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Abstract—Detecting falls among the elderly and alerting their
community responders can save countless lives. We design and
develop a low-cost mobile robot that periodically searches the
house for the person being monitored and sends an email to
a set of designated responders if a fall is detected. In this
project, we make three novel design decisions and contributions.
First, our custom-designed low-cost robot has advanced features
like omnidirectional wheels, the ability to run deep learning
models, and autonomous wireless charging. Second, we improve
the accuracy of fall detection for the YOLOv8-Pose-nano object
detection network by 6% and YOLOv8-Pose-large by 12%. We do
so by transforming the images captured from the robot viewpoint
(camera height 0.15m from the ground) to a typical human
viewpoint (1.5m above the ground) using a principally computed
Homography matrix. This improves network accuracy because
the training dataset MS-COCO on which YOLOv8-Pose is trained
is captured from a human-height viewpoint. Lastly, we improve
the robot controller by learning a model that predicts the robot
velocity from the input signal to the motor controller.

I. Introduction
Fall prevention and management among the elderly has

been a well-recognized problem since the 1990s [1], [2]. As
the proportion of 65 and above population in the OECD
countries has grown from 11.36% in 1990 to 17.96% in 2022
[3], the importance of fall prevention and management has
grown accordingly. While preventing falls is the first line of
defense, the second line of defense managing falls by reducing
the response and rescue time [4]. Fall detection systems are
essential for the elderly, as they play a critical role in detecting
falls promptly and ensuring timely medical intervention. By
providing continuous monitoring and immediate assistance,
the safety and independence of elderly individuals can be
enhanced, while their need for caregivers and healthcare
resources can be reduced.

Fall detection technologies that alert caregivers [2] include
user-activated alarm systems [5], passive fall detection sys-
tems [4]–[7] and mobile robots as fall detectors [8]–[10].
These technologies have complementary strengths and weak-
nesses, and a hybrid system can be customized based on the
user’s needs and preferences. We compare these technologies
in the related work section (Section II).

In this work, we focus using mobile robots as fall detec-
tors. While many mobile robots have been proposed for fall
detection [8]–[10], all of them formulate fall detection as
a classification problem. This requires classifying images as

either ”fall” or ”no fall.” We instead formulate fall detection as
an object detection problem. We note that there have been great
improvements in the accuracy of object detection algorithms
like YOLOv8 [11]. By formulating fall detection as a problem
of object detection instead of one of image classification, we
can identify multiple persons in the same image and classify
each as fallen or not. This is especially useful when a dummy
or statue is present in the same image as the elderly person that
the robot is supposed to watch. Moreover, low-cost design has
not been a priority for the above projects. To address this, we
design and prototype a custom low-cost mobile robot designed
expressly for the purpose of periodically surveying an area and
checking for persons who have fallen.

The main contributions of this project are threefold. (1) We
design and develop a low-cost, open-source mobile robot for
indoor autonomous navigation and fall detection. Our robot is
similar in cost to the popular robotics platform Turtlebot but
differs in that it is equipped with Nvidia Jetson Nano, omni-
directional wheels, and autonomous wireless charging. (2) We
improve the fall detection algorithm from the robot’s view-
point. Our robot camera is installed at a height of 0.15m from
the ground to maintain a small form factor, unlike fall detection
datasets that are typically collected from a human viewpoint or
higher. Because of this, machine-learning based fall detection
and object detection algorithms have lower accuracy when
image is taken from a robot’s perspective. We compensate for
this by computing a homography transformation that adjusts
the images from the robot’s perspective to match the typical
human-height perspective in our dataset. Our experiments
demonstrate improved fall detection performance by a factor of
6-12%. (3) Lastly, we improve the robot controller by system
identification of the motors. We modified the controller by
training a model that predicts the motor’s rotation velocity
using the input Pulse Width Modulation (PWM) signal.

II. Related Work
A. Fall detection using sensors

In this section, we compare the following fall detection
technologies: user-activated alarm systems [5], passive fall de-
tection systems [4]–[7] and mobile robots as fall detectors [8]–
[10].

