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Abstract— Despite major advancements in control design that
are robust to unplanned disturbances, bipedal robots are still
susceptible to falling over and struggle to negotiate rough
terrains. By utilizing thrusters in our bipedal robot, we can
perform additional posture manipulation and expand the modes
of locomotion to enhance the robot’s stability and ability to
negotiate rough and difficult-to-navigate terrains. In this paper,
we present our efforts in designing a controller based on capture
point control for our thruster-assisted walking model named
Harpy and explore its control design possibilities. While capture
point control based on centroidal models for bipedal systems has
been extensively studied, the incorporation of external forces
that can influence the dynamics of linear inverted pendulum
models, often used in capture point-based works, has not been
explored before. The inclusion of these external forces can lead
to interesting interpretations of locomotion, such as virtual
buoyancy studied in aquatic-legged locomotion. This paper
outlines the dynamical model of our robot, the capture point
method we use to assist the upper body stabilization, and the
simulation work done to show the controller’s feasibility.

I. INTRODUCTION AND MOTIVATION

Raibert’s robots [1] and Boston Dynamics’ robots [2]
represent some of the most successful examples of legged
robots, demonstrating robust hopping or trotting capabili-
ties even in the face of significant unplanned disturbances.
Alongside these achievements, numerous underactuated and
fully actuated bipedal robots have been introduced [3]–[6].
Agility Robotics’ Cassie [7] and Hubo [8] exhibit capabilities
ranging from walking and running to dancing and navigating
stairs, while Atlas recover from pushes [9].

Despite these advancements, all these systems remain
susceptible to falling over and struggle to negotiate extremely
rough terrains. Even humans, renowned for their natural,
dynamic, and robust gaits, cannot consistently recover from
severe terrain perturbations, external pushes, or slips on icy
surfaces. Our objective is to enhance the robustness of these
systems by implementing a distributed array of thrusters and
employing nonlinear control techniques.

The application of thrusters (thrust vectoring) and posture
manipulation has recently undergone testing in notable ex-
amples such as the Multi-modal mobility morphobot (M4)
[10]–[12] and LEONARDO [11], [13]–[15]. M4 endeavors
to enhance its locomotion versatility by integrating posture
manipulation and thrust-vectoring to increase the variety of
locomotion modes. Conversely, LEONARDO is a legged

1 The authors are with the Department of Electrical Engineering, North-
eastern University, USA.

2 The authors are with the Department of Aerospace Engineering,
California Institute of Technology, USA.

† These authors have equal contribution to this work
∗ The corresponding author, email: a.ramezani@northeastern.edu

Fig. 1. Illustrates the CAD model of Harpy platform, a bipedal robot with
two electric ducted fans attached to its torso.

robot equipped with a multitude of propellers, enabling both
walking and flying capabilities. However, neither of these ex-
amples adequately demonstrates dynamic legged locomotion
and aerial mobility, which presents a formidable challenge
due to conflicting requirements inherent in these modes
of operation. The integration of these modes into a single
platform remains a significant hardware design obstacle.

Posture manipulation and thrust-vectoring are commonly
used in birds, notable examples are chuckar birds which
are capable of showcasing wing-assisted incline running
maneuver known as WAIR problem [16], [17]. In WAIR
maneuver, Chukar birds apply their flapping wings and
resulting aerodynamic forces to enhance contact forces to
walk up steep slopes.

In this paper, we present our efforts in designing a
controller based on capture point control for our thruster-
assisted walking model named Harpy (depicted in Fig. 1).
With a total of eight actuators and a pair of electric ducted
fans fixed to its torso, this biped aims to combine the mobility
advantages of aerial and legged systems, capable of achiev-
ing dynamic terrestrial locomotion and flight. The hardware
design and assembly of Harpy have been completed, and the
primary objective of this work is to explore control design
possibilities for Harpy [18], [19].

While capture point control based on centroidal models for
bipedal systems has been extensively studied [9], the incor-
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poration of external forces that can influence the dynamics of
linear inverted pendulum models, often used in capture point-
based works, has not been explored before. The inclusion of
these external forces can lead to interesting interpretations
of locomotion, such as virtual buoyancy studied in aquatic
legged locomotion.

In this work, we consider these external forces—in the
form of thruster forces—which can be utilized to modulate
the solutions within the elliptical energy that define capture
point solutions. These adjustments reduce the effort required
by the system (e.g., step length for recovery) to respond to
external perturbations, thereby enhancing overall robustness
in scenarios prone to tipping over. The primary contribution
of this work lies in taking meaningful steps towards the
unexplored domain of thruster-assisted dynamic terrestrial
locomotion.

