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Abstract— This paper presents experimental results to verify
a novel concept of magnetic manipulation in which arrays of
permanent magnets and electromechanical actuators generate
and effectively control magnetic fields, through which, magnetic
objects can be manipulated from a distance without any direct
contact. This concept is realized by an experimental setup that
consists of six diametrically magnetized permanent magnets
actuated by rotary servomotors to control their directions, by
which, the aggregate magnetic field is controlled in a planar
circular workspace. To leverage this magnetic field for control of
magnetic objects inside the workspace, a feedback loop must be
established to command the servomotors based on the positions
of these objects measured in real time. A suitable control law is
developed for this feedback loop, and is verified by experiments,
which demonstrate successful results. The experimental results
are compared with those generated by computer simulations
under similar conditions.

I. INTRODUCTION

This paper presents the experimental verification of a novel

concept for noncontact magnetic manipulation we proposed

in [1]–[3]. This concept was then implemented in [4] as the

experimental setup of Fig. 1, which was adopted with minor

modifications in this work for its experimental verification.

This setup consists of 6 diametrically magnetized permanent

magnets actuated by 6 rotary servomotors aimed to control

their headings, and thereby, their aggregate magnetic field

inside a circular workspace encircled by the magnets. This

magnetic field interacts with a small magnetic object inside

the workspace to drive it by an applied magnetic force along

any desired direction. By feedback control of this magnetic

force, the magnetic object is then precisely steered along a

desired reference trajectory. A similar concept for magnetic

manipulation has been also studied by other researchers [5].

In addition to experimental validation, this paper improves

our earlier control design procedures, specially, the optimal

linear feedback we developed in [3]. To develop a practical

controller for the highly nonlinear dynamics of the proposed

magnetic manipulator, we adopted a simple approach in [3]

that begins with linearizing the nonlinear dynamics around

an, as yet, undecided equilibrium point, then proceeds with

the design of a linear controller for the linearized model, and

finally ends up with optimizing the control performance with

the best choice of the equilibrium point. This paper improves

this procedure by including an additional step in which the

linear control is modified into a nonlinear control at a higher
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performance. Several experiments under the modified control

demonstrate successful steering of a small magnetic bead

along reference trajectories in the vicinity of the equilibrium

point. We are still working to implement more advanced

control techniques such as the feedback linearization in [2].

Our broader efforts to develop new approaches to magnetic

manipulation are mainly motivated by potential applications

in a range of minimally invasive medical procedures in which

external magnetic fields will be leveraged to safely navigate

magnetized surgical tools inside the patient’s body [6]–[12].

For these applications, relatively strong magnetic forces are

required at distances as far as several decimeters, which can

be more effectively generated by permanent magnets rather

than electromagnets [13], which are the conventional choice

for magnetic manipulation [14]–[18]. Hence, our research is

dedicated to the class of magnetic manipulators that combine

permanent magnets with electromechanical actuators in order

to generate and control magnetic fields [1]–[3], [19], [20].

The rest of this paper is organized as follows. In Section II,

a short description of the experimental setup is presented and

its dynamics is described by a set of nonlinear state-space

equations. The procedure for control design and optimization

is explained in Section III. Experimental results and their

comparison to simulated data are presented in Section IV.

II. EXPERIMENTAL SETUP AND ITS DYNAMICS

The experimental setup employed in this work is shown

in Fig. 1. The magnetic manipulator in this figure consists of

a circular flat workspace housing a Petri dish, an array of 6

diametrically magnetized permanent magnets placed at equal

distances around the workspace, and a rotary servomotor for

each magnet to independently control its direction. The Petri

dish is filled with a viscous fluid (corn syrup) and contains

a soft magnetic bead moving in a plane at the bottom of the

Petri dish under the aggregate magnetic force applied by all 6

magnets. A high-speed camera is fixed above the workspace

to measure the real-time position of the magnetic bead as it

moves within its plane of motion.

