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Abstract— This paper presents the concept, implementation,
feedback control, and experimental verification of a noncontact
magnetic manipulator that relies on a controllable array of
permanent magnets to manipulate magnetized objects inside a
workspace encircled by the magnets. To gain control over the
aggregate magnetic field inside the workspace, the position of
each magnet is independently controlled by a linear servomotor
that dynamically changes the distance between that magnet and
the workspace. By feedback control of the array of servomotors,
the magnetic force applied to a magnetized object inside the
workspace is dynamically adjusted to steer it along a desired
reference trajectory. The successful steering of a small magnetic
bead is demonstrated by experiments performed on a planar
magnetic manipulator, designed and prototyped with six linear
servomotors and six permanent magnets.

I. INTRODUCTION

This paper presents preliminary results from our ongoing

work on noncontact magnetic manipulation based on arrays

of permanent magnets and linear servomotors (LSM). The

magnetic manipulator proposed in this paper is schematically

illustrated in Fig. 1 and consists of an array of six axially

magnetized permanent magnets, each independently actuated

by an LSM to effectively control its distance from a circular

workspace. The aggregate magnetic field generated by the

array of magnets and controlled by the array of servomotors

is then leveraged to exert force on magnetized objects inside

the workspace, aimed to drive them in desired directions. By

feedback control of the array of servomotors, the magnetized

objects can be effectively steered along reference trajectories

within the workspace.

The magnetized object controlled inside the workspace can

be, for instance, a magnetically tipped catheter or any other

medical devices used for non- or minimally invasive surgical,

imaging, or drug delivery procedures [1]–[11]. These devices

can be safely navigated inside the patients’ natural pathways

by means of external magnetic fields produced and controlled

by a magnetic manipulator such as the one introduced in this

paper. For medical applications, magnetic manipulators often

need to produce relatively strong magnetic fields at distances

as far as several decimeters, which are more technically

feasible and economically viable to produce using permanent

magnets rather than electromagnets with substantially larger

size, weight, and cost [12]. Hence, the magnetic manipulator

proposed in this paper offers a more compact, less expensive

alternative to the existing electromagnet-based designs.
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The magnetic manipulator in this paper is composed of six

magnetomechanical units shown in Fig. 2, each consisting of

a permanent magnet bar and a linear actuator to adjust its

position along a nonmagnetic guiding cylinder. Each of the

units effectively emulates an electromagnet, and can replace

electromagnets in well established existing designs such as

OctoMag [13]. An important advantage of the proposed units

is that by pulling their magnets back from the workspace,

their magnetic fields can be practically turned off, as a safety

requirement not provided by other permanent magnet-based

designs [14]–[17].

To realize and experimentally validate the early concept of

this paper, we developed a benchtop experimental setup and

an early-stage feedback law for its closed-loop control. This

feedback law is aimed to drive a magnetic bead along desired

reference trajectories in the workspace of the experimental

setup by measuring its real-time position and correcting its

trajectory accordingly via the LSMs that control the magnetic

field inside the workspace. The control design procedure in

this paper is mainly inspired by our earlier work on magnetic

manipulators with rotatable permanent magnets [17].

The rest of this paper is organized as follows. In Section II,

first the concept of magnetic manipulation using permanent

magnets and linear actuators is presented, and then, the

implementation of this concept as an experimental setup is

discussed. Next in Section III, the dynamics of this set up is

modeled by a set of nonlinear state-space equations, which

is exploited in Section IV to develop a feedback control law.

Finally, experimental and simulation results are presented in

Section V to evaluate the performance of the developed setup

under feedback control.

II. BASIC CONCEPT AND SYSTEM DESIGN

The magnetic manipulator proposed in this paper relies on

arrays of magnetomechanical units encircling a workspace

in which magnetic objects can be manipulated without direct

contact. Each of these units consists of an axially magnetized

permanent magnet attached to a servomotor that can move it

back and forth inside a nonmagnetic guiding cylinder. Fig. 2

shows a prototype of such units developed in this work, and

Fig. 1 schematically illustrates a planar magnetic manipulator

formed by placing six of these units at equal distances around

a circular workspace. Obviously, 3D magnetic manipulators

can be developed based on 3D arrangements of a suitable

number of these magnetomechanical units.

The total magnetic field produced by the magnets of these

units can be effectively controlled inside the workspace via

controlling the distances of the magnets from the workspace
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Fig. 1. Schematic diagram of the magnetic manipulator proposed in
this paper with 6 axially magnetized permanent magnets around a circular
workspace. The magnetic field inside this workspace is controlled by 6
servomotors via adjusting the distances of the magnets from the workspace.

