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Abstract—Safe navigation in a pedestrian-rich environment has
gained a lot of attention in robotics research. Unlike classical mo-
tion planning with a static environment, pedestrian-rich scenarios
are associated with a highly dynamic environment and safety
risk. In this paper, we propose a novel local planner designed
for differentially driven wheeled robots, directly inspired by the
Dynamic Window Approach (DWA). Our model leverages convex
optimization and differential drive kinematics to efficiently de-
termine optimal velocity inputs as the robot moves in the human
crowd. Our approach does not only account for the position
but also the velocity of the pedestrians in the planning frame-
work to facilitate safer navigation through dynamic pedestrian-
dense environments. Through extensive simulation experiments,
we demonstrate the superior effectiveness and safety of our
method compared to DWA, showcasing significant enhancements
in collision-free navigation success rates and computational effi-
ciency through the use of convex optimization techniques. Code
release: https://github.com/Leixinjonaschang/convex op planner.

Index Terms—Mobile robot navigation, convex optimization

I. INTRODUCTION

As robots become increasingly prevalent, the symbiotic inte-
gration of robots and humans has garnered significant research
attention. As a result, the effort to ensure safe robot autonomy
in a human-shared workspace has become imperative to the
feasibility of its deployment. Robot autonomous navigation
is an important and classical problem in robotics. Generally,
the navigation of mobile robots involves two steps, namely
mapping, and planning. Initially, a map of the environment is
usually created either online or offline through simultaneous
localization and mapping (SLAM) techniques. Subsequently,
planning algorithms generate a feasible and collision-free
global path based on the map. Safe autonomous navigation
in pedestrian-rich areas, also called crowd navigation, is still
an open challenge due to the highly uncertain and dynamic
movements of humans and the high demand for safety. The
robots most widely used in human living environments, such
as cleaning robots and delivery robots, predominantly utilize
the differential drive kinematic model. Inspired by DWA[1],
a widely used, simple, and effective algorithm, we propose a
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Fig. 1. Simulation of navigation with the proposed method. The blue
circles represent moving pedestrians and the light blue lines represent their
trajectories. The green solid circle represents the robot and the light green
lines represent its trajectory. The hollow green circle is the local map. The
transparent green semi-circle is the region of interest for navigation. The
yellow dot is the goal point. The perceived pedestrians will be marked as
red-filled circles, and the closer to the robot it is, the redder it will be filled.
The black polygon ahead of the robot is the state window and the red star in
the polygon is the optimal potential position.

novel mobile robot trajectory planner specifically for differ-
entially driven mobile robots to deal with the highly dynamic
human movements in crowd navigation, which integrates the
motion information of the pedestrians into planning and em-
ploys the convex optimization to determine the optimally safe
trajectory efficiently.

A. Related Work

A prevalent research approach to crowd navigation is to
model crowd behavior. Social Force (SF) model[2] is a pio-
neering work in the crowd behavior modeling field, which has
applied widely to robot crowd navigation. Optimal Reciprocal
Collision Avoidance (ORCA)[3] is another method to model
mutual interactions among multiple agents. However, these
two approaches for modeling the mutual interactions of a
crowd have many hyperparameters that need to be tuned for
reliable performance, which makes them time-consuming to
deploy. In addition, ORCA employs the concept of velocity
obstacles, which leads to overly conservative agent behavior
and low spatial utilization in crowded environments.
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Reinforcement Learning (RL) based approaches are also
popular in research on safe crowd navigation topics. The
deep V-Learning method tackles this problem by using the
neural network to model the interaction rules[4], [5] which
employs OCRA as an expert to get the supervision and uses
RL to learn a value function for motion planning. Hybrid-
MRCA[6] employs the hybrid control centered on RL to solve
the collision avoidance among distributed agents. CADRL[7]
approach employs RL to train a policy for collision avoidance.
The uniqueness of this work lies in the absence of introducing
the dynamics of other agents. However, the common drawback
of the learning-based methods is the high computational cost,
which requires additional hardware resources and can be a
barrier to deployment in low-resource environments.

