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Abstract— This research addresses the significant challenge of
noise in point cloud (PC) data, which undermines the accuracy
of object recognition and pose estimation. We introduce a
novel methodology that leverages systematic robotic camera
movements for multiview PC acquisition, aimed at enhancing
reconstruction accuracy in noisy environments. Using a Jaco
robot arm outfitted with a Realsense D435 RGB-D camera, PCs
of a globe valve are captured from multiple angles, focusing
on a 60° area with 15° intervals. This setup results in a
dataset of 81 PCs per iteration, with a total of three noisy
PC datasets collected for analysis. The PCs are merged at 15°
and 30° intervals, using the Color Iterative Closest Point (ICP)
algorithm and refined through downsampling. The method is
evaluated by measuring position and orientation accuracy using
the Random sample consensus (RANSAC) algorithm across
216 instances-108 each at 15° and 30° intervals. The proposed
methodology enhances the accuracy of pose estimation by 93 %
in both intervals, reducing mean errors in position to 2.35
mm and in orientation to 18.4°. This significant improvement
underscores the effectiveness of our approach in mitigating
noise in PC data for more precise object recognition and pose
estimation applications.

I. INTRODUCTION

Point clouds (PCs) are indispensable for object recogni-
tion and pose estimation, providing rich three-dimensional
(3D) representations, making them essential for accurately
discerning object identities and determining their spatial
orientations in real-world environments [1], [2]. The quality
of the PC is crucial for achieving accurate object recognition
and pose estimation [2]. Noise in PCs presents significant
obstacles to the accuracy of object recognition and pose
estimation. Therefore, reconstructing PCs is crucial for miti-
gating the effects of noise and enhancing the quality of data,
ultimately leading to more precise object recognition and
pose estimation, especially in noisy environments [3], [4].

Over the past decade, the use of color PCs for 3D object
recognition and pose estimation has gained popularity, thanks
to the widespread availability of the necessary devices and
the ease with which objects can be recognized from color
PCs [1], [5], [6]. Color details in PCs crucially enhance
object recognition by providing nuanced information absent
in monochrome data. In recent times, the domain of factory
automation has seen the integration of RGB-D cameras with
robot manipulators for object handling tasks with various
methods employed for object recognition and pose esti-
mation across different scenarios [1]. Geometric errors in
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3D reconstructions present significant hurdles in faithfully
representing scanned shapes, arising from factors such as
data noise, imperfect sampling, and algorithmic limitations
[3]. In previous research, our team encountered significant
issues with PC noise, which prompted the development of a
novel system for object recognition and pose estimation in
factory automation, as described in [6]. This system employs
an RGB-D camera mounted on a robotic arm to enhance
accuracy through pose estimation from multiple viewpoints.
While it performs well in controlled environments, its effec-
tiveness is compromised in noisier settings. Consequently,
the current research explores Multi-View PC acquisition
using an RGB-D camera as a promising solution, particularly
when combined with a camera attached to a robotic arm.

Obtaining PCs from various viewpoints has become a
popular method for 3D PC restructuring in recent years.
Takimoto et al. suggest a technique to enhance the accu-
racy of 3D reconstructions by merging PCs captured from
various viewpoints with structured light [7]. The authors
used a Kinect RGB-D sensor to capture multiple PCs from
different angles and applied the Iterative Closest Point (ICP)
algorithm to generate reconstructions over large areas. Wei
et al. proposed a method for automatic identification and
autonomous sorting of cylindrical parts in cluttered scenes
using monocular vision 3D reconstruction [8]. The research
aimed to solve the challenge of obtaining a globally op-
timal solution for pose estimation. The method involved
capturing images of parts, extracting color signatures, using
Random sample consensus (RANSAC) and Remote Closest
Point (RCP) algorithms, and completing fine registration
with Levenberg-Marquardt-ICP. The experimental results
demonstrated higher pose estimation accuracy than other
methods, with minimal position and orientation errors. Sang
et al. propose a novel RGB-D reconstruction method that
addresses challenges in surface modeling and image forma-
tion [9]. Their approach leverages multi-view uncalibrated
photometric stereo and gradient Signed Distance Function
(SDF) to achieve high-quality reconstructions of fine-scaled
geometry, albedo, lighting, and camera tracking. Extensive
evaluation of synthetic and real-world datasets demonstrates
their effectiveness.

