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Abstract— Aging is one of the main causes of weakness in
mobility and a high risk of falling due to the degradation
of neuromuscular and skeletal systems. Tremendous cable-
driven robotic assistive devices have been proposed in recent
years with the goal of fall risk mitigation and rehabilitation
interventions. However, most of them require sophisticated
structure and mechatronics design, leading to a relatively bulky
nature. In this study, we developed a cable-driven robotic
platform for waist perturbation. A lightweight load cell is
installed between the end of the cable and a wearable waist belt
to measure the pulling force in real time. A closed-loop adaptive
full-state feedback control with reference input is proposed
to guarantee good torque trajectory tracking performance.
Preliminary benchtop and human subject testing with the
proposed controller demonstrated an improved force tracking
performance of sinusoidal force profiles ranging from 20 N to
80 N, with Root Mean Square Error (RMSE) values of 2.6 N
to 10.6 N during fixed-object perturbations and 3.4 N ± 0.2 N
to 12.7 N ± 1.0 N during standing perturbations, respectively,
as compared to a RMSE of 5.6 N to 21.4 N and 7.1 N ±
0.6 N to 33.7 N ± 2.9 N with the traditional proportional-
integral-derivative controller using the same force profile and
magnitudes, and under the same perturbation conditions. The
hardware and control development of this robotic platform
will be used for balance perturbation studies during static
standing and human-in-the-loop optimization control studies
during dynamic walking tasks.

I. INTRODUCTION

Falls are a leading contributor to injury and hospitalization
among older adults [1]. One in three adults above 65 falls
once a year, leading to injury, traumatic and psychological
consequences, or death [2]. Fall-related accidents in the
U.S. cost the healthcare system about $50 billion dollars a
year [3]. Therefore, improved fall-prevention technologies
are quite important for society.

Most falls are due to internally generated errors and
external bumps leading to undesirable center of mass (COM)
movement [4]. The most common fall conditions in older
adults living in care facilities include slips, trips, bumps,
and incorrect weight shifting [5]. One of the causes of
loss of balance and reduced gait function in older adults

*This work was supported by the FOAP at the University of
Alabama #13009-214271-200. Corresponding author: Qiang Zhang
(qiang.zhang@ua.edu).

1O. Akinniyi and Q. Zhang are with the Department of Mechanical
Engineering, the University of Alabama, Tuscaloosa, AL 35401, USA. Q.
Zhang is also with the Department of Chemical and Biological Engineering,
the University of Alabama, Tuscaloosa, AL 35401, USA.

2M. Sharifi is with the Department of Mechanical Engineering, San Jose
State University, San Jose, CA 95192, USA.

3D. Martelli is with the Orthopedics/Sports Medicine Department, Med-
Star Health Research Institute, Baltimore, MD 21218, USA.

is the decline in muscle strength in the lower limb [6]. The
application of external perturbations on the COM could be
used in balance recovery training where subjects can improve
their balance in response to repeated waist perturbations,
consequently reducing the number of falls in real life.

Recent trends in COM-related falls and the advantages of
studying falls in the laboratory have led to an increase in
the development and use of robotic devices for fall risk re-
duction interventions and rehabilitation [7]. Researchers use
these devices to simulate real-world fall conditions like hits,
bumps, and incorrect weight shifting in the laboratory, safely
applying physical perturbations to subjects and examining
their fall behaviors. Cable-driven robotic devices have been
used for waist perturbation in balance [8], gait improvement
[9], and rehabilitation studies [10], [11]. Compared to wear-
able robotic devices, they are versatile due to their ability
to adapt to different human movements and add minimal
weight to users. Even though cable-driven robotic devices for
waist perturbation exhibit great benefits in studying balance
recovery reaction [12], reducing human energetic consump-
tion [13] or improving gait functions [14], the hardware
design and control approach development would have higher
requirements to achieve desired outcomes.