Fig. 2. Prototyped magnetomechanical unit consists of a permanent magnet
(inside the green holder) moving back and forth inside a nonmagnetic
guiding cylinder (white) using an LSM (black).

using the servomotors embedded in the units. This magnetic

field interacts with magnetic objects inside the workspace to

exert a controllable magnetic force on them, through which,

they can be driven in desired directions. By feedback control

of the magnetic force, the magnetic objects are then steered

along desired reference trajectories inside the workspace. The

feedback loop is established by measuring the positions of

these objects in real time, and feeding the measured values

to control algorithms that provide inputs to the servomotors.

To experimentally prove the proposed concept of magnetic

manipulation, we developed the benchtop experimental setup

of Fig. 3 to realize the magnetic manipulator of Fig. 1. This

setup utilizes six magnetomechanical units in Fig. 2, and a

high-speed camera fixed above the workspace to measure the

real-time position of a magnetic bead steered along reference

trajectories inside the workspace. This magnetic bead resides

inside a Petri dish housed within the workspace and filled

with a viscous fluid (corn syrup). For feedback control of the

magnetic bead, we developed an early-stage control law (12),

which was implemented on a desktop computer running the

real-time software LabVIEW. In addition, built-in modules

of LabVIEW were utilized to extract the position of magnetic

bead from the images captured by the camera in real time.

A. Experimental Setup

The experimental setup of Fig. 3 consists of several parts

and components, each separately designed using SolidWorks

and fabricated by 3D printing. The individual components

were next installed on a 3D-printed foundation that provides

six slots for installation of six magnetomechanical units in

Fig. 2, a holder for the Petri dish housing the magnetic bead,

and three holders for an adjustable camera mount. A 3-screw

mechanism was embedded in the foundation for its horizontal

adjustment using two orthogonal spirit levels. The structure

Fig. 3. Prototyped magnetic manipulator with 6 permanent magnet bars
evenly spaced around a circular workspace containing a magnetic bead. A
high-speed camera positioned on top of the workspace is utilized to estimate
the position of the magnetic bead to establish a feedback loop.

and design of the components comprising the setup of Fig. 3

are discussed below.

1) Magnetomechanical Unit: The main component of the

setup of Fig. 3 is the magnetomechanical unit of Fig. 2. This

unit consists of a cylindrical magnet bar attached to the rod

end of an LSM, both housed in a 3D-printed rigid structure.

The magnet bar is a grade N52, NdFeB, axially magnetized

cylinder of diameter 25.4 mm and height 25.4 mm, with a

strong surface field of 662 mT. The LSM is a mightyZAP

model L12-20PT-6 with 34 N maximum load, 80 mm/sec

maximum speed, and 56 mm stroke. It is attached to the

magnet by a 3D-printed connector that houses the magnet in

one side and connects to the rod end of the LSM from the

other side.

2) Workspace and Magnetic Object: The workspace is a

flat, circular area of diameter 64 mm, which can hold Petri

dishes of different diameters up to 64 mm. For experiments in

this work, a Petri dish of diameter 39 mm was used, and was

filled with transparent corn syrup to allow for optical tracking

of a magnetic bead inside the Petri dish. This magnetic bead

was chosen as a sphere of 3 mm diameter and 0.11 gm mass,

made of steel with a magnetic susceptibility of 1000.

3) Camera and Its Adjustable Mount: For tracking the

magnetic bead inside the workspace, the developed setup was

equipped with an Allied Vision Alvium 1800 U-158 camera

with a Moritex 5 Mpixel lens. This camera has a maximum

frame rate of 257 fps at 1.6 Mpixel. The video feed from

this camera is processed in real time by the Vision Assistant

module of LabVIEW relying on a computer vision algorithm

to estimate the position of the magnetic bead.

To properly focus the camera on the workspace, it is

installed on a 3D-printed adjustable mount, which is rigidly

attached to the foundation of the developed setup. The

camera mount can adjust the distance of the camera from the

workspace to attain the widest field of view and the highest

image resolution, which in turn, leads to the most accurate

estimates for the position of the magnetic bead. A pair of

orthogonal spirit levels are embedded in the camera mount

to adjust the axis of camera perpendicular to the workspace.
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Fig. 4. Planar diagram of the magnetic manipulator of Fig. 3 illustrating
a coordinate system (r1 and r2 denote its two orthogonal axes) fixed at
the center of workspace, the position vector r of the magnetic bead in that
coordinate system, and a reference point for the position of magnet k.

