
Assistive Control of Robot Arms via Adaptive Shared Autonomy

Umur Atan, Varun R. Bharadwaj and Chao Jiang

Abstract— Shared autonomy is a robot control approach
that assists human users to achieve their intended goal while
leveraging the precision and efficiency of robot autonomy. In
shared autonomy, user input and autonomous assistance are
combined to effectively control robots without requiring users to
provide direct and precise control inputs. A persistent question
in shared autonomy is how to determine the arbitration between
user input and autonomous algorithm. Due to variability in
users’ desired amount of assistance, it is imperative to develop
user-centric algorithms that provide customized and adaptive
assistance by considering users’ preference, physical capability,
and expertise. In this paper, we propose a shared autonomy
method that factors in both users’ task performance and level
of expertise to adaptively adjust the amount of assistance
at runtime. We validated our method in an assistive control
problem where human users teleoperate a robotic arm to
perform object reaching and grasping tasks in a simulated
environment. The results show that our method assisted the
users to achieve a higher efficiency in accomplishing the object
reaching and grasping tasks compared to direct teleoperation
and two baseline arbitration methods that only consider task-
related metrics.

I. INTRODUCTION

Robotic teleoperation plays a crucial role in various do-
mains such as assistive robots, industrial manufacturing,
surgical and rescue robots [1], [2]. Teleoperated robot arms
in industrial settings enable humans to remotely control
machinery, thereby mitigating the potential for harm in
hazardous conditions. Surgeons may control medical instru-
ments from a distance with enhanced dexterity and stability
to achieve improved surgical outcomes. However, direct
teleoperation for robots is a demanding task, which requires
users to have comprehensive understanding of the robots’
capabilities and motion. Even with proper training and
familiarity, users may struggle to effectively control robots
due to the limitations of control interface [3]. Inexperienced
operators, in particular, may have difficulties in correctly
aligning robot arms and synchronizing exact motions, and
potentially produce unsafe control inputs [4]. Therefore, it is
crucial to address these problems in order to improve user
experience and enable effortless interaction with robot arms
for users with different levels of expertise.

Shared autonomy [3] has been proposed as an appealing
approach to address the challenges of direct teleoperation
by augmenting users’ input with autonomous assistance
[5]. Shared autonomy allows users to effectively teleoperate

*This work was supported in part by the National Science Foundation
under grant no. 2024813.

1 Umur Atan, Varun R. Bharadwaj and Chao Jiang are with the
Department of Electrical Engineering and Computer Science, University
of Wyoming, 1000 E University Ave, Laramie, Wyoming emails:
{uatan,vbharadw,cjiang1}@uwyo.edu

robots without providing direct and precise control input.
This way, users can focus on high-level control towards
their intended task objective while the robots compute and
execute low-level actions to collaboratively perform the
task. Nevertheless, how to arbitrate user and autonomous
algorithm inputs to achieve such human-robot collaboration
continues to be a point of discussion. Traditional methods
compute arbitration primarily based on task-related per-
formance metrics such as efficiency and completion time.
However, users’ desired amount of assistance typically varies
based on user-related factors such as preference, physical
capability, and level of expertise [6]. Moreover, previous
studies found that users prefer to retain as much control
over autonomous algorithms as possible [4]. Therefore, for
users to reap the advantages of autonomous assistance in
excessively demanding tasks, it is imperative to develop
user-centric algorithms that provide customized and adaptive
assistance by considering user-related factors.

In this paper, we study an assistive control problem where
human users teleoperate a robotic arm to perform object
reaching and grasping tasks. We propose a novel approach
to shared autonomy that modifies control sharing archetypes
to provide customized and adaptive assistance at runtime.
Our approach takes into account both users’ dynamic per-
formance with respect to task-related metrics and level of
expertise to adaptively adjust the amount of assistance. We
validated the proposed method in simulation experiments and
the results show that our method achieved a higher task
efficiency compared to direct teleoperation and two baseline
arbitration methods that only consider task-related metrics.

The rest of the paper is organized as follows. Section
II provides an overview of shared autonomy approaches.
Section III describes our problem formulation. Section IV
presents the assistive robotic arm control system and our
proposed adaptive control blending method. Experiment re-
sults and discussion are provided in Section V. Finally, we
conclude our work in Section VI.