User-activated alarm systems [5] require the person to press
a button to request help from community responders. One
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limitation of this approach is that it requires the fallen person
to be conscious and, furthermore, to decide to call for help.
The hesitancy of the elderly to ask for help under such
circumstances has pushed researchers to develop passive fall
detection systems that do not require any action from the
patients themselves [5]

Literature on passive fall detection systems has been re-
viewed multiple times in the last two decades [4]–[7]. These
fall detectors can be classified based on the location of sensors
as wearable or ambient. A wearable fall detector is worn by
the person to be tracked. It typically uses IMU (Inertial Mea-
surement Units) and health sensors to detect falls. An ambient
fall detection technology is usually installed in the person’s
home. These systems typically use pressure sensors, vibration
sensors, or cameras to detect a fall and alert the caregivers.
While wearable sensors have become less conspicuous, they
can easily lead to false alarms. On the other hand, ambient
sensors, while more accurate, are more costly. Admittedly,
these sensors can be combined to complement each other. One
limitation of all camera-based (vision-based) systems is that
some consider them to invade the privacy of the individual
being monitored.

These limitations, combined with advances in deep learning
and autonomous robots, have led to a new type of ambient fall
detectors: mobile robots as fall detectors [8]–[10], [12], [13].
These are ambient-mobile sensors, contrasting with the previ-
ous generation of ambient-static sensors. While most mobile
robots do depend on camera-based fall detection, they may be
preferred by some users over ambient camera-based systems.
Because mobile robots perform only periodic monitoring (as
opposed to ambient systems’ continuous monitoring), mobile
robots are not all-seeing at all times. A mobile robot system
can be configured to check on a person at regular intervals,
such as every 30 minutes, and be triggered by wearable sensors
or loud noises. The mobile robot can then search for the person
in the house. If the person is found and identified as being
in a fallen position, then an alert is generated. A trigger is
generated if a room or a bedroom is found inaccessible. The
advantage of this approach over ambient cameras is that a
mobile robot checking on an elderly person is periodic, and the
person being checked on is reminded of the robot’s presence.
The requirement to keep the floor clear for the robot’s passage
can also help prevent falls.

B. Low cost mobile robots
Extensive research has been carried out in the field of

intelligent autonomous mobile robots to develop advanced
features such as obstacle avoidance, object detection, path
planning, and map creation. In one such effort, Andruino-R2,
a mobile robot, was developed and implemented by [14] with
line-following navigation combining Arduino and Java-based
ROS. [15] developed an integrated system named BeeButler
that combines a flutter-based multi-platform mobile app and a
robot to aid hotel guests in ordering amenities. It solves the
previous problem of external devices by using onboard Jetson
Nano and Arduino Mega 2560 to control the robot. Still, it

uses a line follower and RFID tag for localization, which is
unsuitable for navigating an unknown environment without
setting additional lines and RFID tags. A two-wheel home-
assistive robot featuring a combination of omnidirectional
wheels with differential driving was developed by author [16].
The author used an STM32 microcontroller and NVIDIA
Jetson Nano to control the robot and demonstrated successful
2D and 3D SLAM experiments, autonomous navigation, and
obstacle avoidance. The author [17] developed a ROS-based
omnidirectional robot with mapping, localization, and naviga-
tion capabilities using a multi-sensor fusion on Raspberry Pi
4B, emphasizing accuracy and efficiency.

III. Robot Design
We briefly summarize the robot’s overall design, covering

the mechanical, electronic, and software elements. For a de-
tailed description of the hardware and software design, as
well as videos, our dataset, and other supplementary material,
please consult our GitHub repository.1. We aim to design a
robust, reliable, and low-cost robot. We were able to design
the robot with parts costing less than $700 USD. The cost
breakdown of all the parts is displayed in Table I, which
illustrates how the full robot is built for a budget of under 700
USD, ensuring affordability without compromising quality.
The items were purchased and priced based on market price
between November 2022 and December 2023. The overall
hierarchy of system design is presented in Figure 1.
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Figure 1. System overview.

A. Mechanical design
The mechanical design of the robot includes the base

chassis, battery holder, mecanum wheels, wireless charger, and
wireless power receiver. The base chassis provides structural
support and holds together all the essential components of the
robot. 3D-printed Polyethylene Terephthalate Glycol (PETG)
filament was used to create the base chassis, mountings
to hold sensors, input-output (I/O) devices, and joints. The

1https://github.com/shihab28/omobot js
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components were assembled using M3 and M4 bolts of lengths
6mm, 10mm, 15mm, and 25mm. The robot’s 3D model was
designed using Solidworks. The final assembly of the robot is
shown in Figure 2. A 3D-printed battery holder was mounted
at the bottom section of the base chassis to keep the center
of mass low. The robot has a wireless recharging system with
a 3D-printed charging dock and wireless transmission coil.
We chose wireless charging because it avoids the problem
of contact mismatch during docking. A 12.6V-1A wireless
receiver is mounted under the battery holder for power trans-
mission. The robot moves using mecanum wheels mounted
using aluminum mounts. The mecanum wheels allow the robot
to move sideways.