A major component of these devices’ development is the
control strategy, which enables the device to effectively track
the force applied to the subject and ensure a controllable,
safe, and permissible range of operation. From the state-
of-the-art studies, most of these devices use proportional-
integral-derivative (PID) controllers, as described in [15],
which requires careful PID control gains tuning before
achieving an acceptable force control performance. Another
study employed a quadratic programming-based optimization
scheme to determine the optimal cable tension, which serves
as feedback for a PID controller [16]. Existing studies
[15], [17], [18], typically focus on the constant horizontal
force applied on the trunk and evaluate the effects on
the user’s gait, biomechanics, and energetics. Under this
scenario, known as a regulation problem in the control field,
a traditional PID-type control is usually applied without con-
sidering the system dynamics or time-varying characteristics
of the horizontal cable force reference. Therefore, it cannot
address challenges in real experimental scenarios, such as
non-linearity, human-robot interaction, and so on.

In this study, we developed a modular cable-driven robotic
platform suitable for studying human balance and gait char-
acteristics. This device can administer various force profiles,
a magnitude of up to 120 N, and a minimal rise time of 29
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Fig. 1: The system setup. A subject standing on the treadmill
with the cable connected from the actuation unit to the
waistbelt. The device frame is attached to the wall.

ms for a unit step reference input. To improve end-effector
force tracking performance, we developed a closed-loop
adaptive Kalman filter-based full-state feedback controller
with the reference input. The control gains were first care-
fully designed in a simulation study, where a linear dynamic
model between the input voltage and output cable force was
identified. Then, the same control gains were applied to the
experimental studies, where we tested the performance of the
controller with different force profiles using a fixed object,
and human subjects in standing and walking conditions. This
study is focused on the performance testing of the robotic
platform and the developed controller.

II. MECHATRONICS DESIGN OF THE CABLE-DRIVEN
ROBOTIC PLATFORM

A. Structural design

We developed a cable-driven robotic platform shown in
Fig. 1, capable of applying pulling force at the subject’s
COM (around the waist). The system setup, including the
actuation unit, controller, and other hardware components,
is illustrated in Fig. 2. The actuation unit is housed in a
3D-printed case and mounted on a rolling base attached to
a T-slotted frame. The frame can be easily assembled and
disassembled, with screws for wall attachment. A lightweight
force sensor connects the waistbelt to a cable, which passes
through a pulley to a direct-drive EC motor. A breakaway
cable ensures subject safety by disconnecting in case of
excessive force. An emergency button stops system operation
in case of malfunction.

Fig. 2: The system overview. (A) The sensing unit amplifies,
and conditions input voltage from the force sensor; (B) The
input-output data acquisition unit integrates the sensing and
actuation units to the controller on the computer system; (C)
The full state feedback controller with reference input and the
Kalman filter tracks the reference force; (D) The actuation
unit transfers torque to the cable connected to the waist.

B. Actuation unit

A computer system with Matlab Simulink (MathWorks,
Natick, MA, USA) software controlled actuation signals
through a control unit (Quanser Q8-USB, ON, Canada) to
drive an EC-motor (EC 90, Maxon Group, Switzerland)
actuator. Forward force profiles were generated using an
EC 90 motor (ESCON 70/10, Maxon Group, Switzerland)
powered by a 48-volt DC power supply (RSP200048, Mean-
well, Taiwan). A motor driver (ESCON 70/10, Maxon Group,
Switzerland) with a series-connected shunt regulator (DRS
70/30, Maxon Group, Switzerland) manages motor control
and current dissipation. The force from the actuator is
transmitted via a 1.1 mm diameter cable with a breaking
strength of 890 N. A 3D-printed flange shaft coupler and
spool drum assembly prevent cable tangling during spooling.
The EC motor is mounted on a 3D-printed frame bolted to a
T-slotted (80/20, IN, USA) aluminum frame. An adjustable
pulley (3211T32 Macmaster Carr, USA) attached to the T-
slotted frame allows for angle adjustment of the applied
force. Forces are applied to participants using a waist belt
positioned to align with the subject’s center of mass [18].