II. RELATED WORK

A. Shared Autonomy

Shared autonomy has been extensively studied in the
context of robotic teleoperation and assistive robotics [7].
The key idea of shared autonomy is to combine user input
with autonomous assistance to achieve users’ intended goals.
To provide autonomous assistance that aligns with the user’s
intent, early shared autonomy approaches either assume that
the user’s goals are known or infer the user’s goals from
their actions by leveraging prior knowledge of environmental
dynamics, goal representations, and user decision-making

2024 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
July 15-19, 2024. Boston, MA, USA

979-8-3503-9154-1/24/$31.00 ©2024 IEEE 1096

policies towards their goals [8], [9]. However, those ap-
proaches usually fall short in complex environments and
tasks where acquiring prior knowledge of environments and
users become excessively challenging. As a result, learning-
based approaches [10] have been proposed to learn neural
network models that decipher user preference or policy and
generate assistance control action given the current observa-
tion of system state. The final robot control is determined
by blending the user and assistance control inputs based on
preselected arbitration strategies (e.g., linear combination).
The drawback of the aforementioned methods is the lack
of dynamic blending that adaptively adjusts the level of
assistance based on user performance or needs.

Various methods [9], [11], [12] for dynamic blending of
user and autonomous algorithm inputs have been devel-
oped using the notion of autonomy levels [13]. Dynamic
blending methods adaptively seek optimal balance between
user and robot autonomy during task operation, aiming to
achieve efficient human-robot collaboration and successful
task fulfillment. Early dynamic blending methods adjust the
arbitration between user and robot autonomy primarily based
on task-related performance metrics. However, users’ desired
amount of assistance typically varies due to user-related
factors such as preference, physical capability, and level
of expertise [6]. Therefore, user-centric methods have been
proposed to offer customization of autonomous assistance
according to user preferences and needs [4]. Compared to
task-centric methods, user-centric design of autonomy arbi-
tration improves user-related metrics such as independence
and satisfaction while achieving desired task performance
[14]. Most of the dynamic blending methods mentioned
above use discretized levels of arbitration, hence may not
produce optimal blending of user and robot inputs. In this
paper, we adopt the idea of sliding autonomy [15] and
propose a method that enables continuous adjustment of
robot autonomy level between direct teleoperation and full
autonomy.

B. Expertise Factor

Users’ level of expertise has been considered as a key
factor in tailoring the response of autonomous robots to
human users in shared autonomy. In the context of robotic
arm teleoperation, level of expertise can be described by user
competence identifiers such as accuracy of reaching goal
positions, avoiding collisions with objects, and frequency of
user input commands. A user with low input accuracy is
prone to errors, potentially leading to subpar performance
or accidents [16]. In such cases, the expertise factor ad-
justs to a lower value, indicating a need for elevated level
of autonomous assistance. Input frequency, defined as the
number of times a user provides control signals per unit of
time [17], is a measure of the user’s active participation. A
heightened input frequency, irrespective of the correctness of
the user’s input, typically signifies the user’s determination
to guide the robot in a preferred direction. If the robot fails
to comply, the user may resist autonomous assistance and
pursue their intended actions in subsequent steps. Inspired

by these findings from prior works, we developed a method
that quantifies users’ expertise from user attributes such as
correctness of input [16] and frequency of input [17] to
adaptively adjust the level of assistance at runtime.

III. PROBLEM STATEMENT

We consider a scenario where a human user’s task is to
teleoperate a robotic arm to reach and grasp objects placed on
a table. Each object’s position is regarded as a goal position
denoted as g∗ ∈ R3. Let S ⊂ R3 be the state space that
includes all reachable positions of the robot’s end effector
and A = {+x,+y,+z,−x,−y,−z} be the action space
for moving the robot’s end effector. An action from A may
move the end effector in either positive or negative x, y, or
z directions. Users can also open/close the gripper on the
robot’s end effector to grasp the objects. When an action
at ∈ A is taken in state st ∈ S, the end effector transitions
to a new position st+1 ∈ S according to the state transition
function T : st+1 ← f(st,at). The user’s and robot’s action
inputs are defined as aH ∈ A and aR ∈ A, respectively.
We assume that the users’ intended goal positions and the
position of the robot’s end effector are known to the robot
for computing robot action aR ∈ A.

At each time step, the user’s input aH and robot’s input
aR are blended to create a blended action, denoted as aE ,
using the following control arbitration strategy [3], [10], [18].

aE = β · aH + (1− β) · aR (1)

where β is the arbitration parameter. The objective in this
work is to develop an adaptive control arbitration method that
dynamically finds the optimal β for computing the blended
action aE to reach and successfully grasp the object with
minimal time steps.

