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Abstract— Accurate path tracking of wheeled Uncrewed
Ground Vehicles (UGVs) in off-road environments faces nu-
merous challenges stemming from the diversity of operational
conditions. Traditional model-based controllers for Ackermann-
steered vehicles feature good (skid-free) path-tracking perfor-
mance on flat ground, but performance degrades with increas-
ingly uneven terrain and faster traversal speeds. This paper
introduces a novel approach, a Hybrid Deep Reinforcement
Learning (HDRL) controller, leveraging the strengths of a
Linear Quadratic Regulator (LQR) and a Deep Reinforcement
Learning (DRL) controller, for the enhanced path tracking
of Ackermann-steered UGVs. The DRL controller primarily
compensates for uncertainty in terrain conditions and unknown
vehicle parameters but can be computationally expensive to
train. The LQR controller guides the DRL controller during the
initial training phases, ensuring a more stable performance and
achieving higher rewards in early iterations. In doing so, this
hybrid methodology offers promise to overcome the limitations
of model-based controllers and the sample-inefficient nature of
conventional DRL approaches. Preliminary results showcased
in the manuscript show promise for the HDRL controller,
demonstrating better performance than model-free DRL and
conventional feedback controllers.

I. INTRODUCTION

Uncrewed Ground Vehicles (UGVs) are gaining popularity
for their use in unstructured off-road military, agriculture,
mining, and planetary exploration applications [1]. Naviga-
tion in off-road environments introduces more complex chal-
lenges than on-road scenarios — such UGVs must traverse
increasingly challenging and diverse terrain conditions like
steep slopes, ditches, rocks, and vegetation. Motion-planning
and subsequent tracking control in such unstructured terrains
requires increasing model-fidelity tied closely to the vehicle
architecture.

The selected vehicle-architecture plays a significant role in
determining mobility, maneuverability and traversability on
off-road terrain. Conventionally, skid-steered vehicles have
been preferred for off-road terrain navigation due to their
high maneuverability and ability to make zero-radius turn.
However, the unpredictability of the roll/skid tire-terrain
interactions requires complex system modeling and signifi-
cant power consumption. In contrast, an Ackermann-steered
vehicle is potentially more agile, and energy-efficient. How-
ever, formulating precise motion control at higher speeds
is challenging due to complex dynamical excitation from
rapidly changing terrain conditions.

In the past, model-based control approaches have been
typically used with increasing levels of fidelity for more
precise control. [2] demonstrates using an LQR controller for
path tracking, emphasizing lateral stability. However, uncer-
tainties in terrain conditions and the absence of wheel-terrain
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interaction models pose a challenge for LQR controllers to
be deployed on rough terrains. Model Predictive Control
(MPC) based approaches in [3] show promising results but
are dependent on model fidelity and require consistent re-
planning for increasing generalizability, thereby increasing
its computational cost.

In recent years, model-free Deep Reinforcement Learn-
ing (DRL) has gained popularity for locomotion control.
However, few papers tackle DRL applied to UGVs in off-
road environments and Ackermann-steered architecture. [4]
demonstrate impressive results by using an end-to-end DRL
controller for the path following of an excavator on rough
terrain, but requires millions of steps to train a good policy.

This paper presents a HDRL-based controller for unknown
off-road terrain path tracking controller. The LQR controller
eliminates the need for high-fidelity model-based controllers
and reduces training time. The DRL controller is trained
to compensate for uncertainty in terrain conditions and
unknown vehicle parameters. Our main contributions are as
follows:

1) Implementing a hybrid framework that merges the
steering output from an LQR controller with a DRL
controller providing correctional steering angle and
vehicle velocity. This combination ensures good path
tracking on simulated off-road terrain, designed for an
Ackermann-steered robot.

Introducing a novel dense reward formulation to
achieve stable and accurate path tracking, minimizing
errors in the process.

Development of a robust policy through training on a
single racetrack with diverse terrain conditions. This
policy is successfully deployed on unseen racetrack
paths, showcasing increased generalizability.