B. Electronics design

The electronics design includes the choice of microcom-
puter, printed circuit board (PCB) design, battery management
system (BMS), motors, sensors, and communication modules
with complex interconnections as shown in Figure 1.

1) Microcomputer: We chose NVIDIA’s Jetson Nano 4GB
Developer Edition A1 Kit as the robot’s brain because it
balances computing efficiency, power consumption, and cost.
It is responsible for receiving and processing sensor data,
controlling motors, and sending emails. It is Robot Operat-
ing System (ROS)-compatible and has general-purpose input-
output (GPIO) pins for sensors, making it ideal for mobile
robots [18].

2) PCB design: The PCB is mounted on top of the base
chassis, next to the Jetson Nano. The PCB includes the
charging controller, two H-bridge motor drivers LM298N, and
two Arduino Nano RP2040 microcontrollers are assembled
into the PCB Figure 2.

We use two Arduino microcontrollers, one for high-
frequency sensor input and another for high-frequency motor
control. The first Arduino-based sensor encoder reads battery
voltage, current flow, and rotary encoder pulses per rotation
and sends the data to the Jetson Nano. We use eight pins on
the Arduino for reading data from four rotary encoders and 20
interrupt pins to read and process the high-frequency pulses
from the rotary encoders without delay. The second Arduino-
based motor controller controls the motor by receiving the
desired motor speed from the Jetson Nano and sending an
8-bit pulse width modulation (PWM) signal to the motors.
The Arduino-based sensor encoder is connected using the
UART-TX/RX pins, and the Arduino-based motor controller
is connected using the USB port.

3) Battery management system: Our robot’s battery man-
agement system (BMS) consists of batteries and power split-
ters. We use a 3-cell, 12V-5200mAh Lithium Polymer (Li-
Po) battery. We chose Li-Po batteries because they are small,
lightweight, highly efficient, and have a high-energy den-
sity [19]. For power splitting, we use a DC-DC switching 12V-
3A buck-boost converter to supply a constant 12V input to the
H-bridge motor driver and a DC-DC 5V-4A buck converter to
power the Jetson Nano and the Arduino.

Table I
Cost Breakdown

Components Cost (USD)

Jetson Nano (Dev-4GB) with accessories, and Camera 300
DC gear motor (12V) with encoder and mecanum wheels 90
Arduino (Nano RP2040) 42
LiDAR (LD19) 99
IMU (MPU-6050) 3
Lipo Battery (5200mAh) 29
Power supply and charging module (12V) 39
PCB Board (Dual Layer-Through Hole) 15
Wireless charging system (12V-2A DC) 36
3D printed parts 30
Misc (wire, bolts, nuts, connectors, etc.) 10

Total 693

4) Motors: We use four 12V DC geared motors with rotary
encoders. These motors are easy to control, provide high
torque, and are suitable for carrying payloads. The wheel
rotary encoder measures the actual wheel rotation velocity,
making it perfect for integrating feedback-control [20].

5) Sensors and communication modules: We equip the
robot with several sensors and communication modules be-
sides the wheel rotary encoders. The sensors include LiDAR-
LD19, MPU-6050 Inertial Measurement Unit (IMU), and
Sony IMX219-83 Stereo cameras. LiDAR-LD19 is connected
to Jetson Nano via USB. The MPU-6050 IMU sensor is
connected to the Jetson Nano using the SDA and SCL pins
of the GPIO pins for I2C communication. The stereo cameras
have a baseline of 80mm and are connected to Jetson Nano
via two CSI interfaces.

For communication, we use the Waveshare AC8265 Wire-
less NIC Module, which supports 2.4GHz/5GHz Dual Band
WiFi and Bluetooth-4.2, allowing the robot to connect to the
internet.

C. Software design
Software design is crucial for making our robot autonomous.

We install all our software on NVIDIA’s Jetson Nano. We use
the latest Linux kernel supported by Jetson Nano, NVIDIA
L4T 32.5.2, a part of NVIDIA’s JetPack-4.5.1. This also
includes ARM64-based Ubuntu-18.04 Linux distribution. We
install Robotic Operating System (ROS) Melodic [21], the
latest version of ROS supported by Ubuntu-18.04. Jetson Nano
supports several communication protocol methods to commu-
nicate with peripheral devices and sensors, including universal
asynchronous receiver transmitter (UART), universal serial
bus (USB), I2C, Internet Protocol (IP), and Camera Serial
Interface (CSI) [18]. We develop a complex software pipeline
comprising several interconnected ROS software packages.
The following section discusses the details of the software
used and the custom software developed.

