
  

  

Abstract— We propose a gravity compensation mechanism 

that combines practical compensation performance and a simple 

structure inspired by the skeleton of sauropods. Conventional 

gravity compensation mechanisms typically involve complex 

structures and design theories to be unaffected by variations in 

posture and fluctuations in self-weight induced by external loads. 

In considering a simpler structure, we focused on the simple 

gravity compensation functionality observed in sauropods, a 

particularly gigantic group of dinosaurs characterized by their 

long necks and tails, making them the largest terrestrial animals 

in history, and referred to their skeleton. Our proposed method 

emphasizes simplicity over strict compensation mechanisms, 

employing a straightforward structure of wires aligned with the 

articulated links. In this paper, we demonstrate the mechanism's 

compensation performance, showing how the gravity 

compensation ratio varies with different postures through 

simulation. Additionally, we fabricated a prototype to test the 

compensation effect, further verifying the effectiveness of our 

proposed mechanism. 

I. INTRODUCTION 

Multi-joint robot arms operating against gravity require a 
compensatory torque to counteract their own weight during 
operation. Utilizing the actuator output for both the intended 
movement and compensatory torque raises concerns regarding 
the increase in energy consumption. Additionally, unforeseen 
circumstances such as power failure pose a risk of limpness, 
making the arm unsafe to use as a collaborative tool. 

A variety of mechanisms have been proposed to 
compensate for the influence of self-weight on a robot arm 
without an external energy supply. The primary gravity 
compensation mechanisms include counterweight, spring, and 
buoyancy methods. The counterweight method, which 
involves compensating for the gravitational potential of the 
self-weight with a counterweight, has a simple principle and 
the ability to cancel moments around a support point [1][2]. 
However, this approach increases mass and moment of inertia, 
making the robot arm less responsive. The spring method, in 
contrast, utilizes the elastic potential of the springs to offset 
compensates the gravitational potential without reducing the 
responsiveness [3][4]. Nevertheless, a conversion mechanism 
is required because of the linear nature of the gravitational 
potential with respect to the displacement and the nonlinear 
nature of the elastic potential. The buoyancy method 
compensates for the gravitational potential by using the 
buoyancy potential of the gas filled in the robot. Although this 
method allows the development of a simple and lightweight 
robot arm, the arm is limited to exploratory applications [5]. 
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An optimal gravity compensation mechanism must be 

unaffected by variations in posture and fluctuations in self-

weight induced by external loads. Several parallel links, 

noncircular pulleys, and cams with gravity compensation 

mechanisms have been proposed to counteract posture 

changes [2][6][7][8]. Another reported mechanism employs 

embedded springs to counteract the changes in self-weight [9]. 

If the acceptance of human assistance is acknowledged, 

structures that facilitate the replacement of components 

according to circumstances also tolerate changes in self-

weight and posture [10]. However, strict adherence to these 

requirements typically imposes numerous design constraints. 

Conventional mechanisms that satisfy these criteria typically 

involve complex structures and design theories. To the best of 

our knowledge, examples of sufficiently simple structures 

have not been developed. 

Structures akin to gravity compensation mechanisms are 
not exclusive to artificial constructs; they also manifest 
themselves in the natural world. A prime example is the 
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Figure 1. Prototype of the proposed mechanism 
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sauropod [11][12]—a particularly gigantic group of dinosaurs 
characterized by a long neck and tail, making them the largest 
terrestrial animals in history. Sustaining the elongated necks 
and tails of sauropods required immense biological energy 
[13]. Consequently, it has been hypothesized that sauropods 
possessed gravity compensation functionality and maintained 
their posture through tension in the ligaments [12][14]. Simple 
gravity compensation mechanisms can be found in living 
organisms. 

In this study, a gravity compensation mechanism that 
combines practical compensation functionality and a simple 
structure inspired by the skeleton of a sauropod is proposed 
(Fig. 1). The proposed mechanism adopts a counterweight-
style design featuring straightforward construction achieved 
by connecting identically shaped links through wires. 
Simplicity is emphasized rather than strict compensation 
functionality; therefore, simulations were conducted to assess 
its practical compensatory capabilities. 

