ir∗iω−vx
vx

.
The lateral slip iSy depends on the tire’s slip angle α and
is determined by comparing the longitudinal vx (forward
velocity) and lateral vy (side-slip velocity) components of the
vehicle’s linear velocity: iSy = tan(α) =

vy
|vx| .

6) Aerodynamics: Small and mid-scale vehicles are mod-
eled with constant coefficients for linear Fd as well as
angular Td drags, which act directly proportional to their
linear v and angular ω velocities. These vehicles do not
create significant downforce due to unoptimized aerodynam-
ics, limited velocities and smaller size and mass. Full-scale
vehicles, on the other hand, have been modeled to simulate
variable air drag Faero acting on the vehicle, which is com-
puted based on the vehicle’s operating condition: Faero =
Fdmax if v ≥ vmax

Fdidle if τout = 0

Fdrev if (v ≥ vrev) ∧ (G# = −1) ∧ (RPMw < 0)

Fdidle otherwise

where,

v is the vehicle velocity, vmax is the vehicle’s designated
top-speed, vrev is the vehicle’s designated maximum reverse
velocity, G# is the operating gear, and RPMw is the average
wheel RPM. The downforce acting on a full-scale vehicle is
modeled proportional to its velocity: Fdown = Kdown ∗ |v|,
where Kdown is the downforce coefficient.

B. Sensor Models

The simulated vehicles can be equipped with physically
accurate interoceptive and exteroceptive sensing modalities.

1) Actuator Feedbacks: Throttle (τ) and steering (δ) sen-
sors are simulated using a simple feedback loop.

2) Incremental Encoders: Simulated incremental encoders
measure wheel rotations iNticks =

iPPR∗iCGR∗iNrev, where
iNticks represents the measured ticks, iPPR is the encoder
resolution (pulses per revolution), iCGR is the cumulative
gear ratio, and iNrev represents the wheel revolutions.

3) Inertial Navigation Systems: Positioning systems and in-
ertial measurement units (IMU) are simulated based on tempo-
rally coherent rigid-body transform updates of the vehicle {v}

with respect to the world {w}: wTv =

[
R3×3 t3×1
01×3 1

]
∈

SE(3). The positioning systems provide 3-DOF positional co-
ordinates {x, y, z} of the vehicle, while the IMU supplies lin-
ear accelerations {ax, ay, az}, angular velocities {ωx, ωy, ωz},
and 3-DOF orientation data for the vehicle, either as Euler
angles {φx, θy, ψz} or as a quaternion {q0, q1, q2, q3}.

4) Planar LIDARs: 2D LIDAR simulation employs
iterative ray-casting raycast{wTl, ~R, rmax} for each
angle θ ∈ [θmin : θres : θmax] at a specified update rate.
Here, wTl = wTv ∗ vTl ∈ SE(3) represents the relative
transformation of the LIDAR {l} with respect to the vehicle
{v} and the world {w}, ~R = [cos(θ) sin(θ) 0]

T defines
the direction vector of each ray-cast R, where rmin and rmax
denote the minimum and maximum linear ranges, θmin and
θmax denote the minimum and maximum angular ranges,
and θres represents the angular resolution of the LIDAR,
respectively. The laser scan ranges are determined by checking
ray-cast hits and then applying a threshold to the minimum
linear range of the LIDAR, calculated as ranges[i]={
hit.dist if ray[i].hit and hit.dist ≥ rmin

∞ otherwise
,

where ray.hit is a Boolean flag indicating whether
a ray-cast hits any colliders in the scene, and
hit.dist=

√
(xhit − xray)2 + (yhit − yray)2 + (zhit − zray)2

calculates the Euclidean distance from the ray-cast source
{xray, yray, zray} to the hit point {xhit, yhit, zhit}.

