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Abstract— Data-driven control, which embraces artificial in-
telligence, machine learning, and experience-based inferencing
architectures, has gained significant interest for its ability to
provide robust optimization in model-free, nonlinear, and time-
varying paradigms. Traditional systems, such as the haptic
paddle, used to communicate system dynamics principles in
undergraduate curricula, have yet to be adapted to the memory
and processing requirements of data-driven control. In this
work, we present a modular, open-source 3D printable friction-
driven haptic paddle design, building on the designs proposed
by the community, using commercial components and simple
microelectronic packaging, to enable robust data-driven control
for integration in undergraduate education. We make use of
the RP2040 microcontroller, a small light-weight logic platform
capable of fast online computation and robust memory storage
for onboard data-driven control. To validate our design, we
first develop an experimental model of the physical dynamics
that shows that our 3D printed friction drive is comparable
with friction driven paddles and capstan-cable driven paddles.
Further, we demonstrate the utility of our design in explicating
data-driven control by presenting the development of basic
machine learning and reinforcement learning architectures for
online, model-free robust control in the presence of time-
variable plant dynamics in a trajectory tracking task that is well
suited for implementation in undergraduate and introductory
graduate system dynamics and controls curricula.

I. INTRODUCTION

Undergraduate curricula in the area of Dynamics Sys-
tems and Control (DSC) are being developed to incorporate
physical systems which exemplify theoretical principles and
provide students with tangible expressions of theory [1].
When coupled with programmable microelectronics, physical
systems offer students valuable insight and experience with
practical engineering objectives. Multiple universities have
extended the original design of the haptic paddle [2], such
as the version presented here (Fig. 1) to provide hands-on
experience in system dynamic characterization and control
principles [3], [4], [5], [6]. Incorporation of such devices into
the curriculum focused on experiential learning [7], [8] have
been shown to have favorable outcomes in traditional aca-
demic metrics like oral and written examinations [9] in pre-,
mid-, and post-class reflective assessments [10], application-
oriented metrics including the technical quality and accuracy
of written reports [11].The haptic paddle can render com-
mon low-dimensional dynamics (e.g., mass-spring-damper
dynamics) that are readily scaled and translated to industrial
robotics applications [12], [13].
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Fig. 1. This paper presents an innovative design for the Auburn Haptic Pad-
dle, which supports increased accessibility via 3D-printed and commercial-
off-the-shelf components (CoTS) to facilitate the integration of data-driven
control in system-dynamics education.

However, despite the success of the haptic paddle, a
few drawbacks among its common versions inhibit further
adoption and use in undergraduate curricula. Despite the
wide-scale accessibility of tools needed to fabricate small-
scale robotic systems, including 3D printers, many open-
source haptic paddle transmission designs, including the
popular cable-driven transmission, require high-accuracy fab-
rication methods such as laser cutting, to achieve high spatial
resolution [4], [13]. Further, despite the development of
increasingly ubiquitous microelectronic hardware and open-
source integrated development support, many haptic paddles
are outfitted with custom microelectronics packaging and
software which are difficult to reproduce and limit the
accessibility of the paddle to students and lay audiences [13].
Finally, existing haptic paddles make use of microcontrollers
with extensive EEPROM memory. This architecture, while
efficient, cost effective, and user-friendly, can impede the
storage and access of recorded data required for data-driven
approaches. With the development of more diverse micro-
electronic packaging having entered the market, these mi-
crocontrollers feature extensive Flash memory architectures
which readily support on-board data-storage [14], [15].

This work presents an updated haptic paddle design to
overcome limitations of current open-source designs. Critical
drawbacks of contemporary haptic-paddle designs which
impede their accessibility and adoption in engineering edu-
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cation can be summarized as follows. Existing haptic paddle
designs: 1. Rely on complex transmission designs [4], 2.
Require either specific [4] or expensive [13] implementation
hardware, and 3. Rely on microcontrollers that not well-
suited to modern data-driven control approaches [14], [15].