In contrast to prior studies that rely on static RGB-D
camera positions for acquiring multiview 3D data, our pro-
posed approach introduces a novel methodology employing
a robotic arm-guided RGB-D camera system that allows
to capture of 3D data from multiple viewpoints. This ad-
dresses the limitations associated with static configurations,
as identified in our previous research [6]. Our work highlights
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the challenges arising from geometric errors in 3D recon-
structions derived from PC data, despite the demonstrated
effectiveness of algorithms like ICP for PC registration and
alignment. Notably, despite the growing prominence of PC
technology, the literature lacks a comprehensive exploration
of multiview PC integration, specifically the integration of
PCs collected by systematic camera movements. Our study
aims to fill this gap by investigating the potential benefits of
integrating information from multiple viewpoints, contribut-
ing to more accurate and comprehensive scene representa-
tions.

The ICP algorithm is widely employed as a method for
registering two sets of 3D points or surfaces [10]. The color
ICP algorithm surpasses traditional ICP by reducing search
time, enhancing accuracy with color-based point selection,
enabling faster convergence, and improving reconstruction
accuracy [11]. To extend its applicability to RGB-D data,
Color-ICP can leverage color and geometric information
to establish correspondences between points in the PCs
being registered [12]-[14]. The integration of color infor-
mation proves beneficial in disambiguating correspondences
and refining alignment accuracy. This becomes particularly
valuable in scenarios where geometric features alone are
insufficient for constraining optimization, such as on smooth
surfaces. One of the primary objectives of this research is
to enhance the accuracy of pose estimation derived from PC
reconstruction. The RANSAC algorithm, widely utilized as
a 3D pose estimation method, is central to our approach [5],
[6], [15]. In our specific use case, we conduct the verification
of pose estimation accuracy within the framework of the
RANSAC algorithm.

In response to the prevalent challenge of noise in PC data,
our research proposes a novel approach to reconstructing
PC data through multiview acquisition involving systematic
camera movements. A globe valve will be used as the target
object in this research. To execute this methodology, we
use a Jaco robot arm equipped with 6 Degrees of Freedom
(DOF), housing a Realsense D435 RGB-D camera atop its
frame. A testing environment with artificial noise is used
to collect data. A large number of PCs are collected from
various angles by manually operating the robotic arm around
the target object. Subsequently, the captured PCs from dif-
ferent angles are merged using the Color ICP algorithm.
A downsampling method is used to smooth the merged
PC. The accuracy of the resulting PC will be evaluated by
measuring the positional and orientational accuracy of the
final reconstruction, which is referred to as “efficient” in this
research. Different PCs from different angles are merged to
analyze the most accurate angles. The key contributions of
this research include:

e Reconstructing a large number of noisy PC data gath-
ered from systematic robotic camera movements using
the introduced methodology.

« Investigating the accuracy of reconstructed PC integra-
tion in data obtained through systematic robotic camera
movements.

o Comparing the accuracy of PC reconstruction using data

merged at different angles.

II. METODOLOGY
A. Testing Environment

To acquire color PC data with added noise, the authors
devised an artificial environment, illustrated in Figure 1.
Artificial noise was introduced using a torch. The reflection
produced by the torch’s light beam introduces noise into
the PC. Data were collected both horizontally (yaw axis
from the target) and vertically (pitch axis from the target)
relative to the target object, as shown by the yellow and pink
curved arrows in Figure 1. Suppose the current position of
Figure 1 is directly facing the target object, the acquired PC
is labeled as pitch000-yaw000. In Figure 1, “A” represents
the placement of the torch, “B” signifies the target object (a
globe valve), “C” denotes the Intel Realsense D435 RGB-D
camera, and“D” represents the JACO arm.

Fig. 1. Noise data collecting environment. The yellow and pink curved
arrows indicate the movement directions of the robot arm while the green
line shows the direction of the object from the camera.

B. Proposed System Architecture

The proposed system architecture, depicted in six stages in
Figure 2, involves collecting noisy PC data using systematic
movements of a robot arm, as shown in Figure 1. This
is followed by the application of post-processing filters to
lessen the PC density. The process continues with color-
based region-growing segmentation and filtering to isolate
the target object from noise. Color PC registration is then
executed using the Color ICP algorithm, with subsequent
downsampling to further reduce PC density. Finally, the
RANSAC algorithm verifies the accuracy of the final PC.