IV. METHODOLOGY

A. Overview

An overview of our assistive robotic arm control system is
shown in Fig. 1. A human user uses a keyboard to provide ac-
tion input aH that moves the robot’s end effector to the user’s
intended directions based on their observation of the robot.
A deep Q-network (DQN) model is trained for computing
action aR given the state of the robot’s end effector. The
DQN model acts as an agent that is capable of controlling the
robot to complete the task in a fully autonomous manner. Our
method uses the simulated annealing (SA) algorithm [19]
to search for an intermediate control arbitration parameter,
denoted as α, such that aH and aR are blended to yield
an optimal action towards reaching the goal. Meanwhile, the
user’s expertise factor ex is evaluated based on the user’s
input. The final arbitration parameter β is determined by
combining α and ex and a blended action aE is computed
via Eqn. (1) to control the robot.

B. DQN for Autonomous Control

We train a DQN model that acts as an autonomous agent
for robot control using the deep Q-learning algorithm [20]
in a simulation environment. The agent aims to control the

1097

Fig. 1: An overview of our method for assisting human users
in robotic arm teleoperation via shared autonomy.

robot to approach a given goal position that is randomized in
each training episode. To shape a control policy that takes the
shortest path, the reward function is designed as the negative
squared error between the end effector’s current position and
the goal position, i.e., rt = −∥st − g∗∥2. After training, the
autonomous agent employs a greedy policy that selects the
optimal action with the maximum Q value at each time step
until reaching the goal.

C. Action Blending

The action arbitration parameter β in Eqn. (1) plays a
pivotal role in determining the combination of user and
agent inputs. β is viewed as a dynamic parameter that
influences the control authority granted to the user and
autonomous agent. Our method computes β as the sum
of two contributing factors: 1) an expertise factor ex that
evaluates the user’s level of expertise and 2) an intermediate
arbitration parameter α that is optimized using the simulated
annealing algorithm.

1) Expertise Factor ex: The expertise factor ex is deter-
mined based on two expertise indicators: the correctness and
frequency of user input [16], [17]. The user action aH,t at
time step t is considered correct if the Euclidean distance
between the end effector and goal decreases by taking the
action aH,t, i.e., ∥ŝt+1 − g∗∥ < ∥st − g∗∥, where ŝt+1 ←
f(st,aH,t). Otherwise, the action makes no progress towards
reaching the goal if ∥ŝt+1−g∗∥ ≥ ∥st−g∗∥. The frequency
of user input is evaluated as how quickly a user gives input
at each time step. To measure the input frequency, a timer
denoted as τ is initiated as soon as the robot transitions to
state st at each time step t and is terminated when the user
input for this time step is received. The threshold is set to 0.1
seconds which enables rapid detection of queued commands
and reflects the proficiency of the user.

We consider four different levels of expertise for ex,
namely, high, medium, low, and very low expertise. Our
method to determine the expertise factor ex using the cor-
rectness and frequency of user action is summarized in
Algorithm 1.

Algorithm 1 Expertise Factor

1: Start timer τ when the robot transitions to st
2: Terminate timer τ when the user input is received
3: Initialize expertise factor ex
4: Get the user action euclidean distance ∥ŝt+1−g∗∥ using

aH

5: if τ < 0.1 s and ∥ŝt+1 − g∗∥ < ∥st − g∗∥ then
6: Set ex = 1
7: else if τ > 0.1 s and ∥ŝt+1 − g∗∥ < ∥st − g∗∥ then
8: Set ex = 0.75
9: else if τ < 0.1 s and ∥ŝt+1 − g∗∥ ≥ ∥st − g∗∥ then

10: Set ex = 0.5
11: else if τ > 0.1 s and ∥ŝt+1 − g∗∥ ≥ ∥st − g∗∥ then
12: Set ex = 0.25
13: end if

• High expertise level (ex = 1) is assigned to users who
take correct actions ∥ŝt+1 − g∗∥ < ∥st − g∗∥ and
respond fast (τ < 0.1 s).

• Medium expertise level (ex = 0.75) is assigned to users
who take correct actions ∥ŝt+1 − g∗∥ < ∥st − g∗∥ but
do not respond fast enough (τ > 0.1 s).