Trajectory prediction-based approaches involve the idea of
pedestrian trajectory prediction, which has progressed rapidly
recently[8], [9]. The main idea of this method is to integrate
the prediction of human movements into the motion planning
framework to take the potential collisions into considera-
tion. One line of this work is to utilize the learning-based
pedestrian trajectory prediction model to estimate the future
states of pedestrians. This kind of method can produce a
very good performance of collision avoidance[10]–[13]. How-
ever, this learning-based prediction involved ways to inherit
high computational costs and can be limited in low-resource
environments. Another line of this work uses model-based
approaches, like the Kalman Filter (KF) model[14], to predict
the trajectories of pedestrians[15].

B. Contribution
Fully exploiting the kinematic features of differentially

driven mobile robots and inspired by the concept Dynamic
Velocity Window in DWA[1], we integrate the idea of convex
optimization into robot trajectory planning, which enables
robots to find the optimal trajectory efficiently considering the
motion of pedestrians in a crowded environment. Our main
contributions can be summarized as follows:

• we propose an efficient convex optimization based trajec-
tory planner for differentially driven mobile robots’ safe
navigation in pedestrian-rich environments.

• conduct a series of simulation experiments to validate
the effectiveness of the proposed method and verify the
superiority with respect to the DWA method.

C. Content Organization
Section II describes the differentially driven robot kinematic

model and analyzes the kinematic features that are employed
in the planning. Section III elaborates on the proposed convex
optimization based planning algorithm, consisting of algo-
rithm pipeline, constraints formation, and cost function design.
Section IV displays the simulation results and analysis And
Section V offers the concluded remarks and future direction.

II. ANALYSIS FOR DIFFERENTIALLY DRIVEN KINEMATICS

A. Differentially Driven Kinematic Model
Figure 2 illustrates the differentially driven kinematic model

of the mobile robot. Consider this kinematic model with state

Fig. 2. Two-wheeled differential driven robot kinematic model.

[xt, yt, θt], where xt and yt represent the position of the robot
and θt represents its orientation. In Figure 2, ICC means
the instantaneous center of curvature and R and l represent
the radius of the turning circle and the distance between two
wheels, respectively. Vl and Vr are the left and right wheel
speeds. We can formulate the kinematic model as below[16],

xt+1 = xt −R sin(θt) +R sin(θt + ωt∆t)

yt+1 = yt −R cos(θt) +R cos(θt + ωt∆t)

θt+1 = θt + ωt∆t

(1)

where R =
vt
ωt

, vt =
Vlt + Vrt

2
and ωt =

Vrt − Vlt
l

. And it is

worth noting that the linear velocity vt and angular velocity
ωt are decoupled.

B. Velocity Scope and State Window

Due to the dynamics constraints of actuators mounted on
the robot and the robot’s mechanical structure, there will be
a velocity scope Vd,t for the robot concerning current robot
velocity (vt, ωt) in every time period, which is illustrated as a
light blue rectangle in Fig. 3. The robot inherent dynamics con-

TABLE I
DYNAMICS CONSTRAINTS OF ROBOT HARDWARE

Symbol Meaning

amax Maximum Linear Acceleration
αmax Maximum Angular Acceleration
vmax Maximum Linear Velocity
vmin Minimum Linear Velocity
ωmax Maximum Angular Velocity
ωmin Minimum Angular Velocity

straints shown in Table I result in a maximum and minimum
for both angular velocity and linear velocity given the current
velocity (vt, ωt), namely ωt+1,max, ωt+1,min, vt+1,max and
vt+1,min. These velocity boundaries are defined as (2) and
then the velocity scope at time step t is defined as (3).

vt+1,min = max{vmin, vt − amax ·∆t}
vt+1,max = min{vmax, vt + amax ·∆t}
ωt+1,min = max{ωmin, ωt − αmax ·∆t}
ωt+1,max = min{ωmax, ωt + αmax ·∆t}

(2)
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Vd,t = {(vt+1, ωt+1)|(vt+1, ωt+1) ∈ Vdv,t × Vdω,t} (3)

Vdv,t = [vt+1,min, vt+1,max], Vdω,t = [ωt+1,min, ωt+1,max]

Fig. 3. Velocity scope Vd,t. The light blue rectangle represents the velocity
scope based on current velocity pair (vt, ωt), and velocity input pairs
(vt+1, ωt+1) in this velocity scope are admissible within ∆t for the robot
under the dynamics constraints.