II. BASIC PRINCIPLE 

A. Construction of proposed mechanism 

The proposed mechanism was constructed by connecting 
multiple links, each with the same shape, resembling a 
sauropod neck and tail (see Fig. 2). Universal joints are utilized 
between the links. When counting the joints starting from the 
central link as zero, the links with the same number were 
connected by wires. Each wire has a constant length when the 
proposed mechanism is not bent. For example, the red wire 
(heavy line) connects the joints labeled 3. Four wires are 
arranged for each link pair, allowing the transmission of 
rotations in the yaw and pitch directions. Viewed from the 
central link, one set of links is referred to as the active link, and 
the other set is referred to as the passive link. When the joint 
angle of the active links changes, the tension in the wires 
causes corresponding changes in the joint angles of the passive 
links. As the joint of the active link rotates in the direction of 
increasing potential, the corresponding joint of the passive link 
rotates to decrease the potential. Therefore, the proposed 
mechanism achieves gravity compensation as the entire 
system. Additionally, placing the actuator on the 0th link and 
actuating the wires allows active bending without increasing 
the moment of inertia [15]. 

B. Forward kinematics of individual joint 

The derivation process of forward kinematics for an 
individual joint is presented. We consider the stationary 
orthonormal bases 𝒊, 𝒋, and 𝒌 and denote the wire attachment 
positions of the active joint as 𝒓1, 𝒓2, 𝒓3, and 𝒓4 (see Fig. 3). 
When an active joint is rotated in the pitch direction by 𝜃 and 
in the yaw direction by 𝜑, the position vectors 𝒓2 and 𝒓4, as 

observed from the stationary coordinate system, shift to 𝒓2
′ 

and 𝒓4
′, respectively, as expressed by the following equations:  

𝒓2
′ = 𝑅𝑜𝑡[𝒌, 𝜑]𝑅𝑜𝑡[𝒊, 𝜃]𝒓2 (1) 

𝒓4
′ = 𝑅𝑜𝑡[𝒌, 𝜑]𝑅𝑜𝑡[𝒊, 𝜃]𝒓4 (2) 

where 𝑅𝑜𝑡[𝝎̂, 𝜗] represents the rotation matrix for an angle 𝜗 
around the axis 𝝎̂. This completes the derivation of forward 
kinematics for an individual joint. The lengths of the wires 
placed between the active joints 𝑙12 and 𝑙34 can be expressed as 
follows: 

𝑙12 = ‖𝒓2
′ − 𝒓1‖ (3) 

𝑙34 = ‖𝒓4
′ − 𝒓3‖, (4) 

where r1̃, r2̃, r3̃, and r4̃ denote the wire attachment positions of 

the passive joint. Additionally, −𝜃̃ and −𝜑̃  represent the 
rotational angles for the pitch and yaw, respectively, of the 
passive joint caused by the rotation of the active joint (see Fig. 

4). The position vectors r2̃ and r4̃ are then shifted to r2 '̃ and r4 '̃, 
as follows: 

 

Figure 2. Construction of the proposed mechanism and link numbering 
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Figure 3. Definitions of the joint parameters and how they change 

 

Figure 4. Correspondence between active and passive joints numbering 

Figure 1.   
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r2 '̃=𝑅𝑜𝑡[𝒌, −𝜑̃]𝑅𝑜𝑡[𝒊, −𝜃̃]r2̃ (5) 

r4'=𝑅𝑜𝑡[𝒌, −𝜑]𝑅𝑜𝑡[𝒊, −𝜃]r4. (6) 

In this case, the lengths of the wires placed between the passive 

joints, which are denoted as 𝑙12̃ and 𝑙34̃, can be expressed as 
follows: 

𝑙12̃ = ‖𝒓2̃′ − 𝒓1̃‖ (7) 

𝑙34̃ = ‖𝒓4̃′ − 𝒓3̃‖. (8) 

Because the lengths of the wires are constant before and after 
the joint rotations, the following relationship can be used: 

𝑙12 + 𝑙34 = 4𝑟 sin 𝜓 (9) 

𝑙12̃ + 𝑙34̃ = 4𝑟 sin 𝜓 (10) 

‖𝒓𝑖‖ = ‖𝒓𝑖̃‖ = 𝑟 (𝑖 = 1 ⋯ 4) (11) 

𝑟 cos 𝜓 = 𝒓𝑖 ∙ 𝒌 = 𝒓𝑖̃  ∙ 𝒌 (𝑖 = 1 ⋯ 4). (12) 

By eliminating the rotation angles 𝜃 and 𝜑 from equations (9) 

and (10), the rotation angles 𝜃̃ and 𝜑̃ for the passive joint are 
computed. However, as the above equations cannot be solved 
analytically, numerical methods such as Newton's method are 

required. The joint angles 𝜃 , 𝜑 , 𝜃̃ , and 𝜑̃  must satisfy the 
following equations for constructing an ideal gravity 
compensation mechanism. 

