
Narrow-Path, Dynamic Walking Using Integrated
Posture Manipulation and Thrust Vectoring

Kaushik Venkatesh Krishnamurthy1, Chenghao Wang1, Shreyansh Pitroda1, Adarsh Salagame1, Eric Sihite2,
Reza Nemovi2, Alireza Ramezani1∗, Morteza Gharib2

Abstract— This research concentrates on enhancing the nav-
igational capabilities of Northeastern University’s Husky, a
multi-modal quadrupedal robot, that can integrate posture
manipulation and thrust vectoring, to traverse through narrow
pathways such as walking over pipes and slacklining. The
Husky is outfitted with thrusters designed to stabilize its body
during dynamic walking over these narrow paths. The project
involves modeling the robot using the HROM (Husky Reduced-
Order Model) and developing an optimal control framework.
This framework is based on polynomial approximation of the
HROM and a collocation approach to derive optimal thruster
commands necessary for achieving dynamic walking on narrow
paths. The effectiveness of the modeling and control design
approach is validated through simulations conducted using
Matlab.

I. INTRODUCTION

The quest for versatile robot locomotion has spurred
significant advancements in legged locomotion, with numer-
ous bipedal and quadrupedal robots showcasing impressive
behaviors across diverse environments [1]–[5]. This study
delves into the utilization of a multimodal legged-aerial robot
named Northeastern Husky Carbon [6]–[12] (illustrated in
Fig. 1) for narrow path walking. Departing from conventional
legged locomotion paradigms, our research explores an in-
novative concept termed integrated posture manipulation and
thrust-vectoring, inspired by avian behaviors [13], [14].

The concept of multimodality and the integration of pos-
ture manipulation and thrust-vectoring [15] present intriguing
unexplored avenues for control design and locomotion strate-
gies. Apart from the obvious scenarios, such as transitioning
between legged and aerial locomotion, the fusion of legs and
thrusters can lead to other locomotion strategies observed
extensively in the animal kingdom.

For instance, the impressive multimodal capabilities of cer-
tain animals in navigating challenging terrains have garnered
significant attention. Examples include Chukar birds, which
adeptly ascend steep inclines [16], executing agile maneuvers
such as rapid walking, leaping, and jumping using both their
legs and wings.

Inspiration can also be derived from vertebrate animals
that utilize their tails or other inertial appendages to generate
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Fig. 1. The Northeastern University Husky Carbon walking on a tube.

momentum and actuate their bodies, although they do not
necessarily integrate posture manipulation and fluid-structure
interaction. This behavior is observable in various species,
such as leopards and other big cats, which rely on their tails
for inertial reorientation and balancing on narrow pathways.
Additionally, mountain goats utilize their robust neck mus-
cles to secure tight footholds while scaling steep slopes.

Legged-aerial robots, particularly those inheriting dynamic
locomotion gaits from animals, grapple with challenges in
software and hardware design that make posture manip-
ulation and thrust-vectoring difficult, including limitations
in energy density, mass constraints, and under-actuation. In
contrast, birds have adeptly addressed such challenges by
leveraging lightweight musculoskeletal structures, efficient
kinematic trees, and high-energy density muscles, providing
the necessary energy density for effective actuation and
posture manipulation of their morphing bodies [16]–[18].
These structures and underlying sensory-motor relationships
enable animals to efficiently perform posture manipulation
and manipulate aerodynamic forces in desired directions,
pushing their bodies with dexterity in desired directions—a
result of evolutionary refinement that we aim to harness in
our designs.

The primary goal of this research is to devise a control
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design methodology that integrates Husky Carbon’s posture
and its thrust vectoring capability, facilitated by an array of
electric ducted fans affixed to its torso (refer to Section II),
thereby enabling dynamic traversal of narrow paths. Our
overarching objective is to achieve dynamic walking on a
flexible rope or an extremely narrow path, with the findings
presented here marking a significant stride toward this am-
bition.