Given the differential kinematic model (1), each admissible
velocity input pair (vt+1, ωt+1) in the velocity scope shown
in Fig. 3 corresponds to a unique trajectory, and the endpoints
of these trajectories form a region which can be called state
window as illustrated in the Fig. 4.

Fig. 4. State window Vs,n=1. The current robot state is represented as the
blue dot and the potential robot positions at t+n time step given the current
robot state compose the state window, which looks like a sector ring but is
not for the upper bound and the lower bound is not strictly a circular arc.
The potential robot positions at (t+1) step are represented by the green dots
while the attached blue arrows are the corresponding orientations.

Fig. 4 shows the configuration of the state window, which
is defined in the Cartesian space and contains all the possible
positions at the (t+1) step given the state at t step. The green
circular arc is a representative trajectory of the robot given a
state pair [xt, yt, θt] and [xt+1, yt+1, θt+1]. The state window
is actually defined by the kinematic model (1). In Fig. 4 ∆y =
R sinϕ, ∆x = R(1 − cosϕ), ϕ = ωt∆t and R = vt+1

ωt+1
with

respect to the coordinate attached to the robot. From (6), it’s
easy to notice that velocity inputs with constant vt+1 result in
a noncircular arc around the current robot position. So it can
be inferred that the upper and lower boundaries of the state
window are noncircular arcs.

∆x2 = R2(1 + cos2 ωt+1∆t− 2 cosωt+1∆t)(4)
∆y2 = R2 sin2 ωt+1∆t (5)

∆x2 +∆y2 = 2
vt+1

ωt+1
(1− cosωt+1∆t) (6)

Velocity inputs with maximum and minimum ωt+1 corre-
spond to the left and right boundaries, respectively. Given (7),
∆y
∆x is a constant when ωt+1 is a constant. Furthermore, it’s
easy to infer that the slopes of the left and right boundaries are
constant with ωt+1,max and ωt+1,min respectively. So the left
and right boundaries are the line segments whose extension
pass through the current robot position [xt, yt].

∆y

∆x
=

1 + cosωt+1∆t

sinωt+1∆t
(7)

However, it is important to note that the state window appears
as a sector ring-like shape only when minimum linear velocity
vmin >= 0.

Given the kinematic model in (1), we can know that
only [xt+1, yt+1] is sufficient to uniquely describe the mo-
tion given the current state [xt, yt, θt]. So the state format
[xt+1, yt+1, θt+1] is redundant to describe the motion. In other
word, if the [xt+1, yt+1] is known given known current state,
θt+1, which indicates that[xt+1, yt+1] is more dense state
format to define the state window. Finally, we can define the
state window Vs at time step t+∆t given the velocity input
(vt+1, ωt+1) as (8).

Vs,n=1 = {(xt+1, yt+1)|
xt+1 = xt −

vt+1

ωt+1
sin θt +

vt+1

ωt+1
sin (θt + ωt+1∆t),

yt+1 = yt −
vt+1

ωt+1
cos θt +

vt+1

ωt+1
cos (θt + ωt+1∆t),

∀vt+1 ∈ Vdv ∧ ∀ωt+1 ∈ Vdω} (8)

In addition, we want to emphasize that the shape of the state
window in the (t+n) would still be like a sector ring as shown
in Fig. 4 if the velocity input (v, ω) keep constant in these n
steps.

III. METHOD

We aim to implement efficient navigation for the widely
used differentially driven mobile robot in a highly dynamic
pedestrian-rich environment. Based on the analysis for the
differential kinematics in Section II-A and concepts of velocity
scope and state window that are established in Section II-B, we
can formulate the problem as finding the optimal admissible
state (xt+1, yt+1) at the subsequent time step in the state
window given the current state (xt, yt, θt) under the dynamics
constraints that the velocity input (vt+1, ωt+1) is confined in
velocity scope Vd,t shown in Fig. 3.
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For the problem above, we propose a novel local motion
planner that employs the convex optimization technique and
incorporates the highly dynamic motion of moving pedestrians
in the optimization-based planning framework to implement
efficient and safe crowd navigation. The primary idea is as
follows:

1) Define the state window Vs,t+n based on the current
state and velocity scope Vd,t formed by dynamic con-
straints, whereby n is the prediction horizon.