𝜃 = 𝜃̃ (13) 

𝜑 = 𝜑̃. (14) 

The only solution that satisfies equations (13) and (14) is  
𝜃 = 𝜑 = 0. This indicates that the proposed mechanism does 
not theoretically possess exact gravity compensation 
functionality when its posture changes from the initial state. 
The differences in angles between the active and passive joints, 
which are denoted as Δ𝜃 and Δ𝜑, are defined as 

Δ𝜃 = |𝜃′ − 𝜃| (15) 

Δ𝜑 = |𝜑′ − 𝜑|. (16) 

C. Forward kinematics and gravitational potential of 

proposed mechanism 

A derivation of the overall forward kinematics of the 
proposed mechanism is presented. The unit vectors 𝒊𝑛, 𝒋𝑛, and 
𝒌𝑛 denote the stationary orthonormal base for the 𝑛th joint, and 
the homogeneous transformation matrix is defined as 

𝑇[𝝎̂, 𝜗, 𝒑] = [
𝑅𝑜𝑡[𝝎̂, 𝜗] 𝒑

𝟎𝑇 1
]

⬚

. (17) 

The relationship between the vectors 𝒓⬚
𝑛  and 𝒓⬚

𝑛+1  is 

computed as 

𝒓⬚
𝑛 = 𝑇[𝒌𝑛 , 𝜑𝑛 , 𝟎]𝑇[𝒊𝑛, 𝜃𝑛 , 𝟎]𝑇[𝒋𝑛 , 0, 𝑙𝒋𝑛+1] 𝒓⬚

𝑛+1 , (18) 

where 𝒓⬚
𝑛  is a given vector 𝒓  observed from the 𝑛 th joint, 

𝒓⬚
𝑛+1  is observed from the (𝑛 + 1)th joint, and 𝑙 represents the 

length of the joint. Equation (18) expresses the overall forward 
kinematics of the proposed mechanism. The position of the 
center of mass of the 𝑛th joint, i.e., 𝒓𝐺𝑛, is obtained as follows: 

𝒓𝐺𝑛 = 𝑇1𝑇2 ⋯ 𝑇𝑛 [
−

𝑙

2
𝒋𝑛

⬚
1

] = [∏ 𝑇𝑖

𝑘

𝑖=1

] [

𝑙

2
𝒋𝑛

⬚
1

] (19) 

𝑇𝑛[𝝎̂, 𝜗, 𝒑] = 𝑇[𝒌𝑛, 𝜑𝑛 , 𝟎] 𝑇[𝒊𝑛, 𝜃𝑛 , 𝟎]𝑇[𝒋𝑛, 0, 𝑙𝒋𝑛+1]. (20) 

Therefore, the total gravitational energy 𝑈 that the active joint 
receives is computed as 

𝑈 = 𝑚𝑔[𝒌1
𝑇 1] ∑ [∏ 𝑇𝑖

𝑘

𝑖=1

] [

𝑙

2
𝒋𝑛

⬚
1

]

𝑁

𝑘=1
⬚

. (21) 

where 𝑚 represents the mass of each joint, and 𝑔 represents 
the gravitational acceleration. 

D. Gravity compensation ratio of proposed mechanism and 

its calculation 

The gravity compensation ratio 𝜀  for the proposed 
mechanism is defined as 

𝜀 = (1 −
∆𝑈

𝑈
)

⬚
, (22) 

where ∆𝑈  represents the energy received by the proposed 
mechanism from gravity when gravity compensation is 
performed, and 𝑈 represents the energy received from gravity 
without compensation. ∆𝑈  is computed using the error 
propagation law. 