III. SYSTEM DYNAMICS

This section follows [15]–[17] to develop a set of nonlinear

state-space equations that represent the motion of a magnetic

bead moving in a viscous fluid inside the workspace of the

magnetic manipulator of Fig. 1. The magnetic bead has a

mass m and moves under the total magnetic force fmag (r, y)
generated by all magnets, and the Stokes’ drag fdrag (v)
(fluid friction) according to Newton’s second law of motion

mv̇ (t) = fmag (r (t) , y (t)) + fdrag (v (t)) . (1)

Here, r (t) is a 2-dimensional vector representing the planar

position of the magnetic bead at time t with respect to the

coordinate system of Fig. 4, and v (t) = ṙ (t) is its velocity in

the same coordinate system. The magnetic force fmag (r, y)
is a function of the position r of the magnetic bead, and also,

the positions of all 6 permanent magnets, gathered into the

6-dimensional vector y. The Stokes’ drag fdrag (v) is known

to be proportional to the velocity v of the magnetic bead [18],

i.e., fdrag (v) = −µv, where µ is a positive constant that

depends on the size of the magnetic bead and the viscosity

of its surrounding fluid.

By defining the constant σ = µ/m and the vector function

g (r, y) =
fmag (r, y)

m
, (2)

the Newton’s second law (1) is rewritten as

v̇ (t) = −σ v (t) + g (r (t) , y (t)) . (3)

The vector function g (r, y) in (2) represents magnetic force

per unit of mass or magnetic acceleration, and is determined

in Section III-A for the magnetic manipulator of Fig. 1.

The vector y in (2) contains the elements y1, y2, . . . , y6,

each representing the position of a permanent magnet with

respect to the center of workspace, as shown in Fig. 4. In

particular, yk denotes the position of the center of magnet

k = 1, 2, . . . , 6 along the direction

ρk =

[

cosφk

sinφk

]

, φk =
(k − 1)π

3
, (4)

and with respect to a point at a distance yref from the center

of workspace.

The control input to the magnetic manipulator of Fig. 1 is

a 6-dimensional vector u (t) containing the reference signals

u1 (t) , u2 (t) , . . . , u6 (t) to 6 servomotors, each controlling

the position yk (t) of its corresponding permanent magnet.

The relationship between the output yk (t) and input uk (t)
of each servomotor is described by a second-order linear

dynamics [19] via the transfer function

Hservo (s) =
ω2

n

s2 + 2ζωn s+ ω2
n

,

where ωn and ζ are positive constants known as the natural

frequency and damping ratio of the servomotor, respectively.

By representing this transfer function in time domain and

in vector form, and then concatenating the resulting equations

with ṙ (t) = v (t) and Newton’s second law (3), the dynamics

of the magnetic manipulator is expressed by the nonlinear

state-space equations

ṙ (t) = v (t) (5a)

v̇ (t) = −σ v (t) + g (r (t) , y (t)) (5b)

ẏ (t) = vy (t) (5c)

v̇y (t) = −ω2

n y (t)− 2ζωn vy (t) + ω2

n u (t) . (5d)

Here, vy (t) is a vector containing 6 servomotor velocities.

A. Modeling of Magnetic Acceleration

The magnetic field at a point r inside the workspace of the

magnetic manipulator of Fig. 1 is generated by 6 magnets

located at points represented by the vector y. This magnetic

field, denoted by h (r, y), is the source of the magnetic force

fmag (r, y) inside the workspace. The relationship between

these two fields is known [20] to be

fmag (r, y) = km∇‖h (r, y)‖2 , (6)

where km is a positive constant depending on the volume and

permeability of the magnetic object receiving the force, ∇
is the operator of gradient with respect to r, and ‖·‖ denotes

the Euclidean norm of vectors. By defining H (·) as the 2×2
Jacobian matrix of h (·) with respect to r and dividing both

sides of (6) by m, the magnetic acceleration is obtained as

g (r, y) =
2km
m

H (r, y)h (r, y) . (7)

A mathematical model of h (r, y) is developed in the rest of

this section.

Consider a coordinate system attached to magnet k with its

first axis aligned with −ρk defined in (4), and its other axis

perpendicular to ρk. In this coordinate system, the magnetic

field of this magnet is denoted by hc (r
′). Referring to Fig. 4,

let r be a point in the circular workspace, represented in the

r1−r2 coordinate system at the center of the workspace. This

same point is represented in the coordinate system attached

to the magnet k as

r′k = RT
k (r − (yref + yk) ρk) ,
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where Rk is a rotation matrix given by

Rk = −

[

cosφk − sinφk

sinφk cosφk

]

.