IV. Ros-based Software Framework
The overall ROS-based software framework interacting with

sensors, motors, joystick, and internet is shown in Figure 3.
We discuss the novel software components, the Fall detection
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Figure 2. From left to right: 1) 3D model of the robot developed in Solidworks, 2) PCB Assembly with the major components, 3) the final assembly of the
robot.

system in Section IV-C and the Motor system identification
in Section V. Before that, we briefly discuss other software
components.

Figure 3. Communication among sensors and devices with ROS nodes
running on Jetson Nano.

A. Robot setup phase
Our robot system for autonomous search and fall detec-

tion requires a setup phase before its first use. The robot
setup phase is the mapping phase, where the robot is in-
troduced to a new environment. In this phase, an operator
moves the robot around the house using a Joystick, and the
ros-slam toolbox builds a 2-dimensional occupancy grid-
based map of the house. This map is then saved and manually
marked with crucial landmark points on the map. For example,
Figure 6 shows a map with seven locations marked from
A to G. While this step can also be automated using robot
exploration algorithms [22], the setup has to be done only
once per environment, hence we leave automation of setup-
phase for future work.

B. Autonomous phase
After the setup phase, our robot is fully autonomous and

requires no human intervention during regular operation. The
autonomous charging module and ros-slam toolbox mod-
ule support the main autonomy.

The autonomous charging module uses an ARUCO marker
(a QR-code-like marker) on the docking station. The left mono
camera detects and locates the wireless charging dock using
ARUCO-marker detection and a real-time video feed. Before
use, the camera is calibrated using Python3 and OpenCV
camera calibration to correct lens distortions and adjust in-
trinsic camera properties. The camera driver publishes the
camera feed, and the ros-aruco detect package in ROS
detects ARUCO-markers and 3D poses from the camera feed,

providing positional and orientation data for localizing the
wireless charging dock with respect to the robot. In practice,
we found that the ARUCO localization accuracy is not enough
for robust docking.

The ros-slam toolbox module localizes the robot in
the room using the map built during the setup phase. It
depends only on the LiDAR-LD19 laser scans and wheel
odometry data. A 2D map is created with the help of
ros-slam toolbox package to locate the robot and objects.

C. Fall detection pipeline
The fall detection system contains three steps: preprocessing

the frame, person detection and pose estimation, and fall
detection module. The preprocessing phase includes resizing,
rescaling, and possibly applying a homography transformation.
Subsequently, the transformed image is fed to the person
detection and pose estimation model (YOLOv8-Pose). The
person detection step identifies a person in an image and
provides a confidence score by estimating a bounding box
around them. Simultaneously, the pose estimation locates the
key points on the human body (nose, eyes, ears, shoulders,
elbows, wrists, hips, knees, and ankles) on the preprocessed
frame. We evaluate two methods of detecting falls from key
points, a Rules-based method [23] and an MLP-based method.

1) Pre-processing : Our robot uses YOLOv8-Pose [11]
for pose estimation. This model is trained on the MS-COCO
dataset [24]. Like most photographs found online, images in
the MS-COCO dataset are taken from the human point of view
(POV). Given the extremely low POV of our robot (0.15m
from ground), this reduces the accuracy of our robot’s ability
to extract pose. Our experiment in Section VI-E2 confirms
this intuition. One way to address this problem is by data
augmentation during the model’s training [25]. In this work,
we instead transform images from the robot point of view
(POV) to an average human POV before pose estimation. This
has the advantage of avoiding the additional step of retraining
the model. We show an example of this transformation in
Figure 7.

Using homography for POV conversion: We use a ho-
mography matrix to transform robot POV images into human
POV. Homography refers to the transformation of images
from one perspective projection into another. A homography
transform preserves straight lines as straight lines but parallel
lines may not be preserved as parallel.

We know that images of a 3D plane in two cameras are
related by a homography transformation [26]. To perform this
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transformation, consider a 3D location x1 ∈ R3 in space.
Project it to two cameras; name the pixel coordinates of
that location u1 = [u1, v1, 1]

⊤ ∈ P2 in the first image and
u2 = [u2, v2, 1]

⊤ ∈ P2 in the other. If the 3D points x1

all lie on the same plane P , a fixed Homography matrix,
2H1 ∈ R3×3 maps all corresponding coordinates from the
first image onto the second image [26] by, αu2 = 2H1u1.