C. Sensing system

Applied forces to subjects were measured using a
lightweight load cell (MLP-50, Transducer techniques, CA,
USA). The load cell was mounted at the attachment point
(waist belt) with the subject. This configuration eliminates
oscillations or movements in the cable component during
force measurement, ensuring that the measured force accu-
rately represents the force applied at the waist belt without
any additional influence from the cable’s movement. Similar
configurations were used in [15], [16], while others placed
the load cells away from the attachment point [10], or
determined the forces using a compression spring [9]. Analog
voltages measured by the loadcell are filtered with a 2nd-
order Butterworth filter at a cutoff frequency of 50 Hz using
a signal conditioner (Flintec EA250 analog amplifier, MA,
USA). The conditioned voltages are read by a computer
system through the input port of a data acquisition system
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Fig. 3: The load cell calibration result plot.

(DAQ) (Quanser Q8-USB, ON, Canada). The load cell and
signal conditioner were powered by a 24V DC workbench
power supply.

III. SYSTEM IDENTIFICATION OF THE DYNAMIC MODEL

We calibrated the load cell to ensure an accurate reading
of the measured force during experiments. These measure-
ments are essential for assessing the effectiveness of the
perturbation applied to the subject’s waist. Additionally, we
developed an adaptive controller capable of dynamically
adjusting to changes in the subject’s movement patterns.
The controller’s output voltage to the motor is instrumental
in controlling the perturbation intensity or timing, thereby
ensuring optimal responsiveness. To ensure safety during
experiments, we included additional safety bounds in the
controller design.

A. Load cell calibration

An experimental test was done to calibrate the load cell,
with the aim of ensuring precise and reliable measurements
of the forces exerted on subjects’ waist during perturbation,
and to maintain these forces within safe limits. The load cell
was fixed to a vertical beam at the top and a screw eye to
the opposite end of the load cell. To apply the load, eight
steel blocks were used, and the mass of the blocks including
the screw eye was measured with a force plate (AMTI, MA,
USA), all have a mass of 17.2 kg.

First, the initial reading was taken from the load cell
without adding any loading as a baseline measurement. Then,
the steel blocks were added progressively, while the load
cell reading was recorded. The recorded load cell readings
and the added reference loading weights represent the load
cell’s response to varying loads, which is demonstrated in
Fig. 3. Considering the maximum applied horizontal force
on the waist reported in the literature, we selected the first
12 points and calculated the linear relationship between the
load cell output voltage and applied reference force. The
linear equation was further used in force tracking control
design and results analysis in subsequent sections.

TABLE I: Pseudo-code algorithm used for SI

Input: Input SISO data into Matlab SI toolbox
Step 1: Plot and process data
Step 2: Estimate linear models using quick start tool
Step 3: Select model with the best fit
Step 4: Estimate transfer function models
Step 5: Determine nominal transfer function model

B. Voltage input vs. load cell measurement identification

To determine the system step response, a set of customized
codes was written in Matlab-Simulink which sends step
input signals through the DAQ to the actuator of the cable-
driven robotic system and applies a force through the cable
on a hard-fixed object. The DAQ simultaneously reads the
equivalent force measured by the load cell at the end-effector
at a sampling frequency of 500 Hz. Step inputs of magnitudes
ranging from 0.5 V to 13 V, increasing by 0.5 V increments
were applied to the system to examine its step response. For
each step input applied to the system, the resulting load cell
measured force was saved on a spreadsheet. We used the
system identification (SI) toolbox in Matlab to estimate and
validate linear models from the single-input/single-output
(SISO) system acquired from the step response test. The goal
is to find a model that best describes the system’s dynamics.
The collected data samples were imported into the Matlab
workspace using the SI toolbox. Each signal channel of the
SISO system was plotted and processed, removing offsets
from the data. After processing, the data was used for quick
model estimation and validation using the SI quick start tool.
The model-based output signal and the measured force signal
were plotted and compared to determine the best-fit model
under each step input condition. After adjusting the numbers
of zeros and poles of the transfer function in the SI toolbox,
we found the best-fit transfer function model contained 3
poles and no zeros. Therefore, we selected the same format
for all transfer functions under different step input conditions.
The algorithm used for the system identification is presented
in Table I.