2) Find the optimal point (x∗t+n, y
∗
t+n) in the state window

Vs,t+n as the optimal potential state which is the best
state for the aim of approaching the goal and avoiding
the collision with moving pedestrians.

3) Inversely calculating the optimal velocity input
(v∗t+1, ω

∗
t+1) in the velocity scope Vd,t from the already

found optimal subsequent position (x∗t+1, y
∗
t+1), which

will be the input to navigate the robot.

In step 1) shown above, we construct the state window at
t+ n time step, which is the mapping of velocity scope onto
cartesian space given the current robot state and n prediction
horizon. In other words, each point in the state window Vs,t+n

represents the end position of the robot after running n steps
with each admissible velocity pair in the velocity scope Vd,t. In
step 2), we approximate the state window as a convex polygon
represented by a series of linear constraints while designing
a quadratic cost function that aims to navigate the robot to
approach the goal and avoid colliding with moving human
with their motion considered. This approach leads to a convex
optimization problem formulation, which means it could be
solved very efficiently.

A. Optimization Problem Formulation

1) Constraints: From Fig. 4, we can notice that the state
window, which represents the constraints of the optimization
problem, is non-convex. To convexify the constraints, we
approximate the sector ring-like state window to a polygon
Vc,t+∆t, which is shown as a pink pentagon in Fig. 4
and can be formulated as a series of linear inequalities.
We pick five points A − E from the boundary of the
state window to form a convex hull Vc. Point B, C,
D, E are the end of n step trajectories with velocity input
(vt+1,max, ωt+1,max),(vt+1,min, ωt+1,max),(vt+1,min, ωt+1,min)
and (vt+1,max, ωt+1,min), respectively. And point A
is the end of n step trajectories with input velocity
(vt+1,max,

ωt+1,max+ωt+1,min

2 ). As mentioned above,
the constraints can be formulated as a series of
linear inequalities as (9), (10) and (11). In (11),
ωt+1,mid = 0.5(ωt+1,max + ωt+1,min). Notice that we
set the prediction horizon n = 1 in the Fig. 4 to make
the concept of state window easier to understand. This
approximation will lead to some loss compared to the original
state window, but the loss is trivial. So The optimal solution
obtained is, in fact, suboptimal for the original state window.
If the solved solution fell outside the original state window
Vs,t+n∆t, the inversely calculated velocity input would be out

of the corresponding velocity scope Vd,t. On such occasions,
we will confine the input into the velocity scope Vd,t.

Vc,t+n = {x|Ax ≤ B}, (9)

A =


yB − yA xA − xB

yC − yB xB − xC

yD − yC xC − xD

yE − yD xD − xE

yA − yE xE − xA

 ,B =


(yB − yA)xA + (xA − xB)yA

(yC − yB)xB + (xB − xC)yB

(yD − yC)xC + (xC − xD)yC

(yB − yD)xD + (xD − xE)yD

(yA − yE)xE + (xE − xA)yE


(10)

pA =

[
xA

yA

]
=

[
xt

yt

]
+

vt+1,max

ωt+1,mid

[
sin (θt + ωt+1,midn∆t) − sin θt
cos (θt + ωt+1,midn∆t) − cos θt

]
pB =

[
xB

yB

]
=

[
xt

yt

]
+

vt+1,max

ωt+1,max

[
sin (θt + ωt+1,maxn∆t) − sin θt
cos (θt + ωt+1,maxn∆t) − cos θt

]
pC =

[
xC

yC

]
=

[
xt

yt

]
+

vt+1,min

ωt+1,max

[
sin (θt + ωt+1,maxn∆t) − sin θt
cos (θt + ωt+1,maxn∆t) − cos θt

]
pD =

[
xD

yD

]
=

[
xt

yt

]
+

vt+1,min

ωt+1,min

[
sin (θt + ωt+1,minn∆t) − sin θt
cos (θt + ωt+1,minn∆t) − cos θt

]
pE =

[
xE

yE

]
=

[
xt

yt

]
+

vt+1,max

ωt+1,min

[
sin (θt + ωt+1,minn∆t) − sin θt
cos (θt + ωt+1,minn∆t) − cos θt

]
(11)

2) Cost Function Design: We design a quadratic cost
function to guide the robot to approach the goal and avoid
collisions with moving pedestrians.