5) Spatial LIDARs: 3D LIDAR simulation adopts multi-
channel parallel ray-casting raycast{wTl, ~R, rmax} for
each angle θ ∈ [θmin : θres : θmax] and each channel φ ∈
[φmin : φres : φmax] at a specified update rate, with GPU ac-
celeration (if available). Here, wTl =

wTv ∗ vTl ∈ SE(3)
represents the relative transformation of the LIDAR {l}
with respect to the vehicle {v} and the world {w}, ~R =
[cos(θ) ∗ cos(φ) sin(θ) ∗ cos(φ) − sin(φ)]

T defines the di-
rection vector of each ray-cast R, where rmin and rmax denote

1071

the minimum and maximum linear ranges, θmin and θmax
denote the minimum and maximum horizontal angular ranges,
φmin and φmax denote the minimum and maximum vertical
angular ranges, and θres and φres represent the horizontal and
vertical angular resolutions of the LIDAR, respectively. The
thresholded ray-cast hit coordinates {xhit, yhit, zhit}, from each
of the casted rays is encoded into byte arrays based on the
LIDAR parameters, and given out as the point cloud data.

6) Cameras: Simulated cameras are parameterized by their
focal length f , sensor size {sx, sy}, target resolution, as
well as the distances to the near N and far F clipping
planes. The viewport rendering pipeline for the simulated
cameras operates in three stages. First, the camera view
matrix V ∈ SE(3) is computed by obtaining the relative
homogeneous transform of the camera {c} with respect to the

world {w}: V =

r00 r01 r02 t0
r10 r11 r12 t1
r20 r21 r22 t2
0 0 0 1

, where rij and ti de-

note the rotational and translational components, respectively.
Next, the camera projection matrix P ∈ R4×4 is calculated
to project world coordinates into image space coordinates:

P =

2∗N
R−L 0 R+L

R−L 0

0 2∗N
T−B

T+B
T−B 0

0 0 −F+N
F−N − 2∗F∗N

F−N
0 0 −1 0

, where L, R, T ,

and B denote the left, right, top, and bottom offsets of the
sensor. The camera parameters {f, sx, sy} are related to the
terms of the projection matrix as follows: f = 2∗N

R−L , a =
sy
sx

,
and f

a = 2∗N
T−B . The perspective projection from the simulated

camera’s viewport is given as C = P ∗ V ∗ W, where
C = [xc yc zc wc]

T represents image space coordinates,
and W = [xw yw zw ww]

T represents world coordinates.
Finally, this camera projection is transformed into normalized
device coordinates (NDC) by performing perspective division
(i.e., dividing throughout by wc), leading to a viewport pro-
jection achieved by scaling and shifting the result and then
utilizing the rasterization process of the graphics API (e.g.,
DirectX for Windows, Metal for macOS, and Vulkan for
Linux). Additionally, a post-processing step simulates non-
linear lens and film effects, such as lens distortion, depth of
field, exposure, ambient occlusion, contact shadows, bloom,
motion blur, film grain, chromatic aberration, etc.

C. Digital Twin Calibration

The vehicle digital twin models were calibrated and vali-
dated against geometric, static and dynamic measurement data
collected from their real-world counterparts as well as their
datasheets. This included the validation of geometric measure-
ments for physical as well as visual purposes, static calibration
for mass, center of mass and suspension parameters, and
dynamic calibration for validating standard benchmark maneu-
vers performed in open-loop tests. Additionally, sensor models
were validated against static and dynamic characteristics of
their real-world counterparts based on their datasheets. Fig. 3
depicts some of these calibration/validation tests.

(a) (b) (c) (d)

Fig. 3: Calibration and validation of vehicle digital twins:
(a) System identification of Nigel, (b) VESC calibration of
F1TENTH, (c) Static measurements of Hunter SE, and (d)
Powertrain measurements of OpenCAV.