2)

3)

II. RELATED WORK

Various studies have delved into deploying path planning
and path tracking of autonomous vehicles and wheeled hu-
manoid locomotion, particularly exploring the effectiveness
of hybrid and residual reinforcement learning approaches.
The HDRL framework in this paper shares its fundamental
concept with residual RL from [5], where the controller
is decomposed into a conventional model based controller
that outputs actions and the DRL controller that learns the
residual actions arising due to modeling uncertainties used in
the feedback.Both the control signals are then superimposed
to produce the final output.

Similarly, [6] establishes a baseline control policy boot-
strapped on apriori expert knowledge extracted from driver



data for learning for lateral and longitudinal accelerations
and then is further augmented with a DRL controller to
provide corrective accelerations. [7] combines a pure pursuit
controller with a DRL approach, successfully reducing lap
times for an fltenth autonomous racing vehicle. HDRL
has shown promise for highly nonlinear wheeled humanoid
systems as well, In [8] a combination of LQR and DRL
controller is used for accurately controlling its motion with
varying parameters.

We extend upon the foundational concepts introduced in
[5] and [8], which utilize a residual reinforcement learning
framework akin to the HDRL framework. However, to the
best of the authors’ knowledge, the path tracking of an
Ackermann-steered platform on rough terrain using HDRL
still needs to be explored. Our primary contribution is the
novel integration of an LQR controller, leveraging a discrete
kinematic bicycle model in conjunction with a Proximal Pol-
icy Optimization (PPO)-based Deep Reinforcement Learn-
ing (DRL) controller. This integration presents an approach
to addressing the challenges associated with path tracking
on uneven surfaces, thereby enhancing the maneuverability
and stability of such platforms. The outputs from both the
controllers are superimposed. Our proposed system generates
steering angle outputs and wheel joint velocities for tracking
a path in simulated off-road terrain. The DRL controller
learns to adapt to external disturbances from diverse terrain
conditions. The LQR controller guides the DRL controller to
learn correctional steering angle in the initial training phases
that an end-to-end controller may not achieve.

III. METHODOLOGY

A. Mathematical Model and Feedback Controller Design

1) Mathematical Model: In this section, we present the
mathematical modeling of the commonly used linearized
kinematic bicycle model shown in Fig.1 as an abstraction
of an Ackermann-steered vehicle. The model illustrates the
vehicle turning about and instant center with radius R with
L being the wheelbase, § the steering angle, 3 as is the slip
angle and 6 as the vehicle heading angle in the yaw plane.

Equation 3 represents the state space formulation of the
error dynamics of the bicycle model with e as the crosstrack
error, é the rate of change of the crosstrack error, ey as the
error in the heading angle and €y as the rate of change of
error in the heading angle.

z=[e ¢ e €] €c€R u=[6 R (1)

The discretized state-space equation for the kinematic
bicycle model is given by:

X1 = AXy + BU,, ()

Where A and B are the state transition and input matrices,
respectively.
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Fig. 1: Kinematic vehicle bicycle model

The linearization of matrices A and B is carried by first
ordered taylor series expansion as shown in [9].
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2) LOR Controller Design: This section outlines the
formulation of Linear Quadratic Regulator (LQR) control for
vehicle path tracking. The LQR controller tracks the desired
path by getting information of the closest waypoint and the
corresponding heading angle. The goal of the LQR controller
is to minimize a cost function as shown in Equation 4, that
penalizes deviations from the desired path and the control
effort in accordance to assigned weighing coefficients Q and
R respectively.

J = /OO(XTQX + UTRU)dt (4)
0

For the LQR controller, weighting matrices are ()
diag(10, 100,100, 1) for cross-track error, rate of change of
cross-track error, and yaw error, respectively, and R = [1]
for an optimized control strategy.

B. Hybrid Reinforcement Learning Framework

The HDRL controller integrates output from the LQR
controller and the DRL controller. Within the scope of
this paper, the HDRL framework transmits steering angle
commands to the robot. Furthermore, the DRL controller
concurrently generates wheel joint velocities at each time
step acting as a longitudinal controller as shown in Fig. 2.