Fig. 5. Planning scene. The purple circle represents the robot and the pink
semicircle is the local map for planning and Rlocal represents the local map
radius. The dark blue circle represents pedestrian oj whose relative velocity
vector end poj

+ voj −xrobot is located in the local map. The green circle
represents pedestrian oi whose velocity vector end poi

+ voi − xrobot is
located in the local map. The orange circle represents the pedestrian of no
interest in the planning. The light blue pentagon represents the approximated
state window with the prediction horizon which forms the constraints of
this optimization problem. The red star represents the position of the goal
point and the blue star in the constraints is the optimal position solved in the
approximated state window.

In (12) x ∈ R2 is optimization variable representing the
point in the state window, pgoal ∈ R2 is the goal position.
poi and voi are position and velocity vectors of pedestrian
i. probot ∈ R2 represents current robot position (xt, yt). w1

and w2 are hyperparameters representing the weights of each
linear term. σi and γi, as defined in (13) and (14), are the signs
of the cross-product terms, ensuring that the absolute values
of these terms increase throughout the minimization process.
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f(x) = w1∥x− pgoal∥
2

+ w2

∑
oi∈Ov

σi
(poi + voi − probot)× (x− probot)

∥poi + voi − probot∥

+ w2

∑
oj∈Op

γj
(poj − probot)× (x− probot)

∥poj − probot∥
(12)

σi =

{
−1, (poi + voi − probot)× (x− probot) ≥ 0

1, (poi + voi − probot)× (x− probot) < 0
(13)

γj =

{
−1, (poj − probot)× (x− probot) ≥ 0

1, (poi − probot)× (x− probot) < 0
(14)

Ov is a set consisting of pedestrians whose position vector
relative to the robot plus velocity vector relative to the robot
end in the local map, as defined in (15). Similarly, Op is a set
consisting of pedestrians whose relative position vector end is
located in the local map, as defined in (16). For example, as
illustrated in Fig. 5, the dark blue pedestrian oj is in the set
Ov and the green pedestrian oi is in both sets, Op and Ov .

Ov = {o| cos−1

(
(po + vo − probot) · vrobot

∥(po + vo − probot)∥∥vrobot∥

)
≤ π

2
,

∥po + vo − probot∥ ≤ Rlocal} (15)

Op = {o| cos−1

(
(po − probot) · vrobot

∥(po − probot)∥∥vrobot∥

)
≤ π

2
,

∥po − probot∥ ≤ Rlocal} (16)

In equation (15) and (16), vrobot represent the current velocity
vector. The quadratic term ∥x− goal∥2 in the cost function
(12) primarily serves to guide the robot closer to the target
point. The cross-product terms (x − probot) × (poi + voi −
xrobot) and (x−probot)× (poj −xrobot) in the cost function
(12) are mainly responsible for steering the robot away from
pedestrian to avoid the collision. It is worth noting that we
integrate the motion information of moving pedestrians by
introducing the pedestrian velocities voi into the cost function.
The predicted pedestrian velocities are obtained by the KF
running on the robot, which is detailed in Section III-B. When
the cost function is minimized, the absolute value of cross-
product terms will be maximized for the negative coefficients.
This will bring two aspects of influences to the navigation: 1)
∥x−probot∥, which is proportional to the linear velocity input
vt+1, will be optimized as large as possible. This will lead
the robot to move as efficiently as it can. 2) And the angles
ψ1, ψ2, and ψ3 as illustrated in Fig. 5 will be enlarged in
the optimization process to avoid collisions with pedestrians.
In addition, the two adaptive terms 1

∥poi
+voi

−probot∥
and

1
∥poi

−probot∥
in (12) are used to differentiate the level of

danger each pedestrian poses to the robot, and to assign higher
weights to the cross-product terms related to more hazardous
pedestrian. In other words, with the adaptive terms, the closer
to the robot the pedestrian is, the more dangerous the one is,
and the cross-product term related to this pedestrian will be

assigned a higher weight. To avoid scenarios where the robot
is very close to the target but is repelled by nearby stationary
or slow-moving obstacles that are non-threatening, we apply a
factor of 0.5 to the obstacle weight ω2 as the robot approaches.