This work is structured as follows: we present the deriva-
tions of Harpy reduced order model, followed by the capture
point control, simulation results, and concluding remarks.

II. HARPY REDUCED-ORDER MODEL (HROM)
DERIVATIONS

This section outlines the dynamics formulation of the robot
which is used in the numerical simulation in Section 3, in
addition to the reduced order models which are used in the
controller design. Figure 1 shows the kinematic configuration
of Harpy which listed the center of mass (CoM) positions
of the dynamic components, joint actuation torques, and
thruster torques. The system model has a combined total of
12 degrees-of-freedoms (DoFs): 6 for the body and 3 on each
leg. Due to the symmetry, the left and right side of the robot
follow a similar derivations so only the general derivations
are provided in this section.

A. Energy-based Lagrange Formalism
The Harpy equations of motion are derived using Euler-

Lagrangian dynamics formulation. In order to simplify the
system, each linkage is assumed to be massless, with the
mass concentrated at the body and the joint motors. Conse-
quently, the lower leg kinematic chain is considered massless,
significantly simplifying the system. The three leg joints are
labeled as the hip frontal (pelvis P ), hip sagittal (hip H), and
knee sagittal (knee K), as illustrated in Fig. 1. The thrusters
are also considered massless and capable of providing forces
in any direction to simplify the problem.

Let γh be the frontal hip angle, while ϕh and ϕk rep-
resent the sagittal hip and knee angles, respectively. The
superscripts {B,P,H,K} represent the frame of reference
about the body, pelvis, hip, and knee, while the inertial
frame is represented without the superscript. Let RB be the
rotation matrix from the body frame to the inertial frame
(i.e., x = RB xB). The pelvis motor mass is added to the
body mass. Then, the positions of the hip and knee centers
of mass (CoM) are defined using kinematic equations:

pP = pB +RB lB1 ,

pH = pP +RB Rx(γh) l
P
2

pK = pH +RB Rx(γh)Ry(ϕh)l
H
3 ,

(1)

where Rx and Ry are the rotation matrices about the x and
y axes, respectively, and l is the length vector representing
the configuration of Harpy, which remains constant in its
respective local frame of reference. The positions of the foot
and thrusters are defined as:

pF = pK +RB Rx(γh)Ry(ϕh)Ry(ϕk) l
K
4

pT = pB +RB lBt
(2)

where the length vector from the knee to the foot is lK4 =
[−l4a cosϕk, 0,−(l4b + l4a sinϕk)]

⊤, which represents the
kinematic solution to the parallel linkage mechanism of the
lower leg. Let ωB be the angular velocity of the body.
Then, the angular velocities of the hip and knee are defined
as: ωB

H = [γ̇h, 0, 0]
⊤ + ωB

B and ωH
K = [0, ϕ̇h, 0]

⊤ + ωH
H .

Consequently, the total energy of Harpy for the Lagrangian
dynamics formulation is defined as follows:

K = 1
2

∑
i∈F

(
mi p

⊤
i pi + ωi⊤

i Îi ω
i
i

)
V = −

∑
i∈F

(
mi p

⊤
i [0, 0,−g]⊤

)
,

(3)

where F = {B,HL,KL, HR,KR} represents the relevant
frames of reference and mass components (body, left hip,
left knee, right hip, right knee), and the subscripts L and
R denote the left and right sides of the robot, respectively.
Furthermore, Îi denotes the inertia about its local frame,
and g is the gravitational constant. This constitutes the
Lagrangian of the system, given by L = K − V , which is
utilized to derive the Euler-Lagrange equations of motion.
The dynamics of the body’s angular velocity are derived
using the modified Lagrangian for rotation in SO(3) to avoid
using Euler angles and the potential gimbal lock associated
with them. This yields the following equations of motion
following Hamilton’s principle of least action:

d
dt

(
∂L
∂ωB

B

)
+ ωB

B × ∂L
∂ωB

B

+
∑3

j=1 rBj × ∂L
∂rBj

= u1,

d
dt

(
∂L
∂q̇

)
− ∂L

∂q = u2,

d
dtRB = RB [ωB

B ]×,

(4)

where [ · ]× denotes the skew symmetric matrix, R⊤
B =

[rB1, rB2, rB3], q = [p⊤
B , γhL

, γhR
, ϕhL

, ϕhR
]⊤ represents

the dynamical system states other than (RB ,ω
B
B ), and u

denotes the generalized forces. The knee sagittal angle ϕk,
which is not associated with any mass, is updated using the
knee joint acceleration input uk = [ϕ̈kL

, ϕ̈kR
]⊤. Then, the

system acceleration can be derived as follows:

Ma+ h = Bj uj +Bt ut +Bg ug (5)

where a = [ω̇B⊤
B , q̈⊤, ϕ̈kL

, ϕ̈kR
]⊤, ut denotes the thruster

force, uj = [uPL
, uPR

, uHL
, uHR

,u⊤
k ]

⊤ represents the joint
actuation, and ug stands for the ground reaction forces
(GRFs). The variables M , h, Bt, and Bg are functions of
the full system states:

x = [r⊤B , q
⊤, ϕKL

, ϕKR
,ωB⊤

B , q̇⊤, ϕ̇KL
, ϕ̇KR

]⊤, (6)

where the vector rB contains the elements of RB . Introduc-
ing Bj = [06×6, I6×6] allows uj to actuate the joint angles

1140



directly. Let v = [ωB⊤
B , q̇⊤]⊤ denote the velocity of the

generalized coordinates. Then, Bt and Bg can be defined
using the virtual displacement from the velocity as follows:

Bt =

(∂ṗTL
/∂v

∂ṗTR
/∂v

)⊤

02×6

 , Bg =

(∂ṗFL
/∂v

∂ṗFR
/∂v

)⊤

02×6

 . (7)

The vector ut = [u⊤
tL ,u

⊤
tR ]

⊤ is composed of the left and
right thruster forces utL and utR , respectively. The GRF
is modeled using the unilateral compliant ground model
with undamped rebound, while friction is modeled using the
Stribeck friction model, defined as follows:

ug,z =− kg,p pF,z − kg,d ṗF,z

ug,x =−
(
µc + (µs − µc) exp

(
− |ṗF,x|2

v2
s

))
fz sgn(ṗF,x)

− µv ṗF,x,
(8)

where pF,x and pF,z represent the x and z components of
the inertial foot position, kg,p and kg,d denote the spring
and damping model for the ground, µc, µs, and µv are the
Coulomb, static, and viscous friction coefficients, respec-
tively, and vs is the Stribeck velocity. kg,d is set to 0 if
ṗF,z > 0 for the undamped rebound model, and friction in
the y direction follows a similar derivation to ug,x. Then, the
ground force model ug is defined as follows:

ug = [u⊤
gL H(−pFL,z), u

⊤
gR H(−pFR,z)]

⊤, (9)

where H(x) denotes the Heaviside function, while ugL and
ugR represent the left and right ground forces, which are
formed using their respective components ug,x, ug,y , and
ug,z .

The full-dynamics model can be derived using equations
(4) to (9) to form ẋ = f(x,uj ,ut,ug). Finally, using the
full-dynamics derived above, we proceed to ROM deriva-
tions. As shown in Fig. 2, the model is described using
the inverted pendulum model, where the length of r can
be adjusted through the change in leg conformation, i.e.,
variable-length inverted pendulum model (VLIP).

In the VLIP model, the center of pressure (CoP), denoted
as c, is defined as the weighted average position of the feet,
given by c = λL pFL

+ λR pFR
, where λi = ugi,z/(ugL,z +

ugR,z) for i ∈ {L,R}. In the Harpy full-dynamics model,
which uses a point foot, c equals the stance foot position
during the SS phase. The VLIP model without thrusters is
underactuated, but the addition of thrusters makes the system
fully actuated and enables trajectory tracking. Hence, the
VLIP model is derived as follows:

mp̈B = mg + ut,c + J⊤
s λ (10)

where m represents the mass of the VLIP model, which in
this case is the total mass of the system, and ut,c denotes
the thruster forces about the CoM. The constraint force J⊤

s λ
is established to maintain the leg length r equal to the leg
conformation, utilizing the following constraint equation:

Js (p̈B − c̈) = ur,

Js = (pB − c)⊤,
(11)

Fig. 2. Illustrates Harpy reduced-order model parameters. A variable-length
inverted pendulum model with thruster force is projected to the sagittal,
frontal and transversal planes of locomotion.

which is designed to maintain the leg length’s second deriva-
tive equal to ur. This constraint force also constitutes the
GRF as long as the friction cone constraint is satisfied.
Assuming no slip (c̈ = 0), the inputs to the system are ur,
which controls the body position about the vector r = pB−c
by adjusting the leg length, and the thrusters ut, which
control the remaining degrees of freedom.

III. CAPTURE POINT CONTROL

To design the controller, as depicted in Fig. 2, we consider
the projection of the VLIP model onto the sagittal and frontal
planes of locomotion and design the capture point controller
separately. Here, we elucidate the control design for the
sagittal plane. We start with a biped system abstracted as
a planar inverted pendulum. The equations of motion in the
x-z plane are given by

mp̈B,x = |λ| sin θL + |ut,c| sin θT
mp̈B,z = −mg + |λ| cos θL + |ut,c| cos θT

(12)

where θL and θT are illustrated in Fig. 2. The linear
pendulum model can be enforced by setting pB,z = z0 and
p̈B,z = 0. Therefore, the magnitude of λ is determined by

|λ| = (mg − |ut,c| cos θT )
|r|
z0

(13)
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Fig. 3. Snap shots of Harpy’s thruster-assisted walking on flat ground.

