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Abstract— This paper introduces a loco-manipulation strategy
for a quadruped robot operating on deformable terrains. A com-
plete spatial robot model is built as the controlled system. Linear
and nonlinear spring-damper models are adopted to represent the
terrain deformation. The Operational Space Formulation (OSF) is
employed to map the configuration space dynamics to task space
dynamics. The Model Predictive Control (MPC) methodology is
studied and implemented to direct the controlled system. The
operational space motion equations and their interaction with
deformable terrain are used as the fundamental model for the
MPC framework. A force control strategy is employed on the
legs to counteract gravitational effects and stabilize the body on
deformable terrain, while a motion control strategy is applied to
the arm for the object-manipulating task. The simulation results
demonstrate that the proposed controller is feasible for these
applications.

I. INTRODUCTION

In recent years, the field of robotics has witnessed a
paradigm shift towards the development and utilization of
versatile robotic platforms capable of navigating complex
and dynamic environments. Among these, quadruped robots
have emerged as a promising solution, showcasing remarkable
agility, stability, and adaptability. They have significant poten-
tial for conducting complex tasks within hazardous environ-
ments. During the execution process, both body movement and
object manipulation are required. Development and experimen-
tation on this topic are primarily configured under rigid terrain
conditions. However, most of the hazardous environments
contain irregular and deformable terrains. This paradigmatic
shift is especially evident in the intersection of robotics and
geomechanics, where the exploration and manipulation of
deformable terrains have become a focal point of research
and development. Deformable terrains, such as loose soils,
sand, mud, and gravel, pose unique challenges for traditional
wheeled or tracked robotic systems. The unpredictable nature
of these terrains demands innovative approaches to locomotion
and manipulation, and quadruped robots have proven to be
exceptionally well-suited for such tasks. The utilization of
quadruped robots on deformable terrains for loco-manipulation
tasks holds significant promise and importance for their min-
imized environmental impact, enhanced versatility and adapt-
ability, human-robot collaboration potential, and optimized
energy efficiency.
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In conclusion, the convergence of quadruped robots and
deformable terrains for loco-manipulation tasks represents a
transformative step forward in the field of robotics. The in-
herent advantages of quadrupedal locomotion, coupled with
precise manipulation capabilities, unlock new possibilities for
applications in diverse domains. As research continues to push
the boundaries of robotics and geomechanics, the integration
of quadruped robots into deformable terrains promises to
redefine the landscape of robotic exploration, interaction, and
intervention.

A. Literature Review

Loco-manipulation is one of the latest topics researched
on mobile robotics. It involves two task aspects: locomotion,
which involves changing the robot’s position and orientation
during the process, and manipulation, which aims to reach,
manipulate, and move target objects from the external environ-
ment. Mobile robots with external manipulators are generally
used to conduct loco-manipulation tasks, as most locomotive
driving systems are not designed for manipulation. In nu-
merous experiments on arm-mounted quadruped robots, it is
typical to adopt a commercial robotic trunk and a custom-made
arm specifically designed and attached to the robot. Several
quadruped robots have also been developed and presented
by research institutes worldwide. Gong et al. reviewed the
object manipulation tasks performed by legged robots [1]. They
classified these manipulation tasks into six categories: pushing,
kicking, grasping with a single leg, double-legged grasping,
whole-body grasping, and manipulating with non-locomotive
arms.

Many researchers are focusing on Whole-Body Control
(WBC) in legged robots [2], [3]. It is a very important method
to exploit the full capabilities of the floating-base robots in
compliant multi-contact interaction with the environment. By
definition, a control system that is specifically designed to
guarantee the execution of a single task, even if it uses all
the joints of a robot, cannot be considered WBC. Hence, loco-
manipulation is a great example of WBC to execute multiple
tasks with a single control system. Ferrolho et al. presented
a loco-manipulation strategy that has balance maintenance to
a simultaneous combination of locomotion and manipulation
through WBC for a quadruped robot [4]. Chiu et al. integrated
a 6 Degrees of Freedom (DoF) Jaco arm onto ANYmal and
proposed a WBC-based method since the joints of both the
floating base and the arm are controlled by a unified controller
[5]. Xin et al. applied a WBC-based controller on an arm-
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mounted quadruped robot with 24 DoF. A joint PD controller
for the arm and a hierarchical quadratic programming method
for the base are utilized for loco-manipulation mode [6].