(&)

Where drgr is the steering angle output from the LQR
controller, 1y, is the correctional steering angle output from
the DRL controller and wqpee; are the rear wheel joint
velocities since the platform is a rear-wheel drive system.
The algorithm chosen for the DRL component of the HDRL

§=bLoR + ou,
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Fig. 2: Hybrid Deep Reinforcement Learning Framework

controller is Proximal Policy Optimization (PPO) that is
explained in more detail as shown below.

1) PPO: The PPO algorithm is an actor-critic approach
that is widely used in DRL to learn stable and high-
performing policies. It employs a surrogate objective func-
tion that constrains the distance between the new and old
policies during training to prevent large policy updates that
can lead to instability and poor performance [10], [11].

PPO employs a clip parameter that limits the magnitude
of policy updates during training. The algorithm computes
a probability ratio between the new and old policies and
then clips the ratio to a certain range to avoid drastic policy
changes that can lead to instability. The clip parameter is
a hyperparameter that can be tuned to balance stability and
performance.

2) Hyperparameters: : The PPO algorithm’s hyperpa-
rameters are critical to its performance, and key additional
hyperparameters were carefully chosen for this study to
ensure optimal performance. We choose clipping ratio € as
0.2, horizon length of 128, mini-batch size of 512, 5 epochs
and 32 parallelized environments. Discount factor « is 0.99
and the Generelized Advantage Estimate (GAE) A is 0.95.
The learning rate is adaptive and the entropy coefficient is
0.001.

3) State and Action Space: The action space for our
HDRL network is defined as a range of velocities for the
rear wheel joint and the steering angle, denoted by [(0ror
+ 0116), Wwheet] € R?*X1, where wypee; and & represent the
rear wheel joint velocities and steering angle, respectively. To
enable effective learning, our network requires observations
that provide relevant information about the robot’s state and
location. These observations guide the reward formulation
strategy and guides the robot to track the desired path. The
observations for PPO consist of the following parameters:

« Euclidean distance e to the closest waypoint as the cross
track error and heading angle error eg

o Robot poses [x y ] where x and y denote the robot’s
position, while v is the robot’s heading angle and roll
angle o
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o Robot speed [v] w.r.t body frame of reference.

The total observation space for the HDRL controller includes
[eéegegxyyval€R?¥! where each parameter provides
critical information about the robot’s current location, orien-
tation and desired location. By leveraging these observations,
our network can learn to make informed decisions about the
appropriate action to take at each time step.

4) Reward Formulation: In order to optimize an agent’s
learning progress and encourage exploration of the envi-
ronment, a dense reward formulation strategy is employed,
taking into account the complexity of the task. Sparse
rewards, although simpler to formulate, may hinder learning
progress and discourage exploration. The reward function,
which guides the agent towards the target location while
adhering to stability constraints, is formalized as follows:

(6)

Where R; is the total cumulative reward after the agent takes
an action. R, is the cross track error reward, Rg is the yaw
error reward, R, is the velocity reward and R7ermination 18
the reward due to early termination. Each reward objective
is normalized € [0, 1]. The reward objectives are provided
below:

Cross track error reward: Cross track error reward encour-
ages the robot to move closer to the nearest waypoint and
discourages moving away from the waypoint.

R _e—wlxd,,
e =

Rt = Re X R@ X Rv + RTe'r‘mination

)

Where w; is the weight and d; is the euclidean distance from
the closest waypoint.

Yaw error reward: Yaw error reward encourages robot to
align with the desired heading angle and discourages higher
heading angle error.

Rg = e %@ ®)

Where wy is the weight and O is the heading angle error
from the closest waypoint.

Velocity reward: The velocity reward incentivizes the
agent to maintain a speed above the minimum threshold.
Without this reward, the agent tends to output the minimum
speed to avoid the accumulation of low rewards over time.

)

Early termination reward: This rewards adds a negative
penalty to the total reward function to prevent the agent from
undergoing resets before it reaches the maximum episode
lengths of 1000 time steps.

R, =w3 xv

-1
0

if episodes <= 1000

10
otherwise (10)

RTermination = {
Where ws is the weight and v is the normalized speed of
the vehicle in the body frame of reference. The controller’s
primary objective is to minimize cross-track and heading
angle errors. To achieve this, we have formulated a primary
task reward with an exponential nature. Recognizing the
importance of minimizing both errors simultaneously to



avoid bias toward maximizing either objective, we have
adjusted the yaw error reward by multiplying it with the
cross-track error reward.