Theorem 1. Let the plane P , on which the points x1 lie, be
described by a unit normal vector n̂ ∈ R3 and the distance
h ∈ R from the origin so that the plane is defined as P = {x ∈
R3 | n̂⊤x = h}. Let any point x1 ∈ P on the plane projected
to two cameras λ1u1 = K1x1 and λ2u2 = K2(

2R1x1+
2t1).

where K1 ∈ R3×3 and K2 ∈ R3×3, are the intrinsic matrices
of the cameras and 2R1 ∈ SO(3) and 2t1 ∈ R3 are relative
rotation and translation from camera 1 to camera 2. Then, we
can compute the homography matrix 2H1(n̂, h) that maps a
point u1 in image 1 to image 2 αu2 = 2H1u1 as,

2H1(n̂, h) = hK2
2R1K

−1
1 +K2

2t1n̂
⊤K−1

1 . (1)

The proof of above theorem is provided in the supplemen-
tary material due to space constraints. Since the homography
depends on the location of the plane, therefore, we sample
multiple homographies corresponding to different distances h
between minimum and maximum of the LiDAR scan. Then
we pick the homography that gives us the highest confidence
detection by YOLOv8.

2) Person detection and human pose estimation: We use
YOLOv8-Pose [27] for person detection and pose estimation.
YOLOv8-Pose identifies a person in an image and provides a
confidence score by estimating a bounding box around them.
The bounding box includes the top corner of the bounding
box and its width (w) and height (h). Simultaneously, the
YOLOv8-Pose also estimates the human pose. The human pose
is represented as the 2D location of the 17 keypoints (xp, yp)
that correspond to different human body parts for example,
p ∈ {shoulder, foot, hip, . . . }. YOLOv8-Pose models come in
five sizes, from smallest to largest (n)ano, (s)mall, (m)edium,
(l)arge, e(x)tra-large. Bigger models have more layers, thus
more weights and thus more representation power, but at the
cost of compute and memory resources.

3) Fall detection from human pose: We experiment with
two approaches for fall detection modules, (a) Rules-based fall
detection and (b) MLP-based fall detection.

a) Rules-based fall detection: Using the keypoints de-
tected by YOLOv8-Pose, we can determine a fall F using
(2) [23].

F = (yshoulder > (yfoot − l)) ∧ (yhip > (yfoot − l/2))

∧ (yshoulder > (yhip − l/2)) ∨ (h < w), (2)

where l = ∥(x, y)shoulder − (x, y)hip∥2, h and w are the height
and width of the person bounding box.

b) MLP-based fall detection: We train a binary classifier
(fallen or not-fallen) on each person detected by the YOLOv8-
Pose. The 2D location (xp, yp) of all the human pose keypoints

(17 points) predicted from the YOLOv8-Pose [27] are concate-
nated into a 34 size vector and fed into a three-layer Multi-layer
Perceptron (MLP), with 2 hidden layers, 20 hidden units each,
ReLU activation function and the softmax output. The MLP
is trained with the Binary Cross Entropy loss function on the
FallDetectionDatabase [28] with YOLO parameters frozen.

V. Motor System Identification
We estimate the mapping from the motor input to the robot

velocity in order to find the required Pulse Width Modulation
(PWM) signal for driving the robot with a desired velocity. The
process consists of two parts: (1) mapping the wheel velocities
to the robot velocity and (2) mapping the PWM signal to the
wheel velocities.

A. Mapping wheel velocities to robot velocity
Let the desired robot velocity in 2D be v = [vx, vy, ωz]

⊤ ∈
R3, where vx and vy are linear velocities along the X and Y
axis, and ωz is the angular velocity along the Z-axis. Also,
let the angular velocity of each of the four wheels denoted
by ω = [ωFL, ωFR, ωRL, ωRR] corresponding to the front-
left, front-right, rear-left, and rear-right wheels. For a desired
control signal v, the corresponding angular velocities (ω) of
the four wheel can be written as [29],

rωFL = vx + vy −Rωz, rωFR = vx − vy +Rωz, (3)
rωRL = vx − vy −Rωz, rωRR = vx + vy +Rωz, (4)

where r is the radius of the wheel, and R is the radius of the
robot with respect to its center.