The overall system in Fig. 1 has been designed modularly

consisting of several replaceable parts designed separately by

SolidWorks and fabricated by 3D printing [4]. The diameter

of workspace in this system is 60 mm and the diameter of the

Petri dish is currently 39 mm (can be selected up to 60 mm).

The magnetic bead is a sphere of 3 mm diameter and 0.11 gm

mass made of steel with a magnetic susceptibility of 1000.

The permanent magnets in use are grade 42 NdFeB cylinders

of diameter and height 19.05 mm, the rotary servomotors are

Dynamixel model AX-18A, and the camera is a monochrome
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Fig. 1. Experimental setup adopted from [4] with modifications in the size
of magnets, design of camera mount, and inclusion of a rigid base structure.
This magnetic manipulator (bottom left) utilizes 6 diametrically magnetized
cylindrical permanent magnets that can freely rotate a full 360◦ inside their
guiding cylinders using 6 independent servomotors (bottom right).

Allied Vision Mako U-130B with a ON Semi PYTHON 1300

image sensor a resolution of 1280× 1024 pixels at 169 fps.

The goal of magnetic manipulation in this work is to drive

the magnetic bead along reference trajectories confined in a

plane at the bottom of the Petri dish. This control task is

realized by a feedback loop that measures the position of the

magnetic bead in real time, and generates suitable reference

signals to the array of servomotors, updated every 90 msec.

This control loop is set up by a desktop computer connected

to the servomotors at one end and to the camera at another

end. This computer runs the real-time software LabVIEW

for two purposes: extracting the position of the magnetic

bead from images captured by the camera, and incorporating

this position into the feedback law of Section III to generate

references for the servomotors.

A. Dynamics of the Magnetic Manipulator

The dynamics of the magnetic manipulator in Fig. 1 was

extensively studied in [1]–[3]. This dynamics is described in

this paper by a state-space model adopted from [3] with some

modifications in the dynamics of the servomotors. The model

utilized in this paper includes 16 state variables forming two

2-dimensional vectors r (t) and v (t), and two 6-dimensional

vectors θ (t) and ω (t). Here, r (t) denotes the position of the

magnetic bead at time t in a planar coordinate system at the

center of the circular workspace. Also, v (t) = ṙ (t) denotes

the velocity of the magnetic bead with respect to the same

coordinate system. The 6-dimensional vectors θ (t) and ω (t)
contain the angular positions (with respect to certain fixed

references) and angular velocities of the servomotors.

The control input u (t) to the overall magnetic manipulator

is a 6-dimensional vector including the reference signals to 6

servomotors, each reference controlling the angular position

of its corresponding servomotor. These reference inputs are

calibrated in such a manner that θ (t) closely tracks u (t)
to ideally achieve θ (t) = u (t). For a practical servomotor,

this ideal relationship must be modified properly to reflect

its actual dynamics. Specifically, the servomotor dynamics in

this paper is described by the second-order transfer function

Hservo (s) =
ω2

n

s2 + 2ζωns+ ω2
n

, (1)

where ωn and ζ are positive constants known as the natural

frequency and damping ratio of the servomotor, respectively.

For the servomotor used in this paper, the numerical values

ωn = 75 rad/sec and ζ = 0.75 have been determined in [19]

by experiments, which are identically adopted in this work.

The dynamics of the magnetic manipulator of Fig. 1 is

represented by the nonlinear state-space equations

ṙ (t) = v (t) (2a)

v̇ (t) = −σv (t) + g (r (t) , θ (t)) (2b)

θ̇ (t) = ω (t) (2c)

ω̇ (t) = −2ζωnω (t)− ω2

nθ (t) + ω2

nu (t) . (2d)

Among these equations, (2a) is simply the trivial relationship

between the position and velocity of the magnetic bead,

while (2c) and (2d) represent the transfer function (1) in the

time domain and a vector form. The state equation (2b) is

highly nonlinear and is derived from Newton’s second law,

describing the motion of the magnetic bead under an applied

magnetic force and the Stokes drag force acting against the

motion as it moves inside a viscous fluid. This equation is

examined in more detail next.