1) Move robot arm to pre-programmed positions: The
data-gathering process is designed to capture the target object
using an RGB-D camera mounted on the Jaco robot arm
with 6 DOF as in Figure 1. A globe valve becomes the
target object in this research. As shown in Figures 3 on the
left, the area 60 ° to the left, right, up, and down from the
target object’s middle was selected for data collection. This
area was chosen to maximize the RGB-D camera’s field of
view while capturing the most critical aspects of the globe
valve. Data collection is performed from the central axis
of the object, employing a 15-degree interval between each
instance, as depicted in Figure 3 on the right. The 15-degree
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Fig. 2. The proposed reconstruction method with six stages.

interval between each instance provides detailed coverage
without redundancy when PC merging. This systematic ap-
proach ensures the acquisition of diverse and detailed PC
information. A total of 3 noisy PC data sets were collected
in this research.
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Fig. 3. Left: Data were gathered horizontally and vertically from the target
object. For the target object, an area of 60 degrees to the left, right, up, and
down was considered. Right: A total of 81 data points were considered,
with 15-degree intervals at each point.

2) Capture PCs and apply post-processing filters: This
research uses Intel Realsense D435 as the depth camera [16].
Before applying the object recognition part post-processing
is required to enhance the quality and accuracy of the depth
data captured by the sensors [17]. As in Figure 2, smooth
alpha and smooth delta are used to control the amount of
smoothing applied to the depth data, while hole filling is
employed to fill in gaps or “holes” in the depth map.

3) Filter the target object from the PC: After applying
post-processing filters, a color-based region-growing seg-
mentation algorithm is used to segment the color scene
PC [18]. Subsequently, a color-filtering method is employed
to isolate the target object from the segmentations. For
improved filtering, RGB data of the PC is converted to the
HSV (Hue, Saturation, Value) color space, which offers a
more intuitive representation of colors [19]. Figure 2 displays
examples of globe valve handles after being filtered using
these algorithms.

4) Color PC registration: Color ICP algorithm is used
for PC registration which uses both geometric and color

information to establish correspondences between points in
the PCs [12]. Let P and ) denote two colored PCs, where
each point p; € P is characterized by its 3D coordinates
(z4,vi,2;) and associated RGB color values (R;, G;, B;).
Similarly, each point ¢; € @ is described by analogous
attributes. The objective of Color ICP is to determine the
transformation 7' comprising rotations and translations that
minimize the distance between corresponding points in P
and @. The optimization function for the registration process
is formulated as follows:

E(T)=(1=0)Eci(T) + 6Egeo(T), (1

where Eye,(T) represents the geometric error and Egq(T)
the color error. The geometric error is defined as the sum
of squared distances between corresponding points in the
transformed PC P and Q):

Eoeo(T) = > Y wij - |IT - pi — 4511, 2)
i

and the color error is the sum of squared differences in
color values between matched points:

E(T) = Z Zwij [|color(p;) — color(g;)[|*,  (3)

? J

Here, w;; are weights assigned based on the confidence
in each correspondence, and ¢ is a parameter between
0 and 1 that balances the influence of geometric versus
color data. The parameter § is empirically determined to
optimize registration accuracy for specific applications. The
Color ICP algorithm iteratively refines the transformation 7’
by minimizing the combined error. The process continues
until convergence, which is determined when the change in
error between successive iterations falls below a predefined
threshold, indicating a stable solution. This iterative approach
ensures that both color and geometric alignments contribute
effectively to the final registered PC.

5) Smooth the PC using downsampling method: Voxel
grid downsampling was used in this research to smooth the
PCs [20]. This technique ensures a more uniform distribution
of points, and in our case, it reduces the density of the PC by
averaging the points within each voxel. Suppose the selected
voxel is s, units wide, s, units long, and s, units tall. From
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Equation 4, it can be found which voxel a point belongs to
as follows,

Voxel Index(z,y, z) = (LZJ , L‘ZJ : LZD L@

For each voxel, if there are multiple points inside, the
average position becomes the representative point for that
voxel. Suppose the representative point of the voxel is
denoted as V/,

N
1
V(xvaymzv) = NZ(ﬂfp,yp,Zp), ()
p=1

where N is the number of points within the voxel. In this
research, a voxel of s, = 1.5 mm, s, = 1.5 mm, and s, =5
mm was selected.

6) Verify PCs: The RANSAC algorithm is utilized to
verify the accuracy of the PC, focusing on position and
orientation. RANSAC is particularly effective in environ-
ments with high noise levels and outliers, typical of industrial
settings. Specifically, for the globe valve, the RANSAC circle
algorithm facilitates accurate pose estimation of the round-
shaped handle [6], [21]. By robustly distinguishing inliers
from outliers, RANSAC ensures that position accuracy as-
sessments are based on the most reliable data, enhancing
the precision of the estimated pose. Using three randomly
sampled points, p;, p2, and p3, on the globe valve handle,
the normal n and the center ¢; of the handle are calculated
using Equations 6 and 7 as follows:

ny = (p2 —p1) X (p3 —p1) )