The structure of this work is as follows: Initially, we
provide a concise overview of the hardware configuration of
Husky Carbon. Subsequently, we delineate the derivations
and assumptions underlying the HROM, followed by an
elucidation of the optimization-based controller proposed and
implemented in this study. This controller leverages approx-
imations of the HROM within a collocation framework to
compute joint and thruster commands. Lastly, we present
the simulation results and conclude the work with closing
remarks and prospects for future research endeavors.

II. QUICK OVERVIEW OF HUSKY CARBON

Husky Carbon, is a quadrupedal robot with multi-modal
capabilities, custom designed and fabricated at Northeastern
University’s SiliconSynapse Labs. Husky Carbon [6], along
with Husky Beta [7], Harpy [8]–[10] and M4 [15], [19]–[21]
join the suite of robots with multimodal capabilities. Husky
Carbon, hereby referred to just as Husky, stands at 1.5 ft
wide and 3 ft tall. The robot was designed and fabricated
extensively using additively manufactured components.

The hip-sagittal (HS) joint works in tandem with the knee
(K) joint to maneuver the leg in the hip sagittal plane.
In the interest of this research, the hip frontal (HF) joints
play a very important role by being able to control the
position of the foot in the frontal plane of the robot. With
three motors to control the above three joints, all the 12
joints on the robot are actuated by T-motor Antigravity 4006
brushless motors, with the motor output transmitted through
a Harmonic drive. The Harmonic drives are chosen for their
precise transmission, low backlash, and back-drivability. The
motor and gearbox housings along were embedded in the
housing during the printing process making the robot’s legs
significantly lightweight.

To power the 12 actuators, the robot uses 12 ELMO gold
twitter solo amplifiers and a Speedgoat realtime machine that
sends control commands and also obtains position feedback
from the drives using incremental magnetic encoders. The
amplifiers are isolated away from the actuators and are
separated into 2 racks of 6 amplifiers each and then mounted
onto either side of the robot. The host PC running MATLAB
is connected to the Realtime machine using EtherCAT.

The propulsion system is fitted with 4 Schubeler Electric
Ducted fans (EDF) that provide approximately 8 kgf of thrust
in total. It is built with a lightweight hexagonal aluminum
composite structure sandwiched between carbon fiber plates,
the design of which is extensively delineated in [22].

III. HUSKY REDUCED-ORDER MODEL (HROM)
The equations of motion of the HROM can be derived us-

ing the energy based Euler-Lagrange dynamics formulation.

As shown in Fig. 2, the positions of the leg ends are defined
as functions of the spherical joint primitives, namely ϕ and
γ, along with the length of the leg l. The pose of the body
can be defined using pB ∈ R3, and Z-Y-X Euler angles ΦB .
The rotation matrix can also then be defined from the Euler
matrix as RB . The generalized coordinates of the robot body
can then be defined as follows:

q = [p⊤
B ,Φ

⊤
B ]

⊤, (1)

and the leg states of the robot can be defined as,

qL = [. . . , ϕi, γi, li, . . . ]
⊤,

i ∈ F ,
(2)

where F = {FR,HR,FL,HL} represents the respective
legs and thrusters. The position of the foot can then be
determined using the forward kinematics equations shown:

pFi = pB +RBl
B
hi +RBl

B
fi

lBfi = Ry (ϕi)Rx (γi)
[
0, 0, −li

]⊤ (3)

The positions of the thrusters are defined as pti with respect
to the body. The superscript B denotes a vector defined in
the body frame, while the rotation matrix RB represents
the rotation of a vector from the body frame to the inertial
frame. Since the legs are considered massless, the kinetic
and potential energies of the HROM can be calculated using
the equations shown below:

K =

(
1

2
ṗBmBṗ

⊤
B + ωB

BIBω
B⊤
B

)
V = −mBp

⊤
Bg

L = K − V,

(4)

where ωB
B represents the body angular velocity in the body

frame, and g denotes the gravitational acceleration vector.
The angular velocity of the body can be found as a function
of the rate of change of Euler angles using the Euler rate
matrix E,