• Low expertise level (ex = 0.5) is assigned to users who
fail to take correct actions ∥ŝt+1 − g∗∥ ≥ ∥st − g∗∥
but respond fast (τ < 0.1 s).

• Very low expertise level (ex = 0.25) is assigned to users
who fail to take correct actions ∥ŝt+1−g∗∥ ≥ ∥st−g∗∥
and do not respond fast enough (τ > 0.1 s).

2) Intermediate Arbitration α via Simulated Annealing:
We employ simulated annealing [19] to dynamically search
for an intermediate arbitration parameter α, which provides
adaptive and seamless adjustment of shared autonomy com-
pared to methods using discretized levels of arbitration [3].
Simulated annealing is an optimization method based on
stochastic search. Compared to gradient descent methods,
it is less prone to local optima and thus could be more
effective in finding (globally) optimal solutions for complex,
non-convex problems.

To find the optimal α, the simulated annealing algorithm
starts with a random value of α and iteratively optimizes α
based on a cost function and a temperature parameter. In this
work, the cost function is chosen as c(α) = ∥st+1 − g∗∥,
which is the Euclidean distance between the end effector
and goal position. The temperature parameter was used
to modulate the acceptance of suboptimal solutions using
the Metropolis criterion that probabilistically determines the
acceptance of proposed solutions. For a given value of α,
a blended action aE,t is calculated using Eqn. (1) and the
resulting st+1 is given by st+1 ← f(st,aE,t) for evaluating
c(α). At each iteration i, a random perturbation is applied to
the current αi to generate a new value α′

i and the change in
the cost function, ∆c = c(α′

i) − c(αi), is calculated. If ∆c
is negative (indicating an improvement), α′

i is then accepted
probabilistically based on the Metropolis criterion and the
value of αi is updated to α′

i. If ∆c ≥ 0, α is not updated. In

1098

Algorithm 2 Action blending using simulated annealing and
expertise factor for each time step

1: Input: Human action aH .
Robot action aR.

2: Output: Blended action aE .
3: Obtain expertise factor ex from Algorithm 1

// Simulated annealing
4: Initialize temperature
5: Initialize a random α
6: Set desired stepsize
7: for i < max iteration do
8: α′

i = αi + rand(0, 1) · stepsize
9: Calculate the change in the cost function:

∆c = c(α′
i, ex)− c(α, ex)

10: Update temperature
11: metropolis = exp (−∆c/temperature)
12: if ∆c < 0, or rand(0, 1) < metropolis

αi+1 = α′
i

13: else
αi+1 = αi

14: end for
// Action blending

15: Calculate β = (α+ ex)/2
16: Calculate blended action aE using Eqn. (1)
17: Execute action aE on the robot.

our experiments, the simulated annealing algorithm required
fewer than 0.03 seconds to compute an optimal output for
each time step.

3) Combining ex and α: The final arbitration parameter
β in Eqn. (1) is obtained as the sum of the expertise factor ex
and the intermediate arbitration parameter α. The value of β
is normalized using the following equation so that β ∈ [0, 1].

β =
α+ ex

2
(2)

The expertise factor ex acts as an offset to the interme-
diate arbitration parameter α to adaptively adjust the de-
sired amount of assistance tailored for individual users. Our
method for determining the control arbitration between user
and autonomous agent is summarized in Algorithm 2.

V. EXPERIMENT AND RESULTS

A. Experiment Setup

The experiments were conducted in a Gazebo simulation
environment with a Franka Panda robotic arm as shown in
Fig. 2. The simulator receives blended action aE for the
end effector and computes joint motor control to move the
end effector in three-dimensional space or open/close the
end effector claws. The joint motor controls were computed
using an inverse kinematics algorithm provided in the robotic
systems toolbox [21]. There were four different cuboids as
goal objects, each with a distinct color. Users were asked to
reach and grasp the goal objects in a random order using a
keyboard to provide end effector movement actions.

Fig. 2: Simulation environment in Gazebo with a Franka
Panda robotic arm and goal objects in different colors.

We invited 6 human participants to perform the experi-
ments. The 6 participants were evenly split into an expert
group and a beginner group. The three participants in the
expert group were allowed to practice with the simulator
to gain proficiency in teleoperating the robot before the
experiments. The three participants in the beginner group
were asked to perform the experiments without practicing.
The two groups thus represent expert level and beginner
level of proficiency, respectively, for the teleopration task.
Each participant was asked to perform 2 simulation runs for
each method with randomized goal positions, resulting in 8
simulation runs for each participant. A total of 48 simulation
runs were performed with 6 participants.