MPC is one of the other methods referred to in loco-
manipulation operations. Chang et al. proposed a con-
trol methodology for loco-manipulation tasks where a joint
PDMPC controller combining MPC and PD compensator for
unexpected dynamics in the robotic system is developed. The
PD compensator takes effect when there is a large difference
between the designed control model and the real system [7].
Sleiman et al. presented a WBC methodology in association
with nonlinear MPC. This approach includes the coupling
effects between the base, arm, and object in a unified planning
framework through the WBC methodology [8].

B. Contribution

Although there is a variety of research focusing on loco-
manipulation, none of them considers the behavior of de-
formable terrains. Although MPC has been a very hot topic on
legged robots in recent years, interestingly, loco-manipulation
has a few application examples. In this study, we propose a
WBC strategy for loco-manipulation on deformable terrains.
Considering these points, we can summarize this paper’s
contributions as follows:

• We integrated an MPC-based controller in a WBC strategy
of the loco-manipıulaton task to improve the efficiency of
the quadruped robot.

• We take into account both robotics and geomechanics
properties and their interaction in order to increase model
accuracy in MPC.

• We synthesized a control framework with the conjunction
of WBC, MPC, and OSF.

This paper is structured as follows: Section II describes the
modeling of a floating-base robot and the deformable terrain
model. In Section III, the control framework is explained in
detail. Section IV presents simulation results. The paper is
concluded in Section V.

II. SYSTEM MODELING

This study encompasses two distinct models, namely the
robot model and the geomechanics model. The complete model
comprises these two models and their interaction. Our strategy
is to employ this complete model as a basis for implementing
MPC. Consequently, MPC will take into account not only robot
states but also robot-ground interaction behavior. This section
provides the details of the robotics and geomechanics models
utilized in this study.

A. Robot Model

A spatial quadruped robot model equipped with a robotic
arm is developed to simulate the performance of real quadruped
robots. The body trunk is modeled as a simple cube to which
the robotic arm and the four identical legs are attached. The
robotic arm PUMA 560 is adopted as the manipulator of the
model [9]. It is attached to the center of the body trunk’s

Fig. 1. Visualization of the quadruped robot.

Fig. 2. Kinematics details of the quadruped robot.

upper surface, while the upper end of the link serves as the
end effector tracing and manipulating objects. At the base of
the PUMA 560 robotic arm, a universal joint allows for its
simultaneous rotation around both the y- and z-axes. The upper
and lower arms are linked by a revolute joint, which moves
the upper arm within its workspace. A spherical wrist connects
the upper arm and the end effector and determines the position
and orientation of the end effector.

To convert the Ground Reaction Force to the model, sup-
porting it against the gravitational and acceleration effects, four
identical legs are constructed. The supporting legs consist of
two links each, with two joints connecting and actuating them.
A universal joint is fixed at the upper end of the legs and
connects them to the body trunk, allowing for rotation around
both the x- and y-axes, which represent the movements of
adduction/abduction and flexion/extension of the legs, respec-
tively. Another revolute joint connects the upper and lower
parts of the leg, enabling a rotation around the y-axis. The robot
has a total of 24 DoF. Its visualization model is accomplished
by using the Simscape Multibody Toolbox provided by Matlab,
as displayed in Figure 1. The kinematic model of the legs, the
PUMA 560 arm, and joint frames are demonstrated with an
inertial frame in Figure 2.