The total magnetic field h (r, y) is the superposition of 6
individual magnetic fields, with the contribution of magnet k
given by Rkhc (r

′

k), that is

h (r, y) =
6

∑

k=1

Rk hc

(

RT
k (r − (yref + yk) ρk)

)

.

The Jacobian matrix of this vector field is readily obtained as

H (r, y) =
6

∑

k=1

Rk Hc

(

RT
k (r − (yref + yk) ρk)

)

RT
k

in terms of the Jacobian matrix Hc (·) of hc (·). Throughout

this paper, hc (·) and its partial derivatives are computed

numerically via a combination of COMSOL finite element

simulations and least squares interpolation techniques.

IV. CONTROLLER DESIGN

For early experiments on the experimental setup of Fig. 3,

a simple linear controller is designed as a point of departure.

We are currently working to develop more effective control

laws based on more advanced control techniques such as

feedback linearization [16]. Our current linear controller is

designed based on an approximate model derived from the

nonlinear state-space equation (5) by linearizing it around its

equilibrium point at (r, v, y, vy) = (0, 0, 0, 0).
Based on the geometric symmetry of the magnets around

the center of workspace, it can be verified that g (0, 0) = 0.

Then, the magnetic acceleration g (r, y) can be approximated

by the first two terms of its Taylor series as

g (r, y) ≃ Gr (0, 0) r +Gy (0, 0) y, (8)

where Gr (·) and Gy (·) denote the 2× 2 and 2× 6 Jacobian

matrices of g (·) with respect to r and y, respectively. Again,

as a result of geometric symmetry, Gr (0, 0) is diagonal with

equal diagonal elements α, i.e., Gr (0, 0) = αI2×2, where

I2×2 denotes the 2 × 2 identity matrix. Also, the Jacobian

matrix Gy (·) is denoted by B, for the sake of simplicity.

Then, by replacing (8) into (5b), the nonlinear dynamics of

the magnetic manipulator is approximated by the linear state-

space equations

ṙ (t) = v (t) (9a)

v̇ (t) = α r (t)− σ v (t) +B y (t) (9b)

ẏ (t) = vy (t) (9c)

v̇y (t) = −ω2

n y (t)− 2ζωn vy (t) + ω2

n u (t) . (9d)

The control mission is to drive a small magnetic bead

along planar reference trajectories near the center of circular

workspace in the magnetic manipulator of Fig. 3. This goal

requires our designed controller to maintain the position r (t)
of the magnetic bead close to a reference trajectory rd (t). To

control the 2-dimensional output vector r (t), only 2 degrees

of freedom out of 6 control variables of u (t) are required.

Therefore, the control u (t) can be constrained to stay in the

column space of BT by defining the 2-dimensional auxiliary

control z (t) and generating u (t) according to

u (t) = BT
(

BBT
)−1

z (t) .

Substituting this expression into (9d) and then applying

Laplace transform to the linear state-space equations (9), the

relationship between r (t) and z (t) can be expressed in the

Laplace domain as

R (s) = H (s)Z (s) , (10)

where R (s) and Z (s) are 2-dimensional vectors denoting

the Laplace transforms of r (t) and z (t), respectively, and

the transfer function H (s) is given by

H (s) =
1

s2 + σs− α
·

ω2

n

s2 + 2ζωn s+ ω2
n

. (11)

It is observed from (10) that the dynamics of the first and

the second elements of r (t) are decoupled and are controlled

independently by the first and the second elements of z (t)
via the transfer function (11). For each of these single-input-

single-output dynamics, a proportional controller is designed

by the root locus of the transfer function (11). With a gain kp,

the resulting controller is expressed in the vector form

u (t) = −kp B
T
(

BBT
)−1 (

r (t)− rd (t)
)

. (12)

The performance of this feedback law is evaluated next by

experiments.

V. EXPERIMENTAL RESULTS

The feedback control (12) was implemented as a module in

the graphical environment of LabVIEW, updating the control

value every 96 msec. A gain value of kp = 121 was initially

obtained for this control using the root locus method with the

parameter values ωn = 39.8 rad/sec, ζ = 0.7, σ = 415 1/sec,

and α = 72.3 1/sec2 for the transfer function (11). Then, by

observing the performance of the controller in practice, the

numerical value of gain was fine-tuned to kp = 66 for the

best performance. This value was used for experiments under

different reference trajectories shown in Figs. 5, 8, and 9.