B. Motor controller model
We use an 8-bit PWM signal to control the angular speed of

the motor through the H-bridge motor driver. For a wheel i ∈
{FL,FR,RL,RR} and its angular velocity ωi, we assume
the following inverse relationship with PWM signal upwm,i,

upwmi =
bi
ωi

+ ci, for each i ∈ {FL,FR,RL,RR}, (5)

where bi ∈ R and ci are unknown parameters. We collect
the motor velocities corresponding to the PWM signal as a
dataset. Then, we fit a least square model to estimate bi and
ci for positive and negative motor direction separately. The
estimated parameters bi and ci are shown in Table II. To drive

Table II
Hyper Parameters (b, c) for the Motor System Model

Wheel name i

Motor Direction Param FL FR RL RR

Positive bi 130.63 132.61 137.10 129.74
Negative bi -129.32 -133.68 -130.08 -132.54
Positive ci -4096.39 -4446.28 -4431.14 -3954.66
Negative ci -4089.71 -4585.02 -4080.27 -4167.72

the robot at a desired velocity v, we first estimate the wheel
velocities using (4) and then PWM signal using (5).
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VI. Experiments and Results
A. Effectiveness of motor system identification

To check the effectiveness of the motor system identifica-
tion, described in Section V, we tasked the robot controller
to follow a desired circular trajectory of radius 0.65 m with
a constant angular velocity. We evaluated two controllers
in their ability to follow the desired trajectory accurately,
(a) controller with system identification and (b) controller
without system identification. In the case of the controller with
system identification, the robot controller used the estimated
parameters bi and ci from Table II, and the robot’s position
per second was recorded. In the case of controller without
system identification, the robot controller used a linear model
from ωi to upwm,i with the slope estimated from the range
of wheel velocities and corresponding range of the PWM
signal. The trajectories followed by the robot are shown in
Figure 4. The trajectory’s root mean squared (RMS) deviation
without system identification is 0.297 m, which is 5.6 times the
deviation using our controller model with system identification
(0.053 m). From the expected trajectory’s radius of 0.65 m, the
deviation is 8.15% for our controller model and 45.69% for the
controller without using system identification. This shows that
system identification allowed us to effectively follow desired
trajectories with small errors that can be compensated by a
high-level feedback loop.

Figure 4. Left: Trajectories of the robot. Right: Deviation from the expected
trajectory with and without using the parameters from motor system identifi-
cation.

B. Payload capacity and battery capacity
Two experiments were conducted to determine the robot’s

payload capacity and runtime under a single battery charge.
To measure the payload capacity, weight was gradually added
to test the robot’s ability to move. If the robot was able
to gain a non-zero velocity, then the payload was increased
with intervals of 200g. We found that the maximum payload
capacity is at least 5.4 kg, excluding the robot’s mass.

To determine the robot’s battery capacity, we programmed
the robot to move to random goal points in the pre-built
map of the room, and the battery voltage was recorded as
a rosbag (ROS logging file format). We found the runtime of
the robot to be 1 hour and 33 minutes under a single discharge
of the 5200mAh battery (90% battery charge to 30% charge
remaining).

C. Odometry accuracy
We performed the mapping experiments in a 12.45×9.95 sq

m room at the University of Maine (Barrows Hall, Rm 201).
The room was first mapped using the ros-slam toolbox
library. The ros-slam toolbox uses LiDAR observations
and the robot’s position from wheel odometry to create a 2D
map and update the map continuously. Loop closure is used to
correct errors and ensure an accurate map of the environment.
It corrects the odometry to align the observed LiDAR scans
with the expected LiDAR scans from the map.

Figure 5. Mapping using LiDAR, Wheel Odometry, and
ros-slam toolbox. Left: robot’s and odometry’s trajectory. The
green arrows show the trajectory of the robot’s origin while creating the
map, and the red arrows show the trajectory of the odometry’s origin. Right:
the deviation of the robot’s and odometry’s pose (translation in XY axis,
orientation w.r.t Z axis) from the map’s origin.

To compare wheel odometry with ros-slam toolbox
provided trajectory, we navigated the robot in a full loop
around the room so that it comes back to the starting point. The
map and the trajectories are shown in Figure 5. Black colors
in the grid map represent space occupied by obstacles, white
represents free space, gray represents space yet to be updated,
and the purple dots represents the LiDAR scan. Note that the
LiDAR scans align with the walls and obstacles very closely,
which demonstrates the accuracy of ros-slam toolbox
trajectory. The wheel odometry trajectory is shown in red and
corrected ros-slam toolbox trajectory is shown in green.
The odometry’s estimated pose at the end of the trajectory
deviated from the starting pose by 5.64 m in translation and
1.66 rad in orientation. From this experiment, we conclude that
having an inexpensive LiDAR does not affect the performance.
However, the odometry data generated using the inexpensive
wheel encoder had notable errors, but ros-slam toolbox is
able to mitigate the errors without compromising the mapping
accuracy in this room. It is well understood that LiDAR based
mapping does not work well in locations with long featureless
corridors. Under such situations, the wheel odometry will
become more important, highlighting the trade-offs of using
low-cost wheel encoders.