D. Environment Models

We leveraged AutoDRIVE Simulator to develop various
virtual proving ground environments appropriate for the scales
and ODDs of respective host vehicles. Such scenarios can
be developed using AutoDRIVE’s infrastructure development
kit (IDK), Unity’s Terrain tools, or other open-standard tools,
plugins and assets. Scenarios depicted in Fig. 4 include re-
alistic counterparts of small-scale environments such as the
Parking Lot, Eight Track, 4-Way Intersection and Tiny Town
for Nigel, which were developed using AutoDRIVE IDK,
as well as the Porto Racetrack for F1TENTH, which was
created based on the binary occupancy grid map of its real-
world counterpart. Additionally, simplistic mid-scale and full-
scale environments such as the scaled-up versions of Tiny
Town along with structured and unstructured Proving Ground
scenarios were developed. Finally, two highly detailed mid and
full-scale scenarios were developed to support on-road as well
as off-road autonomy. These included a City scenario and a
Forest environment. The full-scale variants of these scenarios
have several rich features and are large enough to support
driving for several minutes, if not a few hours. Environmental
physics is simulated accurately by conducting mesh-mesh
interference detection and computing contact forces, frictional
forces, momentum transfer, as well as linear and angular drag
acting on all rigid bodies at each time step. Additionally,
the simulation of various environmental conditions, such as
different times of day as well as weather conditions, can
introduce additional degrees of variability.

E. Computational Methods

From a computational perspective, the digital twin frame-
work is developed modularly using object-oriented program-
ming (OOP) constructs. Additionally, the simulator takes ad-
vantage of CPU multi-threading as well as GPU instancing (if
available) to efficiently handle the workload, while providing
cross-platform support. The framework also adopts pre-baked
lightmaps, which provide the benefits of physics-based lighting
while reducing the computational overhead of real-time ray-
tracing. Furthermore, the simulator implements level-of-detail
(LOD) culling to gradually degrade the LOD of environmental
objects as they move further away from the scene cameras.
However, it is ensured that LOD culling does not affect any
of the AV camera sensor(s), thereby striking a balance between
computational optimization and simulation fidelity.

1072

Fig. 4: Virtual proving ground environments across different scales and ODDs. Small-scale environments are typically synthetic
while mid-scale and full-scale environments can be synthetic as well as realistic.

F. Digtial Twin Interfaces

The integration of APIs within AutoDRIVE Ecosystem was
achieved through the comprehensive expansion and incorpora-
tion of AutoDRIVE Devkit. The versatile APIs developed as
part of this framework facilitate interactions with the virtual as
well as real vehicle platforms and their operating environments
using Python, C++, MATLAB/Simulink, ROS [22], ROS 2
[36], or the Autoware stack. This expansion caters to a
diverse range of programming preferences, empowering users
to exploit AutoDRIVE Simulator or AutoDRIVE Testbed for
swift and flexible deployment of autonomy algorithms. The
framework extends its utility by enabling the development
of API-mediated HMIs, catering to both virtual as well as
physical vehicles and infrastructure elements.

Furthermore, the simulation framework itself served a dual
purpose by not only providing a digital twinning platform, but
also enabling the development of direct HMIs to interface with
the virtual vehicles and infrastructure. Supported HMI meth-
ods to connect with AutoDRIVE Ecosystem include standard
keyboard (digital) and mouse (analog), gamepad/joystick (ana-
log) as well as driving and steering rigs (hybrid). This direct-
HMI framework, designed for scalability, ensures practical
feasibility by relaying identical machine-to-machine (M2M)
commands to both virtual and real vehicles as well as infras-
tructure elements. The versatility of this approach allows for a
true digital-twin framework, establishing a seamless connec-
tion between the digital space and the physical world. Ad-
ditionally, in an extended-reality (XR) setup, this framework
offers opportunities to extend the direct-HMI teleoperation
to real vehicles, enhancing the applicability and potential of
AutoDRIVE Ecosystem in diverse operational scenarios.

V. CASE STUDIES

In order to verify the integrated operation of the proposed
digital twin framework, namely AutoDRIVE Ecosystem, in
conjunction with Autoware, a leading open-source autonomy
software stack, a set of experiments were designed in the
form of 8 case studies. At a high level, these case studies
outline end-to-end map-based navigation tailored to the unique
requirements of each vehicle’s scale as well as ODD, and work
in 3 stages.