According to the model design, the generalized coordinates
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of the quadruped robot are stated as follows,

q =

xb
ql
q j

 , (1)

where xb ∈ SE(3) is the linear and angular positions of the
body with respect to the inertial frame. ql ∈ R12 represents
the leg joint configurations, and q j ∈ R6 refers to the joint
positions of the arm. The motion equations for this quadruped
robot model in the joint space are written as follows,

M(q)q̈+C(q, q̇)+G(q) = ST
τ + Jc(q)T Fc, (2)

where M(q)∈R24×24 is the inertia matrix, C(q, q̇)∈R24 is the
Coriolis and centripetal effects, G(q)∈R24 is the gravitational
force, Jc(q) ∈ R18×24 is the contact Jacobian of the robot
with respect to the world frame, Fc ∈ R18 is the vector of
linearly independent forces applied by the deformable terrain
to the robot’s feet and by the object to the robot’s hand,
S =

[
018×6 I18×18

]
is the selection matrix of the actuated

joints, τ ∈ R18 is the vector of joint torques.
According to the motion equations as indicated in Equation

(2), the joint accelerations are calculated. Their velocities and
positions are subsequently determined through integration upon
their initial conditions. It is noticeable that all leg and arm
joints are activated by motors, while the body trunk’s position
remains inactive, and therefore, the robot is under-actuated,
which means the number of actuated joints is smaller than that
of DoF. It increases the computation time for finding optimal
solutions since the number of possible solutions is infinite. This
problem is solved by designing the controller in the operational
space, which is further explained in section III-A.

B. Deformable Terrain Model

The mechanics of deformable soil is determined by the
ground subsidence. Various contact models are studied on
deformable soil’s normal and shearing stress. Considering the
penetration and viscous effects, the contact mechanics can
be built as a mass-spring-damper model or its variants. The
standard form of the linear equation is written as,

mẍ+bẋ+ kx = Fexternal , (3)

where x is the object’s relative distance from its balanced
position, m is the discrete mass value, b is the damping
coefficient, k is the spring coefficient, and Fexternal represents
the sum of forces from the external environment.

In this study, a nonlinear mass-spring-damper model is es-
tablished to calculate the normal reaction force. The nonlinear
damping coefficient and the vertical ground reaction force are
computed as follows:

b(z) = λ zn,

fz =−b(z) ż− kzn,
(4)

where b(z) is the nonlinear damping coefficient, which is a
function of the penetration depth, fz is the vertical ground
reaction force, z is the penetration depth into the ground, ż

Fig. 3. Ground reaction model.

is the penetration velocity, λ is the damping constant, k is
the constant spring constant, n is the power of the penetration
depth. The power of penetration depth n is commonly chosen
close to one, depending on the geometry of the contact surface.

The conditions between the robotic feet and the ground are
classified into three categories: when the penetration depth
is negative, indicating there’s no contact between the feet
and the ground, no ground reaction force is produced in any
direction. As the feet are penetrating the ground, both the
spring force and the damping force are calculated as positive,
whose direction is vertically upward. As the feet attempt to
leave the ground, the spring force is computed as normal until
the feet are completely off the ground, while the damping force
is set to zero. The mechanics are illustrated in Figure 3. Table
I shows Young’s modulus of elasticity and the corresponding
rigidity and damping coefficients of some deformable terrains
[10], [11]. These parameters were employed in our simulations
in order to accurately emulate deformable terrains.

III. CONTROL FRAMEWORK

In practice, the joint motions are usually not directly con-
trolled to perform loco-manipulation tasks. Therefore, the con-
trol is switched from the joint space to the operational space,
meaning that another set of control frameworks needs to be
designed and configured to achieve the motions. In this section,
the dynamics of the floating-base robot in the operational space
are derived. The control framework is designed and presented
based on the operational space properties.