B. Evaluation Metrics and Baselines

1) Evaluation Metrics: Our proposed shared autonomy
method was empirically validated and evaluated with respect
to three performance metrics: total completion time, total
number of steps taken by users, and user experience.

• Total completion time represents the duration from a
user starting the simulation to reaching and grasping the
goal object. This metric is used to assess the efficiency
of the teleoperation methods.

• Total number of steps amounts to the number of robot
actions executed from the beginning of a simulation
run to reaching and grasping the goal. This metric also
captures the trajectory length between the initial and
final positions of end effector.

• User experience is an objective metric that assesses
users’ perceived support from the algorithms and com-
fort while they were teleoprating the robot.

2) Baseline Methods: Our method was compared with
three baselines methods: 1) direct teleoperation, 2) simulated
annealing, and 3) discretized arbitration.

• Direct teleoperation: This baseline represents the tra-
ditional teleoperation approach, where a user manually
controls the robot using a keyboard without any assis-
tance from autonomous algorithms. The robot simply
follows the direct commands provided by the user.

• Simulated annealing: This baseline uses the simulated
annealing algorithm to calculate the arbitration param-

1099

Fig. 3: Trajectories of robot end effector obtained by a beginner user and an expert user using our method and three baseline
methods. Top row: trajectories obtained by a beginner user. Bottom row: trajectories obtained by an expert user.

eter β in Eqn. (1). This baseline does not consider
the expertise factor ex as in our proposed method and
determines β only based on the correctness of the
blended action aE with respect to the task objective.

• Discretized arbitration: This baseline dynamically sets
β in Eqn. (1) to 0 or 1 based on the correctness of user
input aH with respect to the task objective. Specifically,
β = 1 if the Euclidean distance between the end
effector and goal decreases by executing the user input
aH , and β = 0 otherwise. This dynamic adjustment
of arbitration tends to give full control authority to
proficient users, while allowing the system to take full
control authority when the user inputs are less effective.

C. Experiment Results

Fig. 3 shows the trajectories of robot end effector for
simulations performed by a beginner user and an expert
user using our method and the three baseline methods. One
can see that the beginner user took a long trajectory to
reach the goal using direct teleoperation, while the three
action blending methods assisted the beginner user to obtain
significantly improved trajectories. For the expert user, the
trajectory for direct teleoperation was shorter compared to
the beginner user. However, the action blending methods us-
ing simulated annealing and discretized arbitration obtained
less optimal trajectories than direct teleoperation. This is
because the two methods did not effectively provide desired
levels of assistance to the expert user, which caused the user’s
confusion and resistance against the assistance provided by
the autonomous algorithms. In contrast, our method obtained
similar trajectory with direct teleoperation for the expert user

Fig. 4: The change of arbitration factor β and expertise factor
ex over simulation steps.

by accounting for the user’s expertise level and adaptively
adjusting the level of assistance.

Fig. 4 shows the variation of the arbitration factor β
and the expertise factor ex over steps for a simulation run
performed by an expert user. One can see that on average the
user exhibited medium or high expertise level from step 1
to step 29, our algorithm produced a high value of β so that
the user retained near full control. Starting from step 30, the
expertise factor ex drops frequently as the user took incorrect
and slow actions when the robot arm approached the goal.
Concurrently, the arbitration factor β decreases, indicating a
transition in control paradigm towards the robot autonomy.

1) Completion Time and Total Steps: To compare the
efficiency between different methods, we measured the total
completion time and total steps taken by the users for each
simulation run. Fig. 5 shows the statistical results of total
completion time obtained by beginner and expert users across

1100

Fig. 5: Statistical results of completion time obtained by
beginner and expert users for each method.

all methods, where blue boxes represent beginner user group
and red boxes represent expert user group. For each method,
there were 6 simulation runs for each user group as each
user performed 2 simulation runs.