D. Obstacle avoidance efficiency
For this experiment, a map of the room was built and

manually marked with landmark locations as explained in the
Setup phase (Section IV-A). We tasked the robot to navigate
to random landmark locations in the map, and to detect
and report any falls observed during the exploration. The
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flowchart of map exploration, fall detection and reporting is
shown in Figure 6 (Left). The landmark locations (A-G) and
the trajectories of the robot during 30 minutes of operation
are shown in green, shown in Figure 6 (Right). The robot
encountered only one collision during 30 minutes of operation.
The collisions may happen when the 2D map built by the
LiDAR scan does not match the 3D reality of obstacles. For
example, LiDAR might capture the stem of an office chair as
the obstacle but the robot encounters the feet of the chairs that
are wider than the stem.

Figure 6. Left: Robots workflow. Right: Occupancy grid map of a room with
landmarks A-G and robot trajectories. Black pixels indicate static obstacles,
white pixels indicate free areas; purple pixels indicate inflated obstacles, A-G
indicate manually marked landmark locations; and green lines indicate the
robot trajectories during the 30-minute robustness of autonomous navigation
experiment (see Section VI-D).

E. Fall detection

We collected a human fall dataset consisting of 128 images
captured from our robot’s POV, manually categorized into 62
images depicting human falls and 66 images depicting not-
falls under similar lighting conditions. This dataset was used
only for evaluating the methods, not training, and is available
on the project GitHub page.

1) Evaluating the fall detection pipeline: The fall detection
pipeline contains of 3 steps, (a) pre-processing (b) person de-
tection and human pose estimation and (c) fall detection from
human pose. We evaluate two options for the pre-processing
step: (i) robot POV, where no homography is applied to
the input image (ii) human POV where homographies are
computed based on the minimum and maximum distance in
the room, applied to the input image and highest confidence
results are picked. We evaluate five options for the person
detection step: n, s, m, l, x for each size of the YOLOv8-Pose
model from the smallest to the largest. Lastly, we evaluate
two options for the fall detection from human pose: (i) Rules-
based fall detection and (ii) MLP-based fall detection. All
model variations combined leads to 20 models. The accuracy
of these models on the dataset is plotted in Figure 8 (Right).
On average, across the five models, the homography improved
the accuracy by 6-12 percent. We note that human POV (our
contribution) improves accuracy over robot POV consistently.
Also Rules-based model has a better accuracy than MLP-based
model.

2) Robustness to homography: Our results from previous
section show that changing robot POV to human POV using
homography transform improves accuracy. This suggests that

YOLOv8 trained on MS-COCO is not robust to homographic
transformations of the original image. We validate this hy-

Figure 7. Applying Homography on a sample image in the data set. Left:
image taken from the robot’s POV. Right: transformed image to a human
POV.

pothesis in this experiment. We evaluate the performance
of the pre-trained YOLOv8n [27] model on homographic-
variations of MS-COCO validation dataset. To compute these
homographies, we vary the angle of view in the pitch direction
(downwards) (θ ∈ {0◦, 5◦ . . . , 55◦}) from the original human
viewpoint θ = 0 in the MS-COCO dataset. We assume a fixed
distance of 3m from the person to the camera. Then we trans-
form the MS-COCO validation images using the computed
homographies. These images are fed into YOLOv8-Pose-nano
for pose estimation. We compute F1-score (harmonic mean
of precision and recall) under different confidence thresholds
of and a fixed-distance threshold for pose estimation. The
resulting plot is shown in Figure 8 (Left). The results show
that homography-corruption of the MS-COCO dataset reduces
the F1 score of pose estimation at all confidence levels. The
mean F1 score of pose estimation drops from 0.789 to 0.745
and a drop in the mean average precision score (mAP50) for
the predicted bounding box from 0.911 (original dataset) to
0.638 (θ = 30◦).
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Figure 8. Left: F1 Score of Pose Estimation of MS-COCO validation dataset
using YOLOv8-Pose-nano. Right: Comparison of fall detection accuracy from
robot POV vs human POV. By transforming images from the robot POV to the
human POV through our Homography matrix, we could improve fall detection
performance by 6-12% across models. The x-axis indicates the 5 model sizes
(n)nano, (s)mall, (m)edium, (l)arge, e(x)tra-large of YOLOv8-Pose.