The magnetic bead is a sphere of radius ρ and mass m,

and the viscosity of its surrounding fluid is η. The magnetic

force is a function Fm (r, θ) of the position r of the magnetic

bead and the angular positions θ of the permanent magnets.

The Stokes drag is known [16] to be 6πρηv (t). Newton’s

second law of motion implies that

mv̇ (t) = −6πρηv (t) + Fm

(

r (t) , θ (t)
)

,

which can be rewritten as (2b) by defining the vector function

g (r, θ) =
Fm (r, θ)

m

and the positive parameter σ = 6πρη/m. A numerical value

of σ = 642.6 1/sec was determined for this parameter for

ρ = 1.5 mm, m = 0.11 gm, and η = 2.5 Pa.sec.

The vector function g (r, θ) represents the magnetic force

per unit of mass and can be regarded as magnetic acceleration

at a point r of the workspace. An explicit expression for this

function has been derived in [1]–[3] in terms of the geometry

of the magnetic manipulator, the known relationship between

magnetic force and magnetic field, and a model of magnetic

field for the individual permanent magnets. Throughout this

work, this explicit expression was adopted for computation

of g (r, θ) or its partial derivatives, whenever necessary. The

magnetic field of the individual magnets was constructed by

a combination of COMSOL finite element simulations and

least squares interpolation techniques.
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III. CONTROLLER DESIGN

This section develops a simple, yet effective, feedback law

for the magnetic manipulator of Fig. 1, which aims to drive

small magnetic beads along planar reference trajectories near

the center of its workspace. The control design is performed

in several steps: linearization of the nonlinear dynamics (2)

around an optimally selected equilibrium point, reducing the

dimension of the linearized model, design of a linear control

for the reduced order linear model, mapping this control back

to the original high dimensional state space, and optimizing

the control performance in this high dimensional state space.

A. Linearization and Model Reduction

To facilitate the control design procedure, the nonlinear

state-space equations (2) are linearized around an equilibrium

point at the center r = 0 of the workspace. For any constant

vector θe that holds g (0, θe) = 0, application of u (t) = θe to

the state-space equations (2) creates an equilibrium point at

(r, v, θ, ω) = (0, 0, θe, 0). For the purpose of this paper, θe is

chosen to be a vector with equal elements ϑ, i.e., θe = ϑ16,

where 16 denotes a 6×1 vector with all elements 1. It is easy

to verify that g (0, ϑ16) = 0 due to the geometric symmetry

of the magnetic manipulator around its center.

To linearize the state-space equations (2), g (r, θ) in (2b) is

approximated by the first two terms of its Taylor series as

g (r, θ) ≃ Gr (0, θe) r +Gθ (0, θe) (θ − θe) . (3)

Here, Gr (0, θe) and Gθ (0, θe) are 2× 2 and 2× 6 Jacobian

matrices of g(r, θ) with respect to r and θ, respectively. In

particular, for θe = ϑ16, the Jacobian matrix Gr (0, ϑ16) is

diagonal with equal diagonal elements a (ϑ). For the sake of

simplicity, the Jacobian matrix Gθ (0, ϑ16) is denoted by the

2 × 6 matrix B (ϑ). Then, the linear approximation of the

state-space equations (2) around (0, 0, ϑ16, 0) is given by

ṙ (t) = v (t) (4a)

v̇ (t) = −σv (t) + a (ϑ) r (t) +B (ϑ) θ̃ (t) (4b)

˙̃
θ (t) = ω (t) (4c)

ω̇ (t) = −2ζωnω (t)− ω2

nθ̃ (t) + ω2

nũ (t) , (4d)

where θ̃ (t) = θ (t)−ϑ16 and ũ (t) = u (t)−ϑ16 denote the

state and control vectors of the linearized model.