[(p2 = p1) x (p3 —p1)|I’

”?Ih
(p2 — 1) (p1 +p2)/2] .
(ps —p1)T(;m +p3)/2(7)

-T
c1 = [”1 P2 —P1 P3 *pl]

The position error of the globe valve can be calculated as,

ETTOTPOS = ||Ctrue - Cl” 5 (8)

where Cl,.. is the true center, manually selected in each
PC. The orientation accuracy is calculated by the angular
difference of the normal vector given by the RANSAC plane
algorithm and n1 given by Equation 6. The algorithm iden-
tifies the dominant plane by analyzing the coefficients a,b,
and ¢, which represent the plane fitted to the PC. Given that
the target PC is approximated as a plane, these coefficients
are used to compute the normal vector (ns) of the plane.
This approach ensures accurate orientation measurements
by aligning the derived plane’s orientation with the true
geometrical configuration of the object, thereby enhancing
the reliability of the pose estimation. If true orientation
considered as the orientation given by ng, then Orientation
Error (F,,;) can be obtained as,

111112) ) 9)

FE,.; = arccos (
[y [ ||z |

Finally, the accuracy improvement (%) was calculated
using this algorithm,

Initial Error — Final Error

Improvement = x 100%. (10)

Initial Error
The accuracy of both position and orientation was calcu-
lated.

III. RESULTS AND DISCUSSION

From the collected noise data batch, nine positions are
selected for 3D reconstruction, each spaced 30 degrees apart
from the next. 15° and 30° PC merging were considered
in this research. Each PC comprises four instances to be
merged: two instances with PCs differing by 15 and 30
degrees horizontally (yaw axis) and two instances with PCs
differing by 15 and 30 degrees vertically (pitch axis). Figure
4 illustrates the step-by-step results provided by the proposed
methodology for four PCs. In total, 36 instances of merging
(9 x 4) were considered from one dataset. This research
considered 216 instances from the three noisy datasets to
measure the accuracy of the proposed methodology com-
prising 108 instances for 15° and 108 instances for 30°.

Color ICP

Target

Moving Downsampling

(1]

[2]

[3]

[4]

Fig. 4. Applying the color ICP algorithm and then downsampling it to
noisy data for 30° instances. Illustrations No. 1: the merging of pitch000-
yaw000 data into pitch000-yaw330, No. 2: pitch000-yaw030 merged into the
pitch000-yaw060PC, No. 3: the merging of pitch030-yaw000 into pitch030-
yaw330, and No. 4: pitch330-yaw000 merged into pitch330-yaw030.

From Figure 4, it is evident that the noise data of the target
PC can be restructured using the proposed methodology. The
incomplete points in the target PC were filled after merging
using color ICP. The integration of color ICP facilitates sig-
nificant densification of the merged PCs, imbuing them with
a rich abundance of data points. However, such heightened
density necessitates a subsequent downsampling process to
refine and smoothen the PC. The refined PC exhibits a
more refined and organized structure, with individual data
points arranged more uniformly, thereby enhancing the over-
all perceptual quality. Moreover, the downsampling process
effectively mitigates the previously observed thickness of the
PC, resulting in a smoother and more visually appealing
representation of the underlying data.
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TABLE I
THE POSITION AND ORIENTATION RESULTS FOR 30° AND 15° MERGING.

30° 15°
Error Position prediction (mm) Orientation prediction (°) Position prediction (mm) Orientation prediction (°)
Mean Min Max SD Mean Min Max | SD Mean Min Max | SD Mean Min | Max | SD
Initial 37.6 4.6 191 71 8.53 3.81 13.3 | 3.7 30.7 4.79 191 63.2 | 9.59 29 15.6 | 3.86
C-ICP 4.88 1.8 8.4 1.67 | 7.89 2.5 13.5 | 3.11 5.16 2.61 30.8 | 523 | 7.22 1.1 142 | 3.53
DS 2.49 1.2 5.0 0.60 | 7.65 2.5 134 | 3.23 2.22 1.06 5.08 | 093 | 7.1 1 13.5 | 3.34
Improv | 933% | 73% | 97.3% | 99% | 103% | - - 127% | 92.8% | 77.7% | 97% | 98% | 26.5% | - - 13%

Fig. 5 illustrates the results produced by the RANSAC
algorithm. In this depiction, the inliers utilized to predict the
position of the PC in the RANSAC algorithm are represented
by green circles. Notably, the inliers utilized for determining
position and orientation in the “Target” PC do not form
complete circles, indicating potential inaccuracies in position
and orientation estimation. Upon examination of Figure 5, it
becomes apparent that there is an enhancement in the predic-
tion of the position within the final PC (post-downsampling)
in contrast to the initially captured PC (target). Here, the
midpoint of the valve serves as the reference true position. To
assess the accuracy of the position estimation, we calculate
the error by measuring the disparity between the current
position indicated by the endpoint of the green line in Figure
5, and the estimated position derived using Equation 7.