∆𝑈 = √∑ {(
𝜕𝑈

𝜕𝜃𝑘
)

2

∆𝜃𝑘
2 + (

𝜕𝑈

𝜕𝜑𝑘
)

2

∆𝜑𝑘
2}

𝑁

𝑘=1

  . (23) 

Here, ∆𝜃𝑘 and ∆𝜑𝑘 represent the angular differences between 
the 𝑘 th active joint and the corresponding passive joint. 
However, there is no need to calculate the partial derivatives 
directly in equation (23); they are obtained as follows: 

𝜕𝑈

𝜕𝜃𝑛

= 𝑚𝑔[𝒌1 1] ∑ [∏ {𝛿(𝑖 − 𝑛) (
𝜕𝑇𝑛

𝜕𝜃𝑛

− 𝑇𝑛) + 𝑇𝑖}

𝑘

𝑖=1

]

𝑁

𝑘=𝑛

[

𝑙

2
𝒋𝑛

⬚
1

] (24) 

𝜕𝑈

𝜕𝜑𝑛

= 𝑚𝑔[𝒌1 1] ∑ [∏ {𝛿(𝑖 − 𝑛) (
𝜕𝑇𝑛

𝜕𝜑𝑛

− 𝑇𝑛) + 𝑇𝑖}

𝑘

𝑖=1

]

𝑁

𝑘=𝑛

[

𝑙

2
𝒋𝑛

⬚
1

] (25) 

𝜕𝑇𝑛

𝜕𝜃𝑛
= [

𝜕

𝜕𝜃𝑛
𝑅𝑜𝑡[𝝎′̂, 𝜗′] 𝒑′

𝟎𝑇 1

] (26) 

𝜕𝑇𝑛

𝜕𝜑𝑛
= [

𝜕

𝜕𝜑𝑛
𝑅𝑜𝑡[𝝎′̂, 𝜗′] 𝒑′

𝟎𝑇 1

]

⬚

, (27) 
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where 𝛿 is the Kronecker delta, which is defined as 

𝛿(𝑥) = {
1 (𝑥 = 0)

⬚
0 (𝑥 ≠ 0)

⬚

. (28) 

III. SIMULATIONS  

A.  Relationship between position of bending joint and 

gravity compensation ratio 

Simulations were conducted to investigate the effects of 
the errors on gravity compensation ratio expressed by 
equations (15) and (16). Initially, the relationship between the 
positions of the rotating joint and the gravity compensation 
ratio was examined (see Fig. 5). Consider the case where only 
the 𝑛th joint is rotated by the angle 𝜃𝑛 (in degrees) calculated 
using equation (29) in the vertical direction.  

𝜃𝑛 = 𝛿(𝑛 − 𝑘) ∙ 18. (29) 

In the simulations, the values of the link length 𝑙 and number 
of joints 𝑁  were consistent with those used in the actual 
prototype (refer to Chapter 4). The simulation results with 𝑘 
varying from 1 to 7 indicate that for motion in the vertical 
plane, bending the tipper joint leads to a higher gravity 
compensation ratio 𝜀 (see Fig. 6).  

B.  Relationship between curvature and gravity 

compensation ratio 

Simulations were employed to estimate the relationship 
between the bending angles in the proposed mechanism and 
the gravity compensation ratio 𝜀. Given the large number of 
degrees of freedom of the proposed mechanism, the sheer 
number of possible joint angle combinations makes it 
impractical to investigate all the combinations. Therefore, 
simulations were conducted under the condition of 
maintaining a constant curvature for all the joints. 

Simulations for the gravity compensation ratio 𝜀  were 
conducted for the proposed mechanism performing constant-
curvature flexure in the vertical plane (see Fig. 7). Joint angles 
𝜃𝑛 and 𝜑𝑛 were given by 

[

𝜃𝑛

⬚
𝜑𝑛

] = [
Θ
⬚
0

]

⬚

. (30) 

The relationship between the joint angle Θ  and the gravity 
compensation ratio 𝜀 under the conditions of equation (30) is 
investigated (refer to Fig. 8). As a general trend, the gravity 
compensation ratio 𝜀 decreases with an increase in the joint 
angle Θ . This is likely because the joint-angle errors (Δ𝜃) 
increase with Θ. 