3) Overall Optimization Problem Formulation:

min
x

f(x) s.t. Ax ≤ B (17)

In (17) the f(x) is (12) and the constraints are (9). The
cost function in (17) is in quadratic form and the constraints
are composed of a series of linear inequalities. So this opti-
mization problem is a Quadratic Programming (QP) problem,
which can be solved very efficiently. After the optimal state at
(t+n∆t) is obtained by solving the QP problem above, we can
inversely calculate the corresponding optimal velocity input
(vt+1, ωt+1) uniquely. The overall process of the proposed
algorithm is shown as Algorithm 1. The local obstacle set Ol

in Algorithm 1 consists of the obstacles whose distance to the
robot is less than the local map radius.

Algorithm 1: The Proposed Planner
Input: [xt, yt, θt, vt, ωt], pgoal,Vd,t,prediction horizon

n, local obstacle set Ol

Result: Optimal control inputs (v∗t+1, ω
∗
t+1)

// Initialization
1 Ov , Op constraint, objective;
2 for obs in Ol do
3 if ⟨pobs − probot,vrobot⟩ ≤ π

2 then
4 Op.append(obs)
5 if ⟨pobs + vobs − probot,vrobot⟩ ≤ π

2 then
6 Ov.append(obs)
// Optimization Prolem Solving

7 x̂, ŷ ← OptiV ariable();
8 Calculate An, Bn, Cn, Dn, En from V elocityScope;
9 Vc = ConvexHull(An, Bn, Cn, Dn, En);

10 for edge of Vc do
11 constraint.append(edge inequality)
12 for o in Ov do
13 objective.append(o related term)
14 for o in Ov do
15 obj.append(o related term)
16 objective.append(pgoal related term);
17 (x̂∗t+n, ŷ

∗
t+n)← solve(constraint, obj);

18 (v∗t+1, ω
∗
t+1)← inverseCalc(x̂∗t+n, ŷ

∗
t+n, n);

19 v∗t+1 ← min
(
vmax,max(v

∗
t+1, vmin)

)
;

20 ω∗
t+1 ← min

(
ωmax,max(ω

∗
t+1, ωmin)

)
;

21 return Optimal control input (v∗t+1, ω
∗
t+1);

B. Pedestrian Velocity Prediction

To capture the dynamic movement information of pedestri-
ans for the planning, we employ Kalman Filter[14] to predict
the velocity of pedestrians that are in the local map, which
refers to pedestrians whose distance from itself to the robot is
less than the local map radius Rlcoal. The state of pedestrians
can be represented as X = [x, y, ẋ, ẏ]T . Due to the small
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velocity change between every two small time steps, we can
model the motion of pedestrians as uniform motion as shown
in (18). Based on the assumption above, we can formulate the
problem of pedestrian motion prediction as below,

Xt+1 = AXt +W t (18)
Zt+1 = HXt+1 + V t (19)

where (18) is the state transition equation and (19) is the
observation equation. The Xt is the pedestrian state in time
step t, and Zt+1 is the observation vector which contains the
predicted position information. W t and V t is the noise vector
characterized by a Gaussian distribution. The state transition
matrix A and observation matrix H are defined as follows.

A4×4 =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 H2×4 =

[
1 0 0 0
0 1 0 0

]

With the pedestrian velocity prediction module, we can
monitor the pedestrian positions and predict the velocity once
the pedestrian steps into the local map according to the
monitored historical positions. The predicted velocity will be
integrated into the planning frame to enhance the capability
of dynamic collision avoidance and empower safe crowd
navigation.

IV. EXPERIMENTS

A. Experiment Setup

We carried out 10 sets of experiments: half were conducted
using the classical DWA method with 3, 6, 9, 12, and 15
pedestrians respectively, while the remaining sets employed
our proposed method, also with different pedestrian counts.
Each experimental set comprised 100 trials featuring pedes-
trian trajectories randomly chosen from the ETH BIWI dataset.
Table II shows the geometry parameters setting for the series
of experiments. The robot radius is 0.5 m and the radius of
the pedestrians is 0.5 m. As for the hyperparameters of our

TABLE II
GEOMETRY PARAMETERS AND ROBOT DYNAMICS PARAMETERS

Parameters Value

Geometry
Robot radius 0.5 m
Pedestrians radius 0.5 m
Environment size 16 m× 14 m
Local map radius 6 m