We can see that there was a significant difference between
beginner and expert users using direct teleoperation. With
simulated annealing, the completion time was improved for
both beginner and expert groups while the improvement for
the beginner group was more significant than that for the ex-
pert group. Discretized arbitration improved the performance
of the beginner group even more, compared to simulated
annealing. This is attributed to the fact that discretized
arbitration dynamically grants full control authority to the
autonomous agent if the user provides a nonoptimal action.
While this could be an effective assistive method for beginner
users, expert users may find it intrusive and confusing and
thus tend to resist against the autonomous assistance. As
a result, the performance of expert users deteriorates when
discretized arbitration was used, which can been seen from
Fig. 5. Our method that combines simulated annealing and
expert factor provided most effective assistance for both
beginner and expert users: beginner users were able to
complete the task with a median completion time of 240 s, in
contrast to a median of 500 s using direct teleoperation; for
expert users, the median completion time was improved from
260 s with direct teleoperation to 170 s with our method,
along with a reduced variance. Fig. 6 shows the statistical
results of total number of steps taken by beginner and expert
users across all methods. Similar to the observations from
Fig. 5, our method achieved best performance compared to
other three baseline methods.

Overall, the results of performance comparison suggest
that the our method provides the most effective assistance
for both beginner and expert users, and it could substantially
reduce the amount of time and steps for the users to complete
the task.

2) Adaptivity to Users’ Level of Expertise: To evaluate the
adaptivity of the the three action blending methods to users’
level of expertise, we recorded the number of time steps
for which the algorithms provided assistance (i.e., β ̸= 1)
in each simulation run. Then, for each simulation run, an

Fig. 6: Statistical results of total steps taken by beginner and
expert users for each method.

Fig. 7: Average percentage of intervention by different shared
autonomy methods for beginner and expert users.

Fig. 8: Users experience questionnaire and feedback.

average intervention was calculated as the number of time
steps for which β ̸= 1 over all time steps the user took to
complete the task.

Fig. 7 shows the statistical results of average intervention
for beginner and expert users using simulated annealing,
discretized arbitration, and our method. It can be seen that
all three action blending methods provided different amounts
of assistance between beginner users and expert users as
beginner users typically benefited from more assistance for
completing the task. However, compared to the other two
methods, our method delivered the least amount of assistance
for expert users, hence avoided unnecessary interventions and
allowed skilled users to leverage their abilities to efficiently
complete the task. The amount of assistance was adaptively
adjusted using our method, which ensures that expert control

1101

remains unhindered while necessary tweaks of control are
provided.

3) User Experience: We evaluated the user experience for
different teleoperation methods. Specifically, we collected
subjective feedback from all participants regarding their
perceived support from the algorithms and how comfortable
they felt while teleoperating the robot with different methods.
Each participant was given a questionnaire where three
questions were designed to quantify their feedback regarding
their experience on a scale of 0 to 4.

The user experience evaluation shown in Fig. 8 reveals
that the participants expressed significantly higher satisfac-
tion with our method regarding the algorithm’s support in
completing tasks, achieving goals, and the algorithm’s un-
derstanding of their intended actions. The positive feedback
on our method can be attributed to the user-centric design
that accounts for the variability in users’ preference, expertise
and provides adaptive assistance accordingly.

VI. CONCLUSION

In this paper, we present an adaptive shared autonomous
control archetype that assists human users to perform object
reaching and grasping tasks via teleoperation. Our method
incorporates simulated annealing and users’ level of expertise
to dynamically and adaptively optimize the blending between
human and robot actions. The experiment results show that
our method provided more effective assistance for users
to accomplish the teleoperation task with lower completion
times and fewer steps compared to three baseline methods
including direct teleoperation and two action blending meth-
ods that only accounts for task-related performance metrics.
User survey signified their preference for our method over
the baseline methods.

Our study provides a design of user-centric shared auton-
omy as well as empirical findings that suggest the benefits of
considering human expertise in shared autonomous systems.
Our findings posit that incorporating human factors such
as preference, physical capability, and expertise in shared
autonomy holds immense promise for enhancing the capa-
bilities of contemporary shared autonomous systems to offer
seamless and effective collaboration between humans and
robots. Our future work will exploit probabilistic inference
for unknown user objectives and develop nonlinear action
blending methods. We will also validate our method with
real robot experiments.

ACKNOWLEDGMENT

The authors would like to thank the participants for
helping with the experiments.

REFERENCES

[1] V. Alonso and P. De La Puente, “System transparency in shared
autonomy: A mini review,” Frontiers in Neurorobotics, vol. 12, p. 83,
2018.

[2] J. Delmerico, S. Mintchev, A. Giusti, B. Gromov, K. Melo, T. Horvat,
C. Cadena, M. Hutter, A. Ijspeert, D. Floreano et al., “The current
state and future outlook of rescue robotics,” Journal of Field Robotics,
vol. 36, no. 7, pp. 1171–1191, 2019.