The set of linear state-space equations (4) includes 16 state

variables, which can be readily reduced to 8 by adopting new

state vectors θ̃2 (t) = B (ϑ) θ̃ (t) and ω2 (t) = B (ϑ)ω (t) of

the lower dimension 2, and a 2-dimensional control vector

z (t) = B (ϑ) ũ (t) .

Left multiplying (4c) and (4d) by B (ϑ) and using the new

vectors θ̃2, ω2, and z, the state-space equations (4) reduce to

ṙ (t) = v (t)

v̇ (t) = −σv (t) + a (ϑ) r (t) + θ̃2 (t)

˙̃
θ2 (t) = ω2 (t)

ω̇2 (t) = −2ζωnω2 (t)− ω2

nθ̃2 (t) + ω2

nz (t) .

This reduced set of equations includes 4 2-dimensional state

vectors and all coefficients in their right-hand side appear as

scalars, rather than matrices. Hence, the dynamics of the first

and the second elements of these vectors are decoupled and

can be independently controlled by the first and the second

elements of z (t). The relationship between element i = 1, 2
of r (t) and the element i = 1, 2 of z (t) is given by the

transfer function

H (s) =
1

s2 + σs− a (ϑ)
·

ω2

n

s2 + 2ζωns+ ω2
n

. (5)

B. Design of Linear Control

Once the value of ϑ is decided, the transfer function (5) is

fully known and a linear controller can be readily designed

for it. The aim of this controller is to drive a magnetic bead

along a planar reference trajectory denoted by rd (t), i.e., the

position r (t) of the magnetic bead must closely track rd (t).
As a starting point, this paper adopts a simple proportional

integral (PI) controller for this purpose, while more advanced

controllers that, for instance, combine a state feedback with

a state observer will be considered in future work. This PI

controller is expressed in a vector form as

z (t) = KP

(

rd (t)− r (t)
)

+KI

∫ t

0

(

rd (τ)− r (τ)
)

dτ (6)

with scalar parameters KP and KI determined, for instance,

using the root locus method.

For the optimal value ϑ∗ = 36◦ obtained in Section III-D,

the numerical value a (ϑ∗) = 256.9 1/sec2 was estimated for

the parameter a (ϑ) in the transfer function (5). The numeric

values of other parameters were taken as σ = 642.6 1/sec,

ωn = 75 rad/sec, and ζ = 0.75. Based on these values, two

pairs of PI parameters were obtained as KP = 1900, KI = 0
(no integral action) and KP = 1600, KI = 4 1/sec, which

were used in the experiments reported in Section IV.

C. Optimization of Control Effort

After computation of z (t) from (6) or any other linear

control law, the control ũ (t) of the linearized model (4) can

be readily determined as the solution to the system of linear

algebraic equations

B (ϑ) ũ (t) = z (t) .

This system of equations is underdetermined as it includes 2
equations but 6 unknowns. Hence, it admits infinitely many

solutions, among which, some are preferred for their higher

control performance, which are identified by the optimization

procedure explained next.

Noting that θ̃ (t) = θ (t)−ϑ16 is the deviation of θ (t) from

its equilibrium value ϑ16, smaller values of ‖θ̃ (t)‖ render (3)

a more accurate approximation, under which the nonlinear

dynamics (2) is well described by the linear model (4). On

the other hand, small values of ‖θ̃ (t)‖ are typically generated

by small values of ‖ũ (t)‖, which motivates the constrained

optimization problem

minimize
ũ ∈ [−π, π]

6

‖ũ‖

subject to B (ϑ) ũ = z (t)

(7)

476



Fig. 2. Block diagram of the closed-loop system under the control (8). The
control ũ∗ (t) is generated in terms of the position r (t) of the magnetic
bead and the reference trajectory rd (t).

as a machinery to construct an optimal control ‖ũ∗ (t)‖.

By adopting a 2-norm in this optimization problem, its

solution is simply given as the linear control law

ũ∗ (t) = B† (ϑ) z (t) , (8)

where B† is the Moore–Penrose inverse of B defined as

B† = BT
(

BBT
)−1

.