Robot Dynamics

Max Linear Velocity 1.5 m · s−1

Min Linear Velocity 0 m · s−1

Max Angular Velocity 0.22 π rad · s−1

Min Angular Velocity −0.22 π rad · s−1

Max Linear Acceleration 0.2 m · s−2

Max Angular Acceleration 0.22 π rad · s−2

proposed method, we set the prediction horizon n = 15. The
weight of quadratic term w1 = 1, and the weight of collision
avoidance-related cross-product term w2 = 20. In addition,
the control frequency is 10Hz which means the time period
∆t = 0.1 s. Code implementation of simulation refers to [17].

B. Pedestrian Movements Simulation

To simulate the pedestrian movements as close to scenes
as possible, we employ the ETH BIWI Walking Pedestrians
dataset[18] consisting of walking pedestrians in busy scenarios
from a bird’s eye view. In each experimental group, we
select a fixed quantity of pedestrian trajectories from the
dataset at random, aiming to mimic pedestrian movements
with high fidelity. Pedestrian trajectories in the ETH BIWI
dataset are generally aligned along the y-direction. In each
experiment, some trajectories were rotated by 90 degrees to
simulate pedestrian motion in an open world better. This
approach ensures the realism of pedestrian behavior while
maintaining the variability of trajectories across trials within
each experimental group. The speed of walking pedestrians
stays in the range of 0.8 m/s ∼ 1.5 m/s, and there are some
stationary pedestrians in the dataset.

C. Experiment Results

Table III presents a quantitative comparison between experi-
ments using the DWA and the proposed method under different
conditions, specifically with varying numbers of pedestrians
(Peds.), whereby the success rate is the ratio of collision-free
trials over all the trials, and the number of collisions is the
sum of all the collisions in the 100 trials. Travel time refers to

TABLE III
QUANTITATIVE RESULTS OF COMPARISON BETWEEN EXPERIMENTS WITH

DWA AND PROPOSED METHOD

No. of Peds. 3 6 9 12 15

Success Rate DWA 84% 63% 49% 42% 28%
Ours 98%(16.7% ↑) 89%(41.3% ↑) 77%(57.1% ↑) 71%(69.0% ↑) 65%(132.1% ↑)

No. of Collisions DWA 18 49 71 119 176
Ours 2 13 24 35 40

Mean of Travel
Time (s)

DWA 14.22 14.86 16.23 17.33 19.64
Ours 16.19 18.06 19.78 19.77 21.36

Mean of Travel
Distance (m)

DWA 14.46 14.97 15.72 17.13 19.12
Ours 15.23 16.86 18.09 18.40 19.34

Mean of Angular
Velocity Variance
(10−2 rad2/s2)

DWA 9.94 9.51 10.41 8.90 8.85
Ours 8.70(12.5% ↑) 8.05(15.4% ↑) 7.51(27.9% ↑) 7.55(15.17% ↑) 7.08(20.0% ↑)

Mean of Linear
Velocity Variance
(10−2 m2/s2)

DWA 2.99 5.36 7.58 8.41 10.07
Ours 6.93 8.35 9.68 9.93 9.99

Mean of Average
Social Distance (m)

DWA 4.66 4.69 4.76 4.81 4.77
Ours 5.23(12.2% ↑) 5.17(10.2% ↑) 5.18(8.8% ↑) 5.17(7.5% ↑) 5.33(11.7% ↑)

the time that the robot takes to travel from the starting point to
the destination in every single trial. Similarly, travel distance
is the length of the final trajectory. In addition, we propose
a concept of the indicator called Average Social Distance
generally represents how far from the robot to the obstacles
is and it is defined as (20), where sd represents the social
distance and Ol,t represent the set of obstacles in the local
map at time step t. The angular velocity variance and linear
velocity variance here refer to the variance of angular velocity
data and linear velocity data of all time steps during each
travel.

sd =
1

T

T∑
t

∑
oi∈Ol,t

∥poi − probot∥
|Ol,t|

(20)

From Table III, our method demonstrates a substantial
increase in success rate across all the experiment groups com-
pared to DWA. Our method outperforms more significantly
with the number of pedestrians increasing, as the dark blue line
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(a) Collisions (b) Travel time (c) Trajectory length (d) Angular velocity
variance