[3] S. Reddy, A. D. Dragan, and S. Levine, “Shared autonomy via
deep reinforcement learning,” Proceedings of Robotics: Science and
Systems, 2018.

[4] D. Gopinath, S. Jain, and B. D. Argall, “Human-in-the-loop optimiza-
tion of shared autonomy in assistive robotics,” IEEE Robotics and
Automation Letters, vol. 2, no. 1, pp. 247–254, 2016.

[5] M. Selvaggio, M. Cognetti, S. Nikolaidis, S. Ivaldi, and B. Siciliano,
“Autonomy in physical human-robot interaction: A brief survey,” IEEE
Robotics and Automation Letters, vol. 6, no. 4, pp. 7989–7996, 2021.

[6] A. Erdogan and B. D. Argall, “The effect of robotic wheelchair control
paradigm and interface on user performance, effort and preference: an
experimental assessment,” Robotics and Autonomous Systems, vol. 94,
pp. 282–297, 2017.

[7] S. Javdani, H. Admoni, S. Pellegrinelli, S. S. Srinivasa, and J. A.
Bagnell, “Shared autonomy via hindsight optimization for teleopera-
tion and teaming,” The International Journal of Robotics Research,
vol. 37, no. 7, pp. 717–742, 2018.

[8] S. Javdani, S. S. Srinivasa, and J. A. Bagnell, “Shared autonomy
via hindsight optimization,” Proceedings of Robotics: Science and
Systems, 2015.

[9] S. Nikolaidis, Y. X. Zhu, D. Hsu, and S. Srinivasa, “Human-robot mu-
tual adaptation in shared autonomy,” in Proceedings of the ACM/IEEE
International Conference on Human-Robot Interaction, 2017, pp. 294–
302.

[10] H. J. Jeon, D. P. Losey, and D. Sadigh, “Shared autonomy with learned
latent actions,” Proceedings of Robotics: Science and System, 2020.

[11] S. Jain and B. Argall, “Recursive bayesian human intent recognition
in shared-control robotics,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2018, pp. 3905–3912.

[12] A. Jonnavittula and D. P. Losey, “Learning to share autonomy across
repeated interaction,” in IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, 2021, pp. 1851–1858.

[13] J. M. Beer, A. D. Fisk, and W. A. Rogers, “Toward a framework
for levels of robot autonomy in human-robot interaction,” Journal of
Human-Robot Interaction, vol. 3, no. 2, p. 74, 2014.

[14] A. Romay, S. Kohlbrecher, A. Stumpf, O. von Stryk, S. Maniatopoulos,
H. Kress-Gazit, P. Schillinger, and D. C. Conner, “Collaborative
autonomy between high-level behaviors and human operators for
remote manipulation tasks using different humanoid robots,” Journal
of Field Robotics, vol. 34, no. 2, pp. 333–358, 2017.

[15] B. Sellner, F. W. Heger, L. M. Hiatt, R. Simmons, and S. Singh,
“Coordinated multiagent teams and sliding autonomy for large-scale
assembly,” Proceedings of the IEEE, vol. 94, no. 7, pp. 1425–1444,
2006.

[16] T. Fong, C. Thorpe, and C. Baur, “Collaboration, dialogue and human-
robot interaction,” in Proceedings of the 10th International Symposium
of Robotics Research, 2001.

[17] M. N. Javaremi and B. D. Argall, “Characterization of assistive robot
arm teleoperation: A preliminary study to inform shared control,”
arXiv preprint arXiv:2008.00109, 2020.

[18] D. P. Losey, H. J. Jeon, M. Li, K. Srinivasan, A. Mandlekar, A. Garg,
J. Bohg, and D. Sadigh, “Learning latent actions to control assistive
robots,” Autonomous Robots, vol. 46, no. 1, pp. 115–147, 2022.

[19] P. J. Van Laarhoven, E. H. Aarts, P. J. van Laarhoven, and E. H. Aarts,
Simulated annealing. Springer, 1987.

[20] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learn-
ing for robotic manipulation with asynchronous off-policy updates,”
in IEEE International Conference on Robotics and Automation, 2017,
pp. 3389–3396.

[21] J. Haviland and P. Corke. Robotics toolbox for python. [Online].
Available: https://petercorke.github.io/robotics-toolbox-python/

1102