A. Operational Space Formulation

In order to accurately represent the dynamics of a floating
base robot in the operational space, it is crucial to distinguish
between the dynamics of the non-actuated body and the motion
equation [12]. The generalized coordinates are modified by
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TABLE I
DEFORMABLE TERRAIN PARAMETERS.

Terrain Type Young’s Modulus (kNm−2) KN (Nm−1) BN (Nsm−1) KH (Nm−1) BH (Nsm−1)

Concrete 3×107 3.4×109 1.8×105 2.6×109 1.5×105

Gravel (1−2)×105 2.3×107 1.4×104 1.7×107 1.2×104

Sand (1−8)×104 9.1×106 9×103 6.9×106 7.9×103

Compact clay (3−15)×103 1.7×106 3.9×103 1.3×106 3.4×103

Loose clay (5−30)×102 3.4×105 1.8×103 2.6×105 1.5×103

selecting the actuated joints.

q̄ = S j

xb
ql
q j

 . (5)

Here S j =
[
018×6 I18×18

]
is the joint selection matrix. The

joint selection matrix’s generalized inverse is employed to
convert the generalized dynamics into actuated joint space
dynamics,

S†
j = M−1ST

j M̄, (6)

where M̄ = (S jM−1ST
j )

−1 is the actuated joint space inertia
matrix. The generalized inverse of the joint selection matrix
transpose ((S†

j)
T ) is multiplied by (2) to transform the system

into actuated joint space dynamics.

M̄(q̄) ¨̄q+C̄(q̄, ˙̄q)+ Ḡ(q̄) = τ + J̄c(q̄)T Fc, (7)

where C̄(q̄, ˙̄q) = (S†
j)

TC(q, q̇) is the Coriolis and centrifugal
forces, Ḡ(q̄) = (S†

j)
T G(q) is the gravitational effects and

J̄c(q̄) = Jc(q)(S
†
j)

T is the Jacobian of the actuated joint space.
It is possible to derive the OSF by multiplying (7) with the
generalized inverse of Jacobian transpose ((Jc(q̄)†)T ):

(J†
c )

T
(

M̄ ¨̄q+C̄+ Ḡ = τ + J̄c
T Fc

)
, (8)

which equals,

Λ(q̄)ẍe +µ(q̄, ˙̄q)+ p(q̄) = Fe +Fc, (9)

where J†
c = M̄−1J̄c

T
Λ is the dynamically consistent generalized

inverse of actuated joint space Jacobian that minimizes the
instantaneous kinetic energy of the robot [13]. Since the
kinematics relation between joint space and operation space
is defined by ẋe = J̄c ˙̄q and ẍe = J̄c ¨̄q+ ˙̄Jc ˙̄q, the relation between
the terms in the actuated joint space and the operational space
is derived,

Λ(q̄) = (J̄cM̄−1J̄c
T
)−1

µ(q̄, ˙̄q) = (J†
c )

TC̄−ΛJ̇†
c ˙̄q,

p(q̄) = (J†
c )

T Ḡ.

(10)

Here Λ(q̄), µ(q̄, ˙̄q) and p(q̄) are the operational space iner-
tia, Coriolis and centrifugal forces, and gravitational effects,

respectively. Fe = (J†
c )

T τ is the end effector force, ˙̄JC(q̄) =
J̇C(q)S

†
j is the time derivative of the actuated joint space

Jacobian and xe is the position of the end effector in the
operation space. The positional acceleration in the operational
space ẍe is calculated, based on which the velocities ẋe and
positions xe are further determined by integral.

B. Model Predictive Control

MPC is an advanced process control method that considers
the entire controlled system and takes a future time period
to find an optimal solution. It is studied and implemented
as the basis of controller design in this work. MPC can be
used across various system types. In this paper, the traditional
state-space model is adopted as the basis of the dynamic
model. The MPC Toolbox provided by MATLAB is utilized to
build the experimental model and the simulation environment.
Here the controlled system is discretized and linearized into a
linear time-invariant (LTI) system according to the sample time
and specific operating points, which are system characteristics
conditions representing the relationship between inputs and
outputs. At the time step k, a predicted control sequence
Up(k) over the prediction horizon p is generated, whose first
element up(k|k) is implemented to the system, and the others
are discarded. This process is repeated at each time step as the
references and system states are updated online.