We calculated the average value of the corresponding
coefficients of each term across a group of transfer functions
obtained from the step response of the system and determined
the nominal transfer function model as

T (s) =
1480000

s3 +75.472s2 +4212s+127000
. (1)

IV. KALMAN FILTER-BASED FULL-STATE FEEDBACK
CONTROL WITH REFERENCE INPUT

The identified third-order nominal dynamic model in (1)
can be represented as the state space equation form as

ẋ =

 0 1 0
0 0 1

−127000 −4212 −75.472

x+

 0
0

1480000

u

y =
[
1 0 0

]
x,

(2)

where state variables are defined as x = [ f , ḟ , f̈ ]T and f is
the force measurement from the load cell.
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If all state variables are available and reliable from some
kinds of sensors, we can define the full state feedback control
law of a linear combination of the state variables, that is

u(t) =−Kx(t) =−[k1, k2, k3][x1, x2, x3]
T , (3)

where k1, k2, and k3 are the control gains. However, for
the real dynamic system in (1), the available reliable mea-
surement is the force signal from the load cell, while the
first-order and second-order time derivatives of the force
signal are relatively noisy and can easily deteriorate the
controller performance. To address the unmeasurable state
variables issue, a Kalman filter with the nominal third-
order linear model was used to get the estimates of state
variables, x1, x2, and x3, to be used for the full-state feedback
control design. Then the new full state feedback control law
is given as u(t) = −[k1, k2, k3][x̂1, x̂2, x̂3]

T . The proposed
control diagram is demonstrated in Fig. 4. Typically, the
general control law in (3) does not consider a reference input,
and it could lead to steady-state error easily. Therefore, it is
required to compute the steady-state values of the state and
control input that will result in zero output error and then
force them to take these values.

In the current control development, assume the desired
final (steady-state) values of the state and the control input
are x̂ss and uss, then the new control law should be given as

unew(t) = uss −K(x̂− x̂ss), (4)

where u = uss as long as x̂ = x̂ss (no state variable error).
To select the correct final values, those equations must be
solved so that the system will have zero steady-state error
to any constant input. Recall the state space equation in (2),
the steady-state condition can be written as

0 = Ax̂ss +Buss, yss =Cx̂ss. (5)

To solve for the values for which yss = rss for any value
of rss, some substitutions are given as x̂ss = Nxrss and uss =
Nurss. Then the form in (5) can be written in a matrix format[

A B
C 0

][
Nx
Nu

]
=

[
0
1

]
. (6)

where the variables Nx and Nu in the equation above can be
calculated below [

Nx
Nu

]
=

[
A B
C 0

]−1 [0
1

]
. (7)

With these values, the complete control law for introducing
the reference input to get zero steady-state error is given as

unew = Nurss −K(x̂−Nxrss) =−Kx̂+(Nu +KNx)rss. (8)

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Experimental protocol

Three able-bodied participants (all male; mean age: 29.3
yrs) were recruited in the preliminary study. All participants
are healthy with no musculoskeletal, neuromuscular, or ma-
jor medical problems. All participants signed an informed

Fig. 4: The Control block diagram for introducing the
reference input with full-state feedback.

consent form approved by the Medical Institutional Review
Board of the University of Alabama (#21-06-4695-R2).