The gravity compensation ratio of the proposed 
mechanism performing constant-curvature bending in three 
dimensions was calculated (see Fig. 9).  Joint angles 𝜃𝑛 and 
𝜑𝑛 are given by the following state vector. 

𝒙 = [

𝜃𝑛

⬚
𝜑𝑛

] = [
Θ
⬚
Φ

]

.

 (31) 

The relationship between the state vector 𝒙 and the gravity 
compensation ratio 𝜀  under the conditions of equation (31) 
was simulated (Fig. 10). Overall, increasing the joint angle 
reduced the gravity compensation ratio. This is likely because 
the joint-angle errors Δ𝜃 and Δ𝜑 increased with the joint angle 
Φ. However, an increase in Φ resulted in an increase in 𝜀 in 
some local regions. From these observations, it is inferred that 
increasing joint angles Θ and Φ tends to decrease the gravity 
compensation ratio 𝜀. However, it is presumed that with an 
appropriate relationship between joint angles Θ  and Φ , the 
decrease in 𝜀 can be mitigated even when Θ and Φ are large. 

 

Figure 6. Relationship between the positions of the rotating joint and the 

gravity compensation ratio 
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(a) Case of a tipper joint rotated in the vertical plane 

 
(b) Case of a rooter joint rotated in the vertical plane 

Figure 5. Correspondence between active and passive joints 
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IV. VALIDATION USING PROTOTYPE  

A.  Fabrication method for prototype 

An actual prototype model was implemented to validate 
the gravity compensation functionality of the proposed 
mechanism (Fig. 11). The parameters of the implemented 
device are as follows.  

・Link mass 𝑚: 15.2 g 

・Link length 𝑙: 40 mm 

・Wire attachment angle 𝜓: 10° 

・Vertical range of joint: –18°< 𝜃𝑖 < 18° (𝑖 = 1, ..., 7) 

・Horizontal range of joint:  –18°< 𝜃𝑖 < 18° (𝑖 = 1, ..., 7)・
Link material: Acrylic resin 

The implemented device featured a hollow structure in 
each link and joint, allowing the placement of elongated items 
such as cameras and internal wiring.  

 

Figure 8. Relationship between the joint angle Θ and the gravity 

compensation ratio under the conditions of equation (30) 
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Figure 10. Relationship between the state vector x and the gravity 

compensation ratio ε under the conditions of equation (31) 
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Figure 7. Proposed mechanism performing constant-curvature flexure in 

the vertical plane 

 

Figure 9. Proposed mechanism performing constant-curvature bending 

in three-dimensional directions 

 

Figure 11. Prototype made of acrylic resin 
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B.  Verification experiment 

A simple experiment was conducted to verify the 
effectiveness of the gravity compensation functionality. In this 
experiment, each joint of the prototype was manually bent and 
released to determine whether its posture could be maintained 
without external support. Additionally, the 0th link was fixed 
during experiment. The results confirmed that postures with 
complex curvatures in three-dimensional directions could be 
sustained even without assistance and it is showed that the 
proposed mechanism combines practical gravity 
compensation functionality (see Fig. 11). However, the 
calculations indicate that this outcome is unrealistic (see 
Chapter 2). Therefore, it is inferred that in addition to the 
gravity compensation functionality of the proposed 
mechanism, other factors such as friction in the joints and 
wires contribute to posture maintenance.  

V. CONCLUSION 

This study introduced the fundamental principles of a 
multi-joint arm mechanism with gravity compensation 
inspired by the skeletons of sauropods. Simulations were 
performed to determine the gravity compensation ratio of the 
proposed mechanism. Additionally, the effectiveness of the 
gravity compensation feature was confirmed according to the 
stability of a prototype. 

In future research, we plan to optimize the design 
parameters and explore configurations for joint angles to 
increase the energy efficiency. In addition, we aim to apply 
this mechanism to rescue devices capable of exploring extreme 
environments and confined spaces (Fig. 12). The theories 
presented in this paper are applicable irrespective of the size 
of the mechanism and can be used to achieve versatility in 
various environments via upscaling or downscaling. 
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Figure 12. Application of the mechanism to rescue devices capable of 

exploring extreme environments and confined spaces 
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