All inputs are treated as manipulated variables (joint torques)
as the controller adjusts their values. All outputs are set as
measured outputs (joint positions). The effects of disturbance
and measurement noise are neglected. During the process, both
manipulated variables and measured outputs can be constrained
within a certain range. Multiple control sequences are com-
puted for each time step. The MPC controller evaluates their
performance by cost functions and selects the one with the
minimum value as the optimal solution to be applied to the
system. The toolbox solves the optimization problem using an
active-set quadratic program (QP) solver by default, and the
cost function includes the terms regarding the error between
references and measured system states and the changing rates
of input variables.

L(y(k) ,Uk) = Ly (y(k) ,Uk)+L∆u (y(k) ,Uk) , (11)
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Fig. 4. Control framework.

where L(y(k) ,Uk) is the sum of cost function, Ly (y(k) ,Uk)
is the cost function term of reference tracking, L∆u (y(k) ,Uk)
is the cost function term of input changing rates. The control
effect is implicitly achieved by tuning the parameters of the
corresponding elements.

In our implementation, we divide the control task into two
separate classes. A force control strategy is employed on the
legs to counteract gravitational effects and stabilize the body on
deformable terrain. Simultaneously, motion control is applied
to the arm to facilitate manipulation of the target object.
The previous section explained how to transform joint space
motion equations into operational space motion equations. We
offer operational space motion equations and their interaction
with deformable terrain as the fundamental model for the
MPC framework. In the force control part, the main goal is
to determine the exact contact reaction from the deformable
terrain to preserve the stability of the robot’s trunk. The MPC
algorithm computes the necessary operational space forces
needed to fulfill this task. It then converts the forces into the
configuration space, which then dictates the required torques on
the joints to produce the intended forces at the feet. Meanwhile,
in motion control, MPC evaluates changes in the position of
both the trunk and the arm’s gripper. It determines the ideal
forces required by the end effector for the object-manipulating
task. Similar to force control, the forces are converted into the
configuration space, specifying the torques needed at the arm
joints to generate the desired forces at the gripper.

Essentially, this is a response to the inquiry regarding the
precise amount of torque required to generate a specific force
at the end effectors, as determined by MPC,

τ = J̄c
T Fe. (12)

Since the under-actuation issue does not occur in the presented
OSF, the computation time is relatively reduced for MPC. The
control framework’s overall structure is depicted in Figure 4.
We are referring the readers to [14], [15] for more details
related to the locomotion part and force-motion control strategy
in OSF.

IV. SIMULATION RESULTS
Simulations are employed for the verification of the pro-

posed control framework described in Section III. The simula-

TABLE II
SIMULATION PARAMETERS

Simulation Parameters
Definition Value (Unit)

Body length-height-width 1−0.15−0.6 (m)
Thigh length-height-width 0.4−0.06−0.1 (m)
Shank length-height-width 0.4−0.06−0.1 (m)
Arm length-height-width 0.9−0.06−0.1 (m)

Body mass 50 (kg)
Sum of leg masses 20 (kg)

Arm mass 5 (kg)
Gravitational acceleration 9.81 kgm/s2

Simulation sampling time 0.5 ms
Controller sampling time 0.02 s

Prediction and control horizons 10−3 s

Fig. 5. End effector motion.