ωB
B = EΦ̇ (5)

If the generalized velocities of the system is defined as
v = [ṗB ,ωB ], the Lagrangian of the system can be
calculated as L = K − V , and the dynamic equation of
motion can be derived using the Euler-Lagrangian method
as follows:

d
dt

(
∂L
∂v

)
− ∂L

∂q = Γ, (6)

where Γ is the sum of all generalized torques and forces
respectively. The dynamic system accelerations can then be
solved to obtain the into the following standard form:

D(q)v̇ +C(q,v)v +G(q) = Σi∈F [Bgiugi] + ut

Bgi =
∂ṗf,i

∂v
,

(7)

where D is the mass-inertia matrix, C contains the Coriolis
vectors and gravitational vectors are defined in G, and
Bgiugi represent the generalized force due to the GRF
(Ground Reaction Forces) ugi acting on the foot i. The term
ut ∈ R6 represents the external wrench acting on the COM
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Fig. 2. Illustrates the Husky full-fidelity model vs. the reduced order model with the model parameters used in the derivations in Section III.

of rigid body of the HROM i.e ut = [f⊤,m⊤]⊤ and f ,m
are the forces and moments that form the wrench.

The vector ut represents the actions exerted by the four
thrusters, which is fprmed by condensing the thruster forces
into a wrench. The HROM’s legs are then driven by setting
the joint variable’s accelerations to track desired joint states.
The joint inputs are defined as follows

q̈L = uL, (8)

where, uL forms the control input to the system in the form
of the leg joint state accelerations.

The full system of equations can then be derived from
equation 7 and equation 8 as follows:

where qd = [q⊤, q⊤
L ]

⊤,vd =
[
v⊤, q̇⊤

L

]⊤
, and x is

obtained by combining both the dynamic and massless leg
states and their derivatives to form the full system states.
Finally, u is a vector of the m inputs, which include the
thrust wrench and the leg inputs.

The GRF is modeled using a compliant ground model and
Stribeck friction model, defined as follows:

ΣGRF :



ugi =

{
0 if zi > 0

[ugi,x, ugi,y, ugi,z]
⊤ else

ugi,z = −kgzzi − kdz żi

ugi,x = −si,xugi,z sgn(ẋi)− µvẋi

si,x =
(
µc − (µc − µs)exp

(
−|ẋi|2/v2s

))
,

(9)

where xi and zi represent the x and z positions of foot
i, respectively. kgz and kdz are the spring and damping
coefficients of the compliant surface model, respectively.
ugi,x and ugi,y denote the ground friction forces in the
respective directions. µc, µs, and µv stand for the Coulomb,
static, and viscous friction coefficients, respectively, and
vs > 0 represents the Stribeck velocity. The derivations of
ug,y follow similarly to those of ug,x.

IV. CONTROLS

To solve this controls problem, i.e., find ut from Eq. 7,
we consider the following cost function given by

J =

N∑
k=1

x⊤
e,kQxe,k + u⊤

t,kRut,k, (10)

where xe ∈ R3 is an error term that calculates the error
of the body pose in the form of Euler angles calculated
from the body transformation matrix RB . Q,R ∈ R3 are
positive definite matrices containing weights of the cor-
responding error terms. The cost function J is governed
by the model given by Eq. 7. We perform temporal (i.e.,
ti, i = 1, . . . , n, 0 ≤ ti ≤ tf ) discretization to obtain the
following system of equations,

ẋi = fi(xi,ui), i = 1, . . . , n, 0 ≤ ti ≤ tf , (11)

where xi embodies the values of the state vector x at i-th
discrete time. And, ui the thruster commands in the form of
the wrench at the i-th sample time. fi denotes the governing
dynamics of HROM at i-th discrete time.

We stack all of the discrete values from xi and ui

in the vectors X =
[
x⊤
1 (t1), . . . ,x

⊤
n (tn)

]⊤
and U =[

u⊤
1 (t1), . . . ,u

⊤
n (tn)

]⊤
.