Fig. 4. Capture point obtained for various g′ = g − ut,c/m.

By substituting sin θL = x
r and |λ| from above into Eq. 12,

p̈B,x is given by

mp̈B,x =
x

z0
(mg − |ut,c| cos θT ) + |ut,c| sin θT (14)

Note that if through torso angle manipulation thruster actions
around the CoM ut,c are kept perpendicular to the ground
surface, i.e., θT = 0, then we can express the virtual mass-
spring model with a negative stiffness rate −

(
g − |ut,c|

m

)
as

follows:

p̈B,x =

(
g − |ut,c|

m

)
pB,x

z0
(15)

Since the stiffness rate in this model is negative and dictated
by the thrusters, we refer to this model as virtual buoyancy.
It is possible to observe that the thruster force can reduce
the walking frequency, similar to submersed aquatic-legged
locomotion. The orbital energy E of the virtual buoyancy
model is given by

E =
1

2
ṗ2B,x − 1

2

(
g − |ut,c|

m

)
p2B,x

z0
(16)

When the CoM moves towards the foot and E > 0, there
is sufficient energy for the CoM to pass over the foot and
maintain its motion. Conversely, if E < 0, the CoM halts
and changes direction before reaching over the foot. At E =
0, the CoM comes to a rest directly above the foot. This
equilibrium state, E = 0, defines the two eigenvectors of the
buoyancy model, expressed as:

ṗB,x = ±pB,x

√
g − |ut,c|

m

z0
(17)

The equation above depicts a saddle point characterized by
one stable and one unstable eigenvector. In the stable eigen-
vector, pB,x and ṗB,x exhibit opposite signs, indicating that
the CoM is approaching the CoP. Conversely, in the unstable
eigenvector, they share the same signs, indicating that the
CoM is moving away from the CoP. The orbital energy of
the inverted pendulum remains constant until the swing leg
is placed and the roles of the feet are exchanged. Assuming
this exchange occurs instantaneously without energy loss, we
can determine the foot placement based on the capture point,
given by

pB,x = ṗB,x

√
z0

g − |ut,c|
m

(18)

IV. RESULTS AND DISCUSSION

The implementation of the capture point control strategy
for Harpy’s thruster-assisted walking model yielded promis-
ing results in simulations. A high-fidelity model of Harpy
was developed in Simscape, as depicted in Fig. 3. The
controller quickly attained a stable limit cycle, as shown
in Fig. 5, indicating the system’s ability to maintain stable
walking motion using our controller. Figure 6 illustrates the
initial joint torque for the left knee, which was high as Harpy
was dropped from slightly above ground at the beginning of
the simulation. Ground reaction forces are shown in Fig. 7.
The thruster force, shown in Fig. 8, was calculated from the
controller. This thruster force was then integrated into the
capture point controller, contributing to the virtual buoyancy
model. The thruster contributions reduced the effort required
for fallover prevention as observed in Fig. 4. Additionally,
Figs. 9 and 10 demonstrate Harpy’s contact forces, stance
foot locations, and CoM trajectory in isometric and top
views.

V. CONCLUSION

We presented the design and implementation of a thruster-
assisted walking controller for Harpy, a biped robot. The
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Fig. 5. Illustrates Harpy state variable trajectories evolution obtained using the Simscape/Matlab model.

Fig. 6. Illustrates Harpy joint torques obtained using the Simscape/Matlab
model.

high-fidelity model of Harpy allowed for a detailed analysis
of the system’s dynamics and control strategies. We em-
ployed a control design based on capture point theory, which
identifies a region for foot placement such that the overall
energy of the CoM dissipates to halt the system, preventing
potential fallover situations. Our controller demonstrated the
ability to quickly attain a stable limit cycle, indicating its
effectiveness.

Future work will focus on experimental validation of our
controller on the hardware of Harpy, which has recently
been completed. Additionally, further improvements to the
controller algorithms and integration of various perception
elements, such as vision feedback, will be pursued to enhance
Harpy’s robustness and adaptability in complex terrain. Over-
all, our results suggest that thruster-assisted walking has the
potential to offer a fresh perspective on legged locomotion
and provide rich opportunities for unexplored control design

Fig. 7. Illustrates Harpy ground reaction forces (GRF) obtained using the
Simscape/Matlab model.

avenues.
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