1) First, the environment is mapped using the LIDAR point
cloud data and optionally using odometry estimates
by fusing IMU and encoder data while driving (or
teleoperating) the vehicle manually.

2) Next, a reference trajectory is generated by manually
driving the vehicle within the (pre)mapped environment,
while recording the waypoint coordinates spaced a cer-
tain threshold distance apart, using the vehicle’s local-
ization estimates with respect to the map’s coordinate
frame. This can be achieved using just the LIDAR point
cloud data, or optionally using odometry estimates by
fusing IMU and encoder data. It is worth mentioning
that a reference trajectory can also be defined completely
offline by using the map information alone, however, in
such a case, appropriate measures need to be taken in
order to ensure that the resulting trajectory is completely
safe and kinodynamically feasible for the vehicle to track
in real-time.

3) Finally, in autonomous mode, the vehicle tracks the
reference trajectory using a linearized pure-pursuit con-
troller for lateral motion control and a PID controller for
longitudinal motion control.

1073

(a) Autonomous parking case study with Nigel in virtual world. (b) Autonomous parking case study with Nigel in real world.

(c) Autonomous racing case study with F1TENTH in virtual world. (d) Autonomous racing case study with F1TENTH in real world.

(e) Reduced-order autonomous parking case study with Hunter SE. (f) Full-order off-road navigation case study with Hunter SE.

(g) Reduced-order autonomous parking case study with OpenCAV. (h) Full-order autonomous parking case study with OpenCAV.

Fig. 5: Validation of the integrated operation of AutoDRIVE Ecosystem in conjunction with Autoware stack for end-to-end
map-based navigation case studies tailored to the unique requirements of each vehicle’s scale and ODD. Videos: https:
//youtube.com/playlist?list=PL5Hd4DIMOmEJgpsPYCoLBGNb_91PZVxgA&si=w2wO9h2xKm_IrA1f

The exact inputs, outputs, and configurations of perception,
planning, and control modules vary with the underlying ve-
hicle platform. Therefore, to keep the overall project3 clean
and well-organized, a multitude of custom meta-packages
were developed within the Autoware Universe stack to handle
different perception, planning, and control algorithms using
different input and output information in the form of inde-
pendent individual packages. Additionally, a separate meta-
package was created to handle different vehicles within the
AutoDRIVE Ecosystem including Nigel, F1TENTH, Hunter
SE and OpenCAV. Each package for a particular vehicle hosts
vehicle-specific parameter description configuration files for
perception, planning, and control algorithms, map files, RViz
configuration files, API program files, teleoperation program
files, and user-convenient launch files for getting started
quickly and easily. Furthermore, an operational mode is provi-
sioned, which enabled us to transition the small-scale vehicles
from simulation to reality, where it is worth mentioning that
the exact same controller gains from simulation worked for
the real-world deployments.

3https://github.com/Tinker-Twins/AutoDRIVE-Autoware

VI. CONCLUSION

This work investigated the development of autonomy-
oriented digital twins of vehicles across different scales and
configurations to help support the streamlined deployment of
Autoware Core/Universe stack using AutoDRIVE Ecosystem.
In essence, this work expands the scope of AutoDRIVE
Simulator from catering to scaled autonomous vehicles to
developing digital twins of autonomous vehicles across vary-
ing scales and ODDs. The core deliverable of this research
project was to demonstrate the end-to-end task of map-based
navigation. This work discussed the development of vehicle
and environment digital twins using AutoDRIVE Ecosystem,
along with various application programming interfaces (APIs)
and human-machine interfaces (HMIs) to connect with the
same. It is worth mentioning that in addition to several
Autoware deployment demonstrations, this study described the
first-ever off-road deployment of the Autoware stack, thereby
expanding its ODD beyond on-road autonomous navigation. In
a future work, we seek to investigate multi-agent deployments,
dynamic re-planning capabilities, and robust sim2real valida-
tion of autonomy algorithms using the proposed framework.