We consider 2n boundary conditions at the boundaries of
n discrete periods to ensure continuity, given by

ri (x(0),x (tf ) , tf ) = 0, i = 1, . . . , 2n (12)

Since we have m entries in u, we consider m inequality
constraints to ensure the thruster forces remain inside the
constrained admissible set. gi is give

gi(x(ti),u(ti), ti) ≥ 0, i = 1, . . . ,m 0 ≤ ti ≤ tf (13)

To approximate the nonlinear dynamics from HROM, we
employ a method based on polynomial interpolations. This
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Fig. 3. The proposed control system flowchart. The user inputs include forward velocity reference and gait parameters.

method extremely simplifies the computation efforts. Con-
sider the n time intervals, as defined previously and given
by

0 = t1 < t2 < . . . < tn = tf (14)

We stack the states xi and input terms ui given by X =[
x⊤
1 , . . . ,x

⊤
n

]⊤
and U =

[
u⊤
1 , . . . ,u

⊤
n

]⊤
from the HROM

at these discrete times into a single vector denoted by Y and
form a decision parameter vector that the optimizer finds at
once. Additionally, we append the final discrete time tf as
the last entry of Y so that walking speed too is determined
by the optimizer.

Y =
[
x⊤
1 , . . . ,x

⊤
n ,u

⊤
1 , . . . ,u

⊤
n , tf

]⊤
(15)

We approximate the input vector ui(ti) at time ti ≤ t < ti+1

as the linear interpolation function ũ between ui(ti) and
ui+1(ti+1) given by

ũ = ui (ti) +
t− ti

ti+1 − ti
(ui+1 (ti+1)− ui (ti)) (16)

We interpolate the states xi(ti) and xi+1(ti+1) as well.
However, we use a nonlinear cubic interpolation, which is
continuously differentiable with ˙̃x(s) = f(x(s),u(s), s) at
s = ti and s = ti+1.

To obtain x̃, we formulate the following system of equa-
tions:

x̃(t) =

3∑
k=0

cjk

(
t− tj
hj

)k

, tj ≤ t < tj+1,

cj0 = x (tj) ,

cj1 = hjfj ,

cj2 = −3x (tj)− 2hjfj + 3x (tj+1)− hjfj+1,

cj3 = 2x (tj) + hjfjx (tj+1) + hjfj+1,

where fj := f (x (tj) ,u (tj)) , hj := tj+1 − tj .
(17)

The interpolation function x̃ utilized for x needs to fulfill the
continuity at discrete points and at the midpoint of sample
times.

By examining Eq. 17, it is evident that the derivative
terms at the boundaries ti and ti+1 are satisfied. Hence,
the only remaining constraints in the nonlinear programming

Fig. 4. Illustrates the stick-diagram of HROM traversing a narrow path
with 3D CoM and leg-end trajectories

problem are the collocation constraints at the midpoint of
ti − ti+1 time intervals, the inequality constraints at ti, and
the constraints at t1 and tf , all of which are included in the
optimization process. We address this optimization problem
using MATLAB’s fmincon function. The overall proposed
control system flowchart is depicted in Fig. 3 along with
the user-inputs into the system, which involves the forward
velocity reference and gait parameters.

V. RESULTS

This simulation was performed in the MATLAB envi-
ronment using a computer with an Intel core i7 processor
and utilized the HROM framework, supported by MATLAB
animations, to model and analyze the system’s behavior.
A fourth-order Runge Kutta integrator was used to march
the ODE forward. Basic heuristics were then applied to
determine gaits for a straight path, considering a specified
forward velocity and step time, with a simulation duration
of 3.5 seconds. Bezier control points were then generated
based on user defined inputs to create desired trajectories
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for both swing and stance phases, employing seven control
points. The simulation adopted a bipedal locomotion pattern
with two-point contact, where diagonally opposite leg pairs
synchronized while the remaining pair operated out of phase.