We tested the proposed controller and a PID controller
under three conditions: (C1) end-effector fixed-object con-
ditions, (C2) human subject static standing conditions, and
(C3) human subject treadmill walking conditions. The PID
controller gains were manually tuned based on the ex-
perimenter’s observation. For C1, the end-effector of the
system was attached to a fixed-object structure placed 1.52
m away from the motor installation frame, and the cable
was preloaded with a force of 2 N. Reference step and half-
sinusoidal (only non-negative values included) forward pull
force profiles (magnitude: 5 N to 80 N, sinusoidal signal
frequency: 1 Hz) were programmed in Simulink, to generate
the control command to the motor for the force tracking at
the end-effector through the cable. For C2, the end-effector
was attached to the waistbelt worn by human subjects. The
same forward pull force profiles were applied to the subjects
in the anterior position while standing approximately 1.52 m
from the motor installation frame. For C3, a sinusoidal force
profile (magnitude: 10 N, 20 N, and 30 N; frequency: 1 Hz)
corresponding to the approximate walking step frequency of
the subjects was applied to the waist while walking on the
treadmill (Horizon Fitness, WI, USA) [9] at a fixed speed
of 0.8 miles/hour. The subjects were asked to relax and not
oppose the waist pull during the experiment. The following
control parameters were used in the experimental study

K =
[
12.8924 0.1539 0.0005

]
,

Nu = 0.0858,

Nx =

1
0
0

 .

B. Results under multiple conditions

For each experimental condition, we recorded the ref-
erence force, measured force, and the controller output
voltage to the motor. Given that we conducted many testing
trials under the three conditions in the current study, we
only provide some exampled end-effector force closed-loop
control performance here. As shown in Fig. 5, the step
response to a 20 N reference signal was used to evalu-
ate percentage overshoot, rise time, and steady-state errors
across the three conditions, considering one subject in C2
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(a) (b) (c)

(d) (e) (f)

Fig. 5: Closed-loop force trajectory tracking under fixed-object, standing, and walking conditions. (a) Step response with
end-effector fixed-object condition; (b) Step response with a subject standing; (c) Step response with a subject walking
on a treadmill; (d) Sinusoidal response with an end-effector fixed-object condition; (e) Sinusoidal response with a subject
standing; (f) Sinusoidal response with a subject walking on a treadmill. Red dashed lines (ref) represent desired force signals.
Blue solid lines represent measured load cell force signals. Green dashed dot lines represent the errors between the desired
and measured force data.

TABLE II: Force regulation performance with step reference
input signals.
Step response with the three conditions with step input; C1 = fixed-object

condition, C2 = standing condition, and C3 = walking condition. sse =
steady-state error.

magnitude overshoot (%) rise time (ms) sse (%)
20 N 19.4 32 5.9

C1 50 N 32.9 30 19.4
80 N 34.1 29 4.8
20 N 51.3 ± 8.8 80.0 ± 2.8 11.0 ± 4.2

C2 50 N 53.1 ± 4.7 73.0 ± 2.1 8.4 ± 2.3
80 N 48.5 ± 1.5 66.0 ± 0.7 13.1 ± 8.1
10 N 85.9 ± 12.4 98.0 ± 13.4 9.8 ± 10.6

C3 20 N 55.9 ± 7.2 74.7 ± 6.6 24.8 ± 13.3
30 N 53.8 ± 8.8 84.0 ± 2.83 18.9 ± 24.0

and C3. The percentage overshoots for conditions 1, 2, and
3 are 19.4%, 57.5%, and 47.7% respectively. Rise time in
C1 for a magnitude of 20 N, was observed to be 32 ms.
Under C2, the same magnitude profile exhibited a rise time
of 80 ms. C3 resulted in a rise time of 81 ms, for the same
magnitude. Regarding steady-state errors, in C1, a magnitude
of 20 N yielded a value of 5.9%. For C2, the corresponding
steady-state error is 8.0% with a magnitude of 20 N. C3
resulted in a steady-state error of 19.5% for a magnitude

TABLE III: Force tracking performance with sinusoidal
reference input signals.

Results of the three conditions with sinusoidal reference signals; C1 =
fixed-object condition, C2 = standing condition, C3 = walking condition.