1074

REFERENCES

[1] T. Samak, C. Samak, S. Kandhasamy, V. Krovi, and M. Xie,
“AutoDRIVE: A Comprehensive, Flexible and Integrated Digital
Twin Ecosystem for Autonomous Driving Research & Education,”
Robotics, vol. 12, no. 3, p. 77, May 2023. [Online]. Available:
http://dx.doi.org/10.3390/robotics12030077

[2] T. V. Samak, C. V. Samak, and M. Xie, “AutoDRIVE Simulator: A
Simulator for Scaled Autonomous Vehicle Research and Education,”
in 2021 2nd International Conference on Control, Robotics and
Intelligent System, ser. CCRIS’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 1–5. [Online]. Available:
https://doi.org/10.1145/3483845.3483846

[3] T. V. Samak and C. V. Samak, “AutoDRIVE - Technical Report,” 2022.
[Online]. Available: https://doi.org/10.48550/arXiv.2211.08475

[4] ——, “AutoDRIVE Simulator - Technical Report,” 2022. [Online].
Available: https://doi.org/10.48550/arXiv.2211.07022

[5] S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi,
Y. Kitsukawa, A. Monrroy, T. Ando, Y. Fujii, and T. Azumi, “Autoware
on Board: Enabling Autonomous Vehicles with Embedded Systems,”
in 2018 ACM/IEEE 9th International Conference on Cyber-Physical
Systems (ICCPS), 2018, pp. 287–296.

[6] C. Samak, T. Samak, and V. Krovi, “Towards Mechatronics Approach of
System Design, Verification and Validation for Autonomous Vehicles,”
in 2023 IEEE/ASME International Conference on Advanced Intelligent
Mechatronics (AIM), 2023, pp. 1208–1213. [Online]. Available:
https://doi.org/10.1109/AIM46323.2023.10196233

[7] ——, “Towards Sim2Real Transfer of Autonomy Algorithms
using AutoDRIVE Ecosystem,” IFAC-PapersOnLine, vol. 56,
no. 3, pp. 277–282, 2023, 3rd Modeling, Estimation
and Control Conference MECC 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2405896323023704

[8] Ansys Inc., “Ansys Automotive,” 2021. [Online]. Available: https:
//www.ansys.com/solutions/solutions-by-industry/automotive

[9] MSC Software Corporation, “Adams Car,” 2021. [Online]. Available:
https://www.mscsoftware.com/product/adams-car

[10] Ansys Inc., “Ansys Autonomy,” 2021. [Online]. Available: https:
//www.ansys.com/solutions/technology-trends/autonomous-engineering

[11] Mechanical Simulation Corporation, “CarSim,” 2021. [Online].
Available: https://www.carsim.com

[12] IPG Automotive GmbH, “CarMaker,” 2021. [Online]. Available: https:
//ipg-automotive.com/products-services/simulation-software/carmaker

[13] Nvidia Corporation, “NVIDIA DRIVE Sim and DRIVE
Constellation,” 2021. [Online]. Available: https://www.nvidia.com/
en-us/self-driving-cars/drive-constellation

[14] Cognata Ltd., “Cognata,” 2021. [Online]. Available: https://www.
cognata.com

[15] rFpro, “Driving Simulation,” 2021. [Online]. Available: https://www.
rfpro.com/driving-simulation

[16] dSPACE, “dSPACE,” 2021. [Online]. Available: https://www.dspace.
com/en/pub/home.cfm

[17] Siemens AG, “PreScan,” 2021. [Online]. Available: https://tass.plm.
automation.siemens.com/prescan

[18] S. R. Richter, V. Vineet, S. Roth, and V. Koltun, “Playing for Data:
Ground Truth from Computer Games,” in Proceedings of the European
Conference on Computer Vision (ECCV), ser. LNCS, J. Matas, B. Leibe,
M. Welling, and N. Sebe, Eds., vol. 9906. Springer International
Publishing, 13-15 Nov 2016, pp. 102–118.

[19] S. R. Richter, Z. Hayder, and V. Koltun, “Playing for Benchmarks,” in
IEEE International Conference on Computer Vision, ICCV 2017, Venice,
Italy, October 22-29, 2017, 2017, pp. 2232–2241.