tion environment is built in MATLAB & Simulink, similar
to work at [16]. Simulation parameters are given in Table
II. The simulations were conducted on gravel, sand, compact
clay, and loose clay. The parameters listed in Table I were
utilized to modify the dynamics of the contact model in order
to emulate the actual deformable terrain behaviors. The object
was randomly located in the arm’s workspace. Three random
positions were tested for each soft terrain type to confirm
the robustness of the proposed controller. The same controller
algorithm is applied for each distinct test. The controller
is not updated according to different soil types. We shared
an illustration of the end effector motion in Figure 5. We
chose the third target position of the sand simulation as an
illustrative model because it exhibits lower error rates than
other simulation outcomes. The end effector trajectory appears
to move downward initially before reaching the target, giving
the impression that the end effector has descended as the robot
adjusts its body height. When viewed in relative motion, it
reaches the target smoothly. The complete results are provided
in Table III. The results indicate that absolute steady-state
errors are varying between 5 mm and 2.5 cm. The robot arm
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TABLE III
SIMULATION RESULTS

Simulation Results
Soil Type Target position (x-y-z) (m) End effector position (x-y-z) (m) Absolute steady-state error (x-y-z) (m)

Gravel
0.9741 0.1648 1.2028 0.9953 0.1870 1.1920 0.0212 0.0222 0.0108

1.1207 −0.2631 1.2325 1.1438 −0.2388 1.2110 0.0231 0.0243 0.0215
1.0368 0.1430 1.1658 1.0515 0.1293 1.1572 0.0147 0.0137 0.0086

Sand
1.0506 0.2062 1.2662 1.0638 0.2143 1.2596 0.0132 0.0081 0.0066

1.1301 −0.0862 1.2305 1.1484 −0.1097 1.2136 0.0183 0.0235 0.0169
0.9919 −0.3223 1.2315 1.0037 −0.3283 1.2262 0.0118 0.0060 0.0053

Compact Clay
1.0897 −0.3631 1.0586 1.1147 −0.3387 1.0334 0.0250 0.0244 0.0252

0.9766 0.2588 1.2220 0.9879 0.2438 1.2168 0.0113 0.0150 0.0052
1.0086 −0.1244 1.0817 1.0297 −0.1032 1.0656 0.0211 0.0212 0.0161

Loose Clay
1.0538 −0.3745 1.0740 1.0773 −0.3984 1.0535 0.0235 0.0239 0.0205

1.0462 0.1945 1.1670 1.0654 0.2128 1.1539 0.0192 0.0183 0.0131
1.0978 −0.1785 1.1492 1.1200 −0.1574 1.1303 0.0222 0.0211 0.0189

manages to reach the objects at different locations on different
deformable terrains successfully.

V. CONCLUSIONS

The full loco-manipulation strategy of a quadruped robot
on deformable terrains is presented in this paper. Modern
quadruped robots are designed to be versatile and capable of
executing complex loco-manipulation tasks in challenging sur-
roundings. Terrain deformability is one of the major challenges
that may deteriorate the quadruped robot’s performance. To
address this issue, a general control framework is proposed
to direct the motions of the entire robot. This research has
valuable significance as it reflects the real situations of mobile
robots functioning in the wild field.

During the simulations, it is expected that the body trunk
remains stable and the arm reaches the target. Our loco-
manipulation strategy divides the control task into two separate
classes. A force control strategy is employed on the legs
to counteract gravitational effects and stabilize the body on
deformable terrain. Simultaneously, motion control is applied
to the arm to facilitate manipulation of the target object.
OSF is utilized as a fundamental model of an MPC. The
MPC algorithm computes the necessary operational space force
needed to fulfill this task. This force is mapped into the
configuration space, specifying the torques needed at the joints
to generate the desired force in the operational space.

The results indicate that the robotic models achieved their
desired positions on the emulated deformable terrains. The
MPC controllers successfully realized the motions for the
dynamic systems while maintaining stability. It is worth notic-
ing that although the body trunk is not directly actuated, its
position and orientation are closely monitored and controlled.
This serves as an excellent demonstration of the feasibility
of MPC controllers in managing under-actuated Multi-Input-
Multi-Output systems. With respect to future endeavors, our
objective is to apply our algorithm to a real quadruped robot.
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