The secondary objective of the controller is to maxi-
mize the robot’s speed while ensuring that cross-track and
heading-angle errors are not compromised. To achieve this,
we have formulated a speed reward of a linear nature and
adjusted it by multiplying it with the cross-track and yaw
error rewards.

IV. SIMULATION EXPERIMENTS
A. AgileX Hunter SE Robot

Our candidate UGV is a mid-scaled platform AgileX
Hunter SE as shown in Fig. 3 where an ongoing opera-
tionalization is in progress to test the zero-shot transfer of
the HDRL framework on the real robot for future work.
Additional results and hardware testing can be found at
https://youtu.be/dryFZX5XkXS8.

Fig. 3: Agilex HunterSE Robot

It is a rear-wheel drive Ackermann-steered robot equipped
with LIDAR, camera, GNSS and IMU. Furthermore, it
has suspensions at the rear wheels that provides additional
stabilization. However, for simplification suspensions have
not been modeled in simulation. The robot weighs 54.14
kilograms and has a wheelbase of 0.608 meters, a track
width of 0.554 meters, and a maximum speed of 3 meters
per second.

B. Terrain Features

This study employs NVIDIA’s Isaac Sim as the simulator
for training and evaluating controllers in simulation on rough
terrain  [12]. This choice is based on its capability to
integrate rough terrain features with diverse conditions while
providing high visual and physics fidelity.

The designed rough terrain encompasses a range of fea-
tures, including varying slopes and stairs with gradient €
[0°,30°] as 30° is the maximum climbing capacity of the
robot. As shown in Fig. 4, the comprehensive set of features
is deliberately crafted to introduce diverse difficulty levels for
effectively training and evaluating the controllers.

C. Training and Evaluation Setup

For training and evaluation purposes, the paths of the
fltenth racetrack centerlines are utilized with friction of 0.7
[13]. These paths are characterized by convoluted segments,
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Fig. 4: Simulated Terrain

which introduce complexities that enhance the robustness
of the training process. Specifically, the Austin racetrack
is designated as the training path, while the Brands Hatch
and Silverstone racetracks are employed to evaluate the
performance and generelizability of the HDRL algorithm as
shown in Fig. 5. For training, a single workstation was used
consisting of an NVIDIA RTX A6000 GPU and 256 GB
RAM.

M Austin Racetrack
I Silverstone Racetrack

s Brands Hatch Racetrack

Fig. 5: Training and Evaluation Paths

In the HDRL framework, PPO is selected as the DRL
algorithm due to its ability to mitigate significant policy
deviations from the previous iteration. However, the PPO
algorithm is an on-policy algorithm, which limits its sample
efficiency. To overcome this limitation and enhance sample
efficiency, multiple robots were deployed in parallel to
collect data. Specifically, 32 robots were initialized at the
origin of the training track. We use rl_games and omni-
isaacgymenvs library to setup the parallelized training. The
simulation is rendered at 60 Hz and the control commands
to the robot are sent at 10 Hz to replicate the real-world
scenario.

V. RESULTS AND DISCUSSION

To assess the training performance of the HDRL con-
troller, the HDRL controller is compared against an end-to-
end PPO-based DRL controller, as illustrated in Fig. 6. The
mean cumulative reward, depicted on a logarithmic scale,
represents the average total reward across all agents at each
time step. We examined both the off-policy algorithm Soft
Actor-Critic (SAC) and the on-policy PPO. PPO outper-
formed SAC and demonstrated robustness to hyperparameter



tuning, which motivated our selection of PPO for both HDRL
and end-to-end DRL frameworks.

The HDRL controller undergoes training for 300 itera-
tions, while the DRL controller is trained for 200 iterations.
The total wall times for these training sessions are 75.66
minutes and 87.48 minutes, respectively. Notably, the HDRL
controller exhibits a higher initial reward and converges to a
higher reward value compared to the DRL controller, which
appears to be trapped in a local optimum and converges to a
suboptimal policy. Analysis of our evaluation outputs reveals
that the DRL controller tends to traverse at minimal speed
to mitigate error accumulation, resulting in convergence to a
significantly lower reward value. In contrast, the HDRL con-
troller generates safer policies from the outset and converges
to an optimal policy faster.