[20] M. Johnson-Roberson, C. Barto, R. Mehta, S. N. Sridhar, K. Rosaen,
and R. Vasudevan, “Driving in the Matrix: Can Virtual Worlds Replace
Human-Generated Annotations for Real World Tasks?” in 2017 IEEE
International Conference on Robotics and Automation (ICRA), 2017, pp.
746–753.

[21] N. P. Koenig and A. Howard, “Design and use paradigms for Gazebo,
an open-source multi-robot simulator,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566), vol. 3, 2004, pp. 2149–2154.

[22] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Ng, “ROS: An Open-Source Robot Operating
System,” in ICRA 2009 Workshop on Open Source Software, vol. 3,
Jan 2009. [Online]. Available: http://robotics.stanford.edu/∼ang/papers/
icraoss09-ROS.pdf

[23] B. Wymann, E. Espié, C. Guionneau, C. Dimitrakakis, R. Coulom,
and A. Sumner, “TORCS, The Open Racing Car Simulator,” 2021.
[Online]. Available: http://torcs.sourceforge.net

[24] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An Open Urban Driving Simulator,” in Proceedings of the
1st Annual Conference on Robot Learning, ser. Proceedings of Machine
Learning Research, S. Levine, V. Vanhoucke, and K. Goldberg, Eds.,
vol. 78. PMLR, 13-15 Nov 2017, pp. 1–16.

[25] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim: High-Fidelity
Visual and Physical Simulation for Autonomous Vehicles,” in Field and
Service Robotics, M. Hutter and R. Siegwart, Eds. Cham: Springer
International Publishing, 2018, pp. 621–635.

[26] Voyage, “Deepdrive,” 2021. [Online]. Available: https://deepdrive.
voyage.auto

[27] Epic Games Inc., “Unreal Engine,” 2021. [Online]. Available:
https://www.unrealengine.com

[28] Baidu Inc., “Apollo Game Engine Based Simulator,” 2021. [Online].
Available: https://developer.apollo.auto/gamesim.html

[29] G. Rong, B. H. Shin, H. Tabatabaee, Q. Lu, S. Lemke, M. Možeiko,
E. Boise, G. Uhm, M. Gerow, S. Mehta, E. Agafonov, T. H. Kim,
E. Sterner, K. Ushiroda, M. Reyes, D. Zelenkovsky, and S. Kim,
“LGSVL Simulator: A High Fidelity Simulator for Autonomous Driv-
ing,” in 2020 IEEE 23rd International Conference on Intelligent Trans-
portation Systems (ITSC), 2020, pp. 1–6.

[30] TIER IV Inc., “AWSIM,” 2023. [Online]. Available: https://tier4.github.
io/AWSIM

[31] Unity Technologies, “Unity,” 2021. [Online]. Available: https://unity.
com

[32] C. V. Samak, T. V. Samak, J. M. Velni, and V. N. Krovi,
“Nigel – Mechatronic Design and Robust Sim2Real Control of
an Over-Actuated Autonomous Vehicle,” 2024. [Online]. Available:
https://doi.org/10.48550/arXiv.2401.11542

[33] M. O’Kelly, V. Sukhil, H. Abbas, J. Harkins, C. Kao, Y. V. Pant,
R. Mangharam, D. Agarwal, M. Behl, P. Burgio, and M. Bertogna,
“F1/10: An Open-Source Autonomous Cyber-Physical Platform,” 2019.
[Online]. Available: https://arxiv.org/abs/1901.08567

[34] AgileX Robotics, “Hunter SE,” 2023. [Online]. Available: https:
//global.agilex.ai/chassis/9

[35] ARMLab CU-ICAR, “OpenCAV: Open Connected and Automated
Vehicle,” 2023. [Online]. Available: https://sites.google.com/view/
opencav

[36] S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall, “Robot
Operating System 2: Design, Architecture, and Uses in the Wild,”
Science Robotics, vol. 7, no. 66, p. eabm6074, 2022. [Online]. Available:
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074

1075