Under the ∞-norm, which is a more reasonable choice here,

the optimization problem (7) does not have a known closed-

form solution. Since numerically solving this problem in real

time can be a challenge, an approximate closed-form solution

for the problem is presented next.

The core idea of this approximation is to obtain a scalar α
and a vector q of the smallest possible 2-norm such that

ũ = q + α signv
(

B† (ϑ) z (t)
)

satisfies the constraint B (ϑ) ũ = z (t) of (7). Here, signv (·)
is a vector-valued sign function defined such that

signv (x) = [sign (x1) sign (x2) · · · sign (xn)]
T

for x = [x1 x2 · · · xn]
T

. Then, the optimal values of α
and q are obtained from the constraint optimization problem

minimize
q ∈ R

6, α ∈ R

‖q‖
2

subject to B (ϑ)
(

q + α signv
(

B† (ϑ) z (t)
))

= z (t) .

This optimization problem can be analytically solved for

α∗ (t) =
‖B† (ϑ) (t) ‖1

‖B† (ϑ)B (ϑ) signv (B† (ϑ) z (t)) ‖2
2

q∗ (t) = −B† (ϑ)
(

α∗ (t)B (ϑ) signv
(

B† (ϑ) z (t)
)

− z (t)
)

that leads to the nonlinear control law

ũ∗ (t) = q∗ (t) + α∗ (t) signv
(

B† (ϑ) z (t)
)

. (9)

The block diagram of Fig. 2 explains how this control law is

implemented to establish a feedback loop.

D. Optimization of Equilibrium Point

The control laws (8) and (9) are both parameterized by ϑ
and their performance depends on this scalar parameter. This

parameter is optimized for the best control performance,

following a procedure proposed in [3]. Here, the performance

measure is the norm ‖ũ (t)‖ of the control vector, which must

be minimized in some reasonable sense. Certainly, ‖ũ (t)‖
is a function of time and cannot be minimized directly to

Fig. 3. Optimal value of ϑ for selecting the best equilibrium point. The
optimization process is performed according to (10) with induced 2-norm
of the matrix B† (ϑ).

Fig. 4. Trajectory of magnetic bead starting at r (0) = (1.5, 1) in its plane
of motion and moving toward (0, 0) under rd (t) = 0 applied to (a) the
linear control law (8), and (b) the nonlinear control law (9). The solid and
dashed lines represent the results of experiment and simulation, respectively.

obtain a constant ϑ∗. Thus, a new performance measure, not

depending on time, must be adopted in such a manner that its

small values imply small values of ‖ũ (t)‖ for most instances

of t. This goal can be achieved via a minimax formulation.

In particular, for the linear control law (8), this minimax

problem is given by

minimize
ϑ ∈ [0, π/2]

maximize
‖z‖ = 1

∥

∥B† (ϑ) z
∥

∥ ,

which is reduced to

minimize
ϑ ∈ [0, π/2]

∥

∥B† (ϑ)
∥

∥

(10)

in terms of the induced matrix norm
∥

∥B† (ϑ)
∥

∥. In Fig. 3, this

optimization problem is solved numerically for induced 2-

norm. A similar process can be formulated for the nonlinear

control law (9), albeit at a higher computational cost.

IV. EXPERIMENT AND SIMULATION RESULTS

We conducted a series of experiments on the setup of

Fig. 1 under both the linear control law (8) and its nonlinear

counterpart (9). Each experiment was paired with computer

simulations under similar conditions to examine the possible

mismatch between the real-world setup and its mathematical

model. The results of this study are presented in this section.

In the first experiment, a magnetic bead was driven from

an initial position r (0) = (1.5, 1) mm toward (0, 0) under

the constant reference signal rd (t) = 0. This experiment was

performed under a pure proportional control (KI = 0) with

the gain Kp = 1900. For this experiment, the trajectory of
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Fig. 5. Position of the magnetic bead versus time generated by experiment
(solid line) and simulation (dashed line) under (a) the linear control law (8),
and (b) the nonlinear control law (9). The control goal is to drive the
magnetic bead from r (0) = (1.5, 1) to (0, 0) by setting rd (t) = 0.