3) Qualitative results: Figure 9 shows the robot detecting
multiple fallen people and sending an email alert with the im-
age as an attachment. In this experiment, multiple individuals
are within the view of the robot, and the fall detection module
detects and reports the detected falls, accompanied by labeled
images. We demonstrate the robot searching for and detecting
a fallen person and then email a list of people to be alerted.
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The overall demo of the entire system working together is
shown as a video here2.

Figure 9. Left: Fall event detection in the presence of multiple people. Right:
Fall detected by the robot, and sample email generated by the system.

VII. Conclusion
We describe the design and development of a low-cost robot

with a novel design and a customized fall detection pipeline
that improves upon YOLOv8-Pose fall detection by a factor of
6-12%.

In the future, we will continue to improve the robustness and
accuracy of obstacle avoidance, autonomous charging, and fall
detection. We will also follow up on this work by testing this
setup in an elderly person’s house and getting user evaluations
regarding their comfort level with this product.
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[8] C. Menacho and J. Ordoñez, “Fall detection based on cnn models
implemented on a mobile robot,” in 2020 17th International Conference
on Ubiquitous Robots (UR), 2020, pp. 284–289.

[9] W. H. Chin, N. Nuo Wi Tay, N. Kubota, and C. K. Loo, “A lightweight
neural-net with assistive mobile robot for human fall detection system,”
in 2020 International Joint Conference on Neural Networks (IJCNN),
2020, pp. 1–6.

2https://youtu.be/wcP0rxez69o

[10] G. Chen and X. Duan, “Vision-based elderly fall detection algorithm for
mobile robot,” in 2021 IEEE 4th International Conference on Electronics
Technology (ICET), 2021, pp. 1197–1202.

[11] A. Wong, M. Famuori, M. J. Shafiee, F. Li, B. Chwyl, and J. Chung,
“Yolo nano: A highly compact you only look once convolutional neural
network for object detection,” in 2019 Fifth Workshop on Energy
Efficient Machine Learning and Cognitive Computing-NeurIPS Edition
(EMC2-NIPS). IEEE, 2019, pp. 22–25.

[12] Z. A. Mundher and J. Zhong, “A real-time fall detection system in elderly
care using mobile robot and kinect sensor,” International Journal of
Materials, Mechanics and Manufacturing, vol. 2, no. 2, pp. 133–138,
2014.

[13] L. Ciabattoni, F. Ferracuti, G. Foresi, A. Freddi, A. Monteriù, and D. P.
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microcontroller for optimal battery charging in a solar-powered robotic
vehicle,” IEEE/ASME Trans. Mechatronics, vol. 18, no. 3, pp. 1039–
1049, 2013.

[20] B. Joshi, R. Shrestha, and R. Chaudhary, “Modeling, simulation and
implementation of brushed dc motor speed control using optical incre-
mental encoder feedback,” 10 2014.

[21] Stanford Artificial Intelligence Laboratory et al., “Robotic operating
system.” [Online]. Available: https://www.ros.org

[22] J. A. Placed, J. Strader, H. Carrillo, N. Atanasov, V. Indelman, L. Car-
lone, and J. A. Castellanos, “A survey on active simultaneous localization
and mapping: State of the art and new frontiers,” IEEE Trans. Robot.,
vol. 39, no. 3, pp. 1686–1705, 2023.

[23] E. Alam, A. Sufian, P. Dutta, and M. Leo, “Real-time human fall detec-
tion using a lightweight pose estimation technique,” in Computational
Intelligence in Communications and Business Analytics, K. Dasgupta,
S. Mukhopadhyay, J. K. Mandal, and P. Dutta, Eds. Cham: Springer
Nature Switzerland, 2024, pp. 30–40.

[24] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13.
Springer, 2014, pp. 740–755.

[25] K. Wang, B. Fang, J. Qian, S. Yang, X. Zhou, and J. Zhou, “Perspective
transformation data augmentation for object detection,” IEEE Access,
vol. 8, pp. 4935–4943, 2019.

[26] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, 2nd ed. New York, NY, USA: Cambridge University Press,
2003.

[27] G. Jocher, A. Chaurasia, and J. Qiu, “Ultralytics yolov8,” 2023.
[Online]. Available: https://github.com/ultralytics/ultralytics

[28] U. K. Kandagatla, “Fall detection dataset,” Available at https:
//www.kaggle.com/datasets/uttejkumarkandagatla/fall-detection-dataset
(05/10/2024), 2022.

[29] H. Taheri, B. Qiao, and N. Ghaeminezhad, “Kinematic model of a four
mecanum wheeled mobile robot,” International Journal of Computer
Applications, vol. 113, pp. 6–9, 03 2015.

460