(e) Linear velocity vari-
ance

(f) Average social dis-
tance

Fig. 6. Distribution of the quantitative results. The green box and blue box show the results of experiments with DWA and our method, respectively.

and blue line shown in Fig. 7. As the environment becomes
more challenging with 12 and 15 pedestrians, the proposed
algorithm’s success rates are 71% and 65%, respectively,
compared to significantly lower rates of 42% and 28% for
DWA, which shows 60.9% and 132.1% improvements. In
addition, our method consistently results in fewer collisions
across all tested scenarios with varying pedestrian densities
and shows more significant improvements in more challeng-
ing environments. Our proposed method’s superiority is also
evident in the aspect of average social distance as indicated by
Mean of Average Social Distance in Table III, demonstrating
7.5%∼12.2% improvements. It generally shows that the robot
employing our method will try to keep more distance from
the pedestrian which makes the pedestrians feel safer. Besides,
our proposed method appears more stable in angular velocity
and demonstrates approximately 12.5%∼20.0% improvement
compared to DWA across the experiments.

Fig. 7. Comparison for collision times and success rate between DWA and
proposed method

The set of boxplots in Fig. 6 illustrates the distribution of
quantitative results from experiments employing DWA and our
proposed method across scenarios with varying numbers of
pedestrians, whereby the green boxes represent results from
experiments with DWA and the blue ones represent results
from experiments with the proposed method. Fig. 6(a) shows
that our proposed method has fewer collisions and more stable
performance, indicating a more effective collision avoidance
capability. Fig. 6(c) displays that our method produces more

consistent trajectory lengths, particularly noticeable in scenar-
ios with more pedestrians, suggesting stable performance in
complex environments. Fig. 6(f) depicts the average social
distance maintained during navigation. Our method not only
maintains a larger average distance across all scenarios but
also exhibits less variance, indicating a consistent ability to
keep safe distances from pedestrians. Overall, Fig. 6 shows
that our proposed method can implement more effective safe
navigation with more consistent and stable performance in
environments with a high density of pedestrians.

D. Analysis for Computational Burden

DWA finds the optimal velocity by evaluating the sampled
admissible velocity pairs with a cost function, which leads
to a heavy computational burden. Also, there is a dilemma

Fig. 8. The distribution of computation time for each optimal input-solving
process with DWA and our proposed method. The means of the computational
time of DWA and the proposed method are 0.371 s and 0.035 s, the standard
deviations of both are 0.018 s and 0.254 s respectively. respectively.

between efficiency and accuracy, which means finer resolution
results in lower efficiency. However, our method approximates
the original problem as a convex optimization problem that
can be solved very efficiently. In the experiments, the con-
vex optimization problem is solved by the ECOS solver of
CVXPY package[19]. We conduct a simulation experiment
on MacOS with 2.3GHz Intel Core i5 CPU, and Fig. 8
shows the distribution of the computational time of each
solving for optimal velocity input with DWA and our methods
respectively, which illustrates the computational burden of our
method is much lower and the distribution of that is denser and
the computation time has decreased by an order of magnitude.
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Overall, our proposed method is much more computationally
efficient compared to DWA.

V. CONCLUSION AND FUTURE WORK

In this work, we introduced a novel local motion planning
algorithm for differentially driven mobile robots, inspired by
DWA, yet significantly overcoming safety risks in pedestrian-
rich environments. Utilizing the features of differential drive
kinematics, our approach employs convex optimization to effi-
ciently find optimal velocity inputs that account for pedestrian
movements predicted by the KF. Through rigorous and exten-
sive simulation experiments, including scenarios with varying
pedestrian densities using data from the ETH BIWI pedestrian
dataset, our method consistently outperformed DWA, showcas-
ing higher success rates in dense environments and reduced
collisions. Furthermore, it maintained greater average social
distances, enhancing pedestrian safety. We also demonstrated a
substantial reduction in computational time compared to DWA,
emphasizing our method’s efficiency.

Despite outperforming DWA in crowd navigation data, our
approach has limitations, including the absence of a safety
guarantee and the potential loss of admissible velocity inputs
due to the convexification of the state window. Future efforts
will aim to incorporate safety guarantees and consider pedes-
trians’ reactions within the motion planning framework.
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