Color ICP

Target

Downsampling

(1]

(2]

(3]

(4]

Fig. 5. Calculated position for original, color ICP, and downsampling for
the same samples in Figure 4.

Table I displays the PC dataset results, where “C-ICP”
refers to Color ICP PC, “DS” to downsampled PC, and
“Improv” to the percentage (%) improvement calculated by
Equation 10. For the 30° interval, the mean position error was
markedly reduced from an initial 37.6 mm to 4.88mm post-
Color-ICP and further to 2.49mm following downsampling,
reflecting a 93.3% improvement from the baseline. This
trend was consistent in the 15° data, where mean position
errors decreased from 30.7 mm to 5.16 mm and then to
2.22 mm, achieving a 92.8% reduction. Orientation errors

also exhibited notable enhancements; however, the degree of
improvement was less pronounced compared to positional
accuracy. Specifically, the mean orientation error for the 30°
merged data decreased from 8.53° initially to 7.65° after
all enhancements, while the 15° data saw a reduction from
9.59° to 7.1°. These findings underscore the efficacy of
downsampling in refining the precision of PCs. Given the
objective of manipulating the globe valve using a robotic
hand, an error of less than 5 mm is deemed acceptable for
accurate position prediction. From Figure 6, it can be seen
that more than 91% of the 30° errors and more than 98% of
the 15° errors are less than 5 mm.

60%

50% 47.6% 491%
) m30° m15°
o 40% 35.7%
o0
8 30% 24.6%
2
=] 0
20% 14.0% 14.3%
10% 8.8%
350
0% 0% 3% 29 . 1.2%
0% .. -
>1 1-2 2-3 3-4 4-5 5>

Error (mm)

Fig. 6. Error distribution for position prediction

Figure 7 illustrates the orientation difference between the
reference orientation provided by the RANSAC plane and
the predicted orientation provided by the RANSAC circle. It
is noteworthy that there is minimal orientation discrepancy
between the initial (target) and final (downsampling) PCs
in both scenarios (15° and 30° merging), a fact supported
by the results presented in Table I. Initially, the mean error
and standard deviation for orientation prediction are 8.53
° and 3.7°, respectively, for 30° merging. These values
undergo reductions of 10.3% and 12.7%, resulting in a
final PC mean orientation error of 7.65° and a standard
deviation of 3.23°. However, in the case of 15° merging,
the accuracy improvement increases by 26.5% and 13% for
mean error and standard deviation, respectively. This may
be attributed to the smaller angle difference of merged PCs
at 15° compared to 30°. The improvement in orientation
accuracy is not substantial with this proposed methodology.
This could be attributed to the high density of merged PCs
from color ICP, potentially leading to orientation errors in
some merged PCs.
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Color ICP

Downsampling

Fig. 7. Calculated orientation for original, color ICP, and downsampling.
The light blue line depicts the reference orientation, while the red line
represents the predicted orientation.

IV. CONCLUSIONS AND FUTURE WORKS

In this study, a novel process for reconstructing noisy PC
data was proposed, leveraging color ICP algorithms, sub-
sequent downsampling, and PC capturing with a systematic
robotic arm with an RGB-D camera. Through the analysis of
216 instances across three datasets, encompassing both 15°
and 30° PC merging scenarios, significant improvements in
both position and orientation accuracy were achieved. For
position prediction, mean errors were reduced by approxi-
mately 93%, with final mean errors below 5 mm, meeting the
criteria for accurate position estimation in applications such
as robotic manipulation in valves. Meanwhile, orientation
accuracy improvements varied, with smaller angle differ-
ences leading to more substantial enhancements. Despite
minimal improvements in orientation accuracy, the proposed
methodology demonstrated its efficacy in refining noisy PC
data.

The merging process sometimes results in a denser PC,
which decreases the orientation accuracy of the final output.
It was observed that the color ICP algorithm struggles to pro-
duce a refined output when there are significant differences in
the angles of the two merging PCs. To address this challenge,
enhancing the color ICP merging algorithm by incorporating
position and orientation data from the robot arm could be
implemented in future research. Computational efficiency of
the approach evaluating the execution time and comparing it
with other methods will be done in the next stage.
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