Fig. 6. Servomotor positions versus time generated by simulation (top)
and by experiment (bottom) under (a) the linear control law (8), and (b) the
nonlinear control law (9). The control goal is similar to Fig. 5.

magnetic bead in its plane of motion is illustrated in Fig. 4,

the position of magnetic bead versus time in Fig. 5, and the

angular positions of the servomotors versus time in Fig. 6.

Throughout the experiment, the magnetic bead was driven

toward the center r = 0 of the workspace with an average

velocity of 0.52 mm/sec under the linear control law (8)

and 0.60 mm/sec under the nonlinear control law (9). These

numbers predict a settling time of 3.5 sec for the former

and 3.0 sec for the latter. The settling time was estimated

by computer simulations around 4.0 sec, which considerably

differs from its experimental value. The most likely cause of

this difference is a mismatch between the numerical value of

viscosity (of corn syrup) in experiment and simulations.

The performance of trajectory tracking under both control

laws (8) and (9) was evaluated in the second experiment. To

that end, a slowly-varying reference rd (t) was applied to the

Fig. 7. Trajectory of the magnetic bead (blue line) near a square reference
trajectory (red line) with a side length of 6 mm, generated under (a) the
linear control law (8), and (b) the nonlinear control law (9).

Fig. 8. Position of magnetic bead (solid line) and the reference trajectory
(dashed line) in the experiment of Fig. 7 versus time, generated under the
linear control law (8).

closed-loop system to create a series of reference trajectories,

from simple to more complex. For instance, a square of 6 mm

side length is considered as the reference trajectory in Fig. 7.

For this reference trajectory, the position r (t) of the magnetic

bead and the reference input rd (t) are also illustrated versus

time in Fig. 8. The performance of trajectory tracking under

more complex references is presented in Fig. 9. It is observed

from Figs. 7 through 9 that the proportional control utilized

in the experiments overall is capable of steering a magnetic

bead along complex trajectories, albeit with a significant

tracking error. The average tracking error under this control

was estimated around 25%.

To compensate for the relatively large tracking error under

the proportional control, a PI controller was adopted with

the parameter values KP = 1600 and KI = 4. The average

tracking error for this control was computed at much lower

level of only 3%. This error is at the level of measurement

error due to the finite resolution of camera, and most likely,

is not caused by the control algorithm. Fig. 10 illustrates the

performance of the PI controller in tracking a spiral reference

trajectory. The travel time of the magnetic bead along this

478



Fig. 9. Trajectories of magnetic bead (blue line) tracking complex reference
trajectories (red line) under (a) the linear control law (8), and (b) the
nonlinear control law (9). The reference trajectory on top consists of three
squares with side lengths of 2 mm, 4 mm, and 6 mm. The SIU-shaped
trajectory (bottom) fits within a square of 6 mm side length.

Fig. 10. Comparison between (a) pure proportional and (b) PI controllers
embedded into the linear control law (8). The proportional control results in
a larger tracking error but is capable of driving the magnetic bead faster. In
particular, the travel time under the proportional control is 106 sec versus
295 sec for the PI control. In this figure, the blue and red lines represent
the position of the magnetic bead and the reference trajectory, respectively.

trajectory was recorded as 106 sec under proportional control

and 295 sec under PI control. These numbers indicate 2.7
times reduction in the speed of the magnetic bead, which is

the price paid for a lower tracking error.

V. CONCLUSION

The major results of this work are twofold. First, the early

concept of magnetic manipulation using permanent magnets

and electromechanical actuators was realized and validated

by experiments. The success in these experiments motivates

further research efforts on this concept, which eventually can

yield a framework for design and development of magnetic

manipulators suited for a range of medical applications. As

the second major result, a procedure for design of feedback

control laws was developed, which can be adopted, or at least

modified, for magnetic manipulators of different geometries.
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