Training Performance

—— HDRL
End-to-End DRL
— SAC

Mean Cumulative Reward

300
Iterations

Fig. 6: Training Performance

To evaluate the generalizability and robustness of the
HDRL controller, we benchmark it against several baselines
using path-tracking outputs, cross-track errors, and yaw error
metrics on unseen Brands Hatch and Silverstone racetracks.
Specifically, the following baselines are considered. A tuned
LQR controller, as described in Section III-A, has compara-
ble rear-wheel joint velocity outputs to those of the HDRL
controller while generating steering commands and an end-
to-end PPO-based DRL controller that produces both rear
wheel joint velocities and steering angles.

A. Crosstrack and Yaw Error Evaluation

The HDRL controller demonstrates robustness and gener-
alizability across various tracks, including the Austin, Brands
Hatch and Silverstone circuits, despite not being exposed to
them during its training phase. Across all three tracks, the
HDRL controller consistently outperforms both the LQR and
DRL controllers in terms of minimizing cross-track error.

During evaluation, it became apparent that terrain slopes
and sharp corners influence all the controllers. However,
the DRL controller is the most affected, followed by the
LQR controller. In contrast, the HDRL controller minimizes
cross-track and yaw errors across varying terrain slopes. As
depicted in Fig 7, the DRL controller effectively minimizes
the yaw error, but with increasing elevation angle, it struggles
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to minimize the cross-track error. The LQR controller also
minimizes the yaw error but is less effective at minimizing
the cross-track error. In contrast, the HDRL controller com-
pensates for varying slopes by introducing corrective steering
angle outputs, enhancing overall performance.

While the HDRL and LQR controllers successfully tra-
verse the path without resets, the DRL controller struggles,
especially at steep slopes and corners. This difficulty stems
from its tendency to converge towards suboptimal policies,
leading to suboptimal speed control and slipping on steeper
slopes and sharp corners. To quantify the results, key evalu-
ation metrics are defined in Table I as mean squared error of
both the crosstrack and yaw error across all the three tracks.

TABLE I: Evaluation Metrics
Error Type | Controller Austin Silverstone | Brands Hatch
LQR 0.098 0.013 0.042
Crosstrack HDRL 0.013 4.95¢~9° 0.0795
DRL 0.022 0.905 1.686
LQR 8.02¢- 9% | 1.19¢79° 4.34¢~ 0%
Yaw HDRL 2.88¢7 77 | 5.98¢7 7% 7.85¢~ 00
DRL 2.29¢77° 0.00022 0.0013

Disturbance rejection evaluations were done for all three
controllers on the challenging Brands Hatch track. Distur-
bances were introduced every 10 seconds as random linear
and angular velocities ranging € [-3 , 3] m/s and [-3 , 3]
rad/s, respectively. As observed in Fig. 8, the HDRL con-
troller effectively compensates for disturbances, ultimately
minimizing cross-track and yaw errors. However, the LQR
controller, once disturbed with a cross-track error more
significant than 1 meter, only minimizes the yaw error. The
DRL controller compensates for the disturbance but tends to
overshoot the cross-track error, eventually minimizing only
the yaw error. The data further indicates that the HDRL
controller outperforms the LQR and DRL controllers in
rough terrain path tracking scenarios, exhibiting lower cross-
track and yaw errors, thereby enhancing performance and
resilience against disturbances.

VI. CONCLUSION

This study showcases the significant promise of the HDRL
framework for improved rough terrain path tracking of
an Ackermann-steered platform. It demonstrates robustness
against external disturbances and showcases the ability to
generalize across diverse conditions. Furthermore, it reduces
the total training time needed to develop an optimal policy
by leveraging DRL and LQR controllers’ complementary
strengths and addressing their individual limitations. More-
over, the HDRL framework alleviates the necessity for high-
fidelity nonlinear model-based controllers, which can be
challenging to both formulate and deploy in scenarios with
high-dimensional state and action spaces.
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