RMSE = Root Mean Square Error, RRMSE = RMSE/magnitude.

magnitude RMSE (N) RRMSE (%)
20 N 2.6 13.2

C1 50 N 6.9 13.8
80 N 10.6 13.3
20 N 3.4 ± 0.2 17.0 ± 1.0

C2 50 N 8.3 ± 0.2 16.6 ± 0.4
80 N 12.7 ± 1.0 15.9 ± 1.3
10 N 3.9 ± 2.2 39.0 ± 22.0

C3 20 N 5.1 ± 1.0 25.5 ± 5.0
30 N 5.8 ± 0.7 19.3 ± 2.3

of 20 N. To assess the system’s ability to track time-varying
reference forces, we applied a sinusoidal signal of magnitude
20 N to the system under the three conditions, considering a
subject in C2 and C3. In Conditions 1, 2, and 3, the system
tracked the sinusoidal reference input with relative errors
( RMSE

magnitude∗100) of 13.2%, 17.6%, and 20.5%, respectively.
Statistical results across all subjects and trials are presented
in Tables II and III.
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C. Discussions

A critical aspect of a human perturbation system is its
ability to rapidly apply perturbation in less time than it
takes for subjects to respond to a stimulus. Human response
times are typically between 45 ms to 60 ms, with a stretch-
reflex delay model suggesting approximately 90 ms [19]. Our
system demonstrated high responsiveness, with a minimum
rise time of 29 ms, making it suitable for perturbation
in human balance and gait experiments. A Similar study
attained a rise time of 44 ms [18]. Compared to conventional
PID controllers, our controller showed higher responsiveness,
achieving a rise time range of 29 ms to 32 ms for input
magnitudes from 20 N to 80 N. The proposed controller
demonstrates significant potential in terms of accuracy by
efficiently regulating its behavior in response to disturbances.
This capability is crucial for achieving reliable and safe re-
sults across different trials and experiments. This is evident in
the reduction of the RMSE in both C1 and C2. Specifically,
when tracking sinusoidal reference inputs ranging from 20
N to 80 N, the proposed controller achieved relative RMSE
values between 13.2% and 13.8% in C1. In contrast, a
PID controller yielded relative RMSE values between 25.8%
and 26.8% under identical input magnitudes. Similarly, in
C2, the proposed controller attained relative RMSE values
ranging from 15.9% ± 1.3% to 17.0% ± 1.0% for the same
range of input magnitudes. Conversely, the PID controller
yielded considerably higher relative RMSE values, ranging
from 35.6% ± 2.6% to 42.1% ± 3.6% under identical
experimental conditions.

VI. CONCLUSION

In this work, we developed a cable-driven robotic plat-
form for waist perturbation, designed an adaptive full-state-
feedback control approach for cable force trajectory track-
ing, and evaluated the force control performance through
benchtop testing and preliminary human subjects testing. The
experimental results demonstrated reliable sinusoidal input
force tracking outcomes across a range of magnitudes: 20 N,
50 N, and 80 N. In the end-effector fixed-object condition,
the system showed consistent force-tracking outcomes with
RMSE values of 2.6 N, 6.9 N, and 10.6 N respectively. In
the human standing condition, RMSE values of 3.4 N ± 0.2
N, 8.3 N ± 0.2 N, and 12.7 N ± 1.0 N respectively were
recorded. Moreover, during the human treadmill walking,
RMSE values of 3.9 N ± 2.2 N, 5.1 N ± 1.0 N, and
5.8 N ± 0.7 N were recorded for force magnitudes of
10 N, 20 N, and 30 N respectively. These results show
the system’s adaptability and reliability across diverse ex-
perimental conditions, highlighting its potential for use in
balance and gait experiments. Our next step will focus on
the design of a hierarchical control framework to personalize
the waist assistance level for 1) older adults with a control
objective of maximizing gait balance or 2) healthy human
users with a control objective of minimizing lower-limb
muscle contraction activities while walking on the treadmill.
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