Fig. 5. Illustrates body position and orientation q and q̇ under u and
governing dynamics given by Eq. 7

Figure 7 illustrates foot positions in the global reference
frame during locomotion. Initially, all legs moved from
neutral positions toward the body’s center for narrow-path
walking. Subsequently, a leg pair swung outward to avoid
stance legs before returning inward for the stance phase
followed by a small pause period. Figure 7 plots, particularly
foot y positions, confirmed these movements.

Consequently, Fig. 6 depicts the joint positions and their
respective angular velocities. The plots show the hip frontal
angle moving during the first step to facilitate foot position-
ing in the frontal plane. In Fig. 4, we can see the resulting 3D
trajectory of the foot-ends, exhibiting the narrow path gait
of the foot end and the body moving forward as a result.

In Fig. 5, it can be observed that the body COM position
moves forward during each gait cycle, with stable y and
z positions. During the period of the simulation the body
moves forward about 0.3 meters in 3.5 secs, equating to
about an average velocity of 0.1 m/s. To control the attitude
of the body, a thrust wrench located at the COM is used
as explained in Section III. The decomposed wrench acting
as four separate normal forces in the body floating body

Fig. 6. Illustrates leg joint angles and agular speeds

Fig. 7. Illustrates leg end positions and velocities

Fig. 8. Illustrates ground contact forces ugi obtained from Eq. 9

frame in shown in Fig. 9. For the purposes of simulation and
to validate the theory that the body attitude can indeed be
controlled by a wrench, the thrust forces were generated by
the controller using the pose error from Euler angles obtained
from the rotation matrix.

Figure 5 also revealed that for the duration of the sim-
ulation, the body’s attitude stays stable, with small angular
velocities. The thrust forces generated by the controller also
reveals that for the majority of the duration, the generated
thruster forces are within the threshold of the acceptable
limits of the EDFs present on the physical robot. This can
be further improved with the implementation of the optimal
controller described in IV.

The GRF for each leg generated from a compliant ground
model calculated as a function of the vertical foot position
from Eq. 9, and can be seen in Fig. 8. The stiffness of the
ground was taken to be 8000 N/m and the damping was taken
to be 250 Ns/m. The friction coefficients for the Coloumb,
Stribeck and viscous friction were taken as 0.5, 0.6,and 0.8
respectively. The Stribeck velocity was chosen to be 0.01
m/s. With the given parameters, the simulation demonstrated
minimal slippage of the leg relative to the ground, indicating
stability during legged locomotion.

VI. CONCLUDING REMARKS

In this paper, we propose a control framework for utilizing
a reduced-order model to achieve narrow path walking with
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Fig. 9. Shows thruster commands obtained by the controller following
stable narrow-path dynamic walking.

thruster stabilization of Husky Carbon. Husky Carbon, a
quadrupedal robot with multi-modal capabilities, was custom
designed and fabricated at Northeastern University’s Silicon-
Synapse Labs. Alongside Husky Beta, Harpy, and M4, Husky
Carbon enriches the suite of robots with multimodal capabil-
ities. Husky Carbon, referred to simply as Husky, measures
1.5 ft wide and 3 ft tall and was extensively designed and
fabricated using additively manufactured components.

We utilize the reduced-order model in conjunction with an
optimization-based controller employing polynomial approx-
imation to determine the state and input values for controlling
Husky’s dynamic walking gaits on a narrow path. Our as-
sumption of a compliant ground model links our narrow path
locomotion to other scenarios such as slacklining, suggesting
that our proposed control design paradigm can be extended
to other narrow path locomotion scenarios.

Future work will involve enhancing the accuracy of our
simulators and conducting real-world testing of the proposed
collocation-based optimal controller. Furthermore, we aim
to validate our results on higher fidelity simulations of
Husky, where constraints for gaits must also be considered
to account for potential self-collisions in walking scenarios,
as the legs move close to the body.
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