In the experiments, the reference input rd (t) was changed

in small steps, with a maximum deviation of 0.5 mm in each

direction. Also, the time interval between each incremental

change was maintained at a minimum of 1 sec, allowing the

magnetic bead to reach the steady-state in each small step.

The experimental results were compared with their simulated

counterparts in order to investigate possible discrepancies

between the experimental setup and its mathematical model.

In the first experiment, a square of 6 mm side length

centered at the origin was adopted as the reference trajectory,

shown in blue in Fig. 5. At the beginning of the experiment

t = 0, the magnetic bead was positioned at the origin, and

then, the reference input rd (t) was changed from (0, 0) mm

to (3, 3) mm in small steps. This segment of the reference

trajectory is shown (in blue) more clearly in Fig. 6(a). Next,
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Fig. 5. Trajectory of a magnetic bead (red) tracking a square-shaped
reference (blue) of side length 6 mm, generated by (a) experiment, and (b)
computer simulation.

starting from (3, 3) mm, the reference input was changed

until completing the trajectory. The trajectory of the magnetic

bead is shown (in red) in Figs. 5(a) and 6(a).

It is observed from these figures that the magnetic bead

closely tracks the reference trajectory, while the simulation

results in Figs. 5(b) and 6(b) indicate a significant deviation

from this trajectory. This observation can be explained by

a mismatch between the experimental setting and the model

parameters. The first element r1 (t) of the position r (t) is

illustrated versus time in Fig. 7 for the same experiment

of Fig. 6. Even though the simulation results demonstrate a

relatively large tracking error, this error is much smaller for

experiment. Completing the entire reference trajectory has

taken around 35 sec for the actual magnetic manipulator,

versus 30 sec for its simulator.

Next, the control performance was evaluated when rd (t)
changes at large steps. For this purpose, a square of 4 mm

side length was considered, and the reference input rd (t) was

abruptly changed from one vertex to another within 1 sec

for each jump, starting from the first vertex (2, 2) mm. The

trajectory of the magnetic bead under this reference input is

shown in Fig. 8. Instead of travelling 3 mm within 35 sec in

Fig. 7, the magnetic bead in Fig. 8 travels 16 mm in 4 sec at

a much higher speed. However, closely observing the path

traced by the magnetic bead in Fig. 8 indicates an increased

Fig. 6. Comparison of the trajectories of magnetic bead (red) generated
by (a) experiment and (b) simulation for a reference input (blue) changing
from (0, 0) to (3, 3).

Fig. 7. Position of magnetic bead along r1 axis versus time (red), generated
for the same reference trajectory (blue) of Fig. 6 by (a) experiment and (b)
simulation.

tracking error compared to that of Fig. 5(a).

In the last experiment, the path tracking performance was

evaluated for more complex reference trajectories in Fig. 9.

A major observation in this experiment is a gradual increase

in the tracking error as the magnetic bead moves away from

the center of workspace. Since the controller was designed

based on a linearized model, the most likely cause of this

observation is the nonlinearity of the magnetic manipulator,

not reflected in its approximate linear model, particularly as

the magnetic bead moves away from the equilibrium point.

VI. CONCLUSION

A novel concept for magnetic manipulation was proposed,

implemented as a benchtop setup, and validated by a series of

experiments. Magnetic manipulation by this concept relies on

arrays of magnetomechanical units consisting of permanent

magnets moving back and forth inside nonmagnetic guiding

cylinders. Each of these units effectively emulates the same

functions of an electromagnet in generation and control of

magnetic fields, but control over the magnetic field is gained

in these units by adjusting the position of magnets inside

their guiding cylinders, versus terminal voltages in the case

of electromagnets. At similar strength of magnetic field, these

units can be manufactured smaller in size and weight and less

expensive in cost, and therefore, offer a viable alternative to

electromagnets, in particular for medical applications which

often need strong magnetic fields at relatively far distances.
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Fig. 8. Magnetic bead tracking (red) a square-shaped reference trajectory
(blue) of 4 mm side length under the control law (12). Starting at t = 0,
Figs. 8(a) through 8(d) have been recorded at t = 1.00 sec, t = 1.90 sec,
t = 3.10 sec, and t = 4.10 sec, respectively.

Fig. 9. Trajectories of a magnetic bead (red) tracking complex references
(blue): (a) spiral trajectory with 15 mm maximum distance from the center;
and (b) SIU-shaped trajectory. The tracking error grows considerably large
with the distance from the center of workspace.
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