In this work, we present an innovative haptic paddle design
which uses: 1. Planar, modular design with a friction-driven
transmission system that relaxes fabrication tolerances, 2.
CoTS microelectronic hardware with a small physical foot-
print to facilitate easy fabrication, customization, and use,
and 3. An RP2040 microcontroller with 2MB of Flash
storage which supports robust data-logging and memory
storage for data-driven control [16]. We explore the util-
ity of this data logging feature in system characterization
and learning-based control experiments. This paper presents
the design and characterization of the Auburn Haptic Pad-
dle, supporting low-cost fabrication, bandwidth competitive
with high-fidelity paddle fabrication, and commercial-off-
the-shelf hardware with memory-enabled microelectronics.

II. DESIGN OVERVIEW

A. Requirements

A haptic paddle supporting data-driven methods must have
the ability to measure, store, and access meaningful training
data and perform matrix calculations. These requirements
can be segmented into analog-to-digital conversion (ADC),
non-volatile (e.g., Flash) memory, RAM appropriate for the
size and complexity of matrix calculations, efficient data
access, a processor capable of efficiently performing matrix
calculations, and/or the ability to interface with external
processing units. Physical performance requirements include
the ability to transmit forces to the user’s hand with sufficient
mechanical bandwidth (i.e. ≥ 10 Hz [4]), and render forces
up to 5N without slipping [17]. Further, the total cost of the
system should not exceed $100 (compare with $135, the cost
of the leading alternative [4]).

In this section, we present developments to the hardware
and microelectronic packaging to achieve these requirements.
The Auburn Haptic Paddle (exploded views shown in Figs. 2
and 3) presented in this work is comprised of a DC motor
which transmits torque to a rotating paddle via a friction
interface. A magnet on the paddle handle generates a variable
magnetic field which can be measured by a hall effect
sensor. This system constitutes a single degree-of-freedom
(DoF) interface with nonlinearities in the frequency and time
domain as discussed further in Section III.

B. Transmission Design

The first major contribution is the development of a
robust, easily assembled transmission design that can be
fabricated using affordable 3D printers and provide high
torque bandwidth and high-quality haptic inputs [19]. The
uni-dimensional rotational motion of the Auburn Haptic
Paddle lends itself to actuation by a DC motor, which
can directly drive the paddle, or be amplified through a
backlash-free transmission. Such transmission mechanisms
are often favored as they allow for higher resolution motion
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Fig. 2. The Auburn Haptic Paddle frame was designed to print quickly
with key components including: (1) user interface mount, (2) left support,
(3) main mounting plate, (4) paddle, (5) right support, (6) paddle support,
and (7) base plate. Components (2), (3), and (5) are assembled using screws,
and components (3) and (4) are assembled using shoulder bolts with a shaft
collar. More details and instructions are available online [18]. Less modular
conventional haptic paddle designs are visualized elsewhere [4] and can be
compared with our modular approach.

control and torque amplification [13]. Among transmission
mechanisms, cable-driven mechanisms have been a popular
choice for haptic paddle implementations as they are robust
to imperfections in the paddle structure that can arise from
imprecise fabrication [4]. The cable is manually wound
to ensure proper tension, and requires only two points of
contact with the paddle on either side. However, cable-
based transmission can be difficult to assemble and maintain,
making them an inconvenient option for classroom use [4],
[9], [11], [13]. Friction-driven mechanisms, by contrast,
support simple and intuitive assembly. A disadvantage of
friction-driven mechanisms is that they are more sensitive to
imperfections in the paddle handle curved surfaces; however,
modern 3D-printers can produce such curved surfaces with
minimal artifacts and imperfections [19]. In Fig. 3, we
illustrate our friction-based actuation strategy, in which a
12-volt DC motor fixed with a segment of CoTS rubber
tubing on its shaft drives the paddle by rotating while pressed
against the base of the paddle, adjustable by set screw.

C. Electronics

The second major contribution of this work is the intro-
duction of a microelectronic architecture that supports conve-
nient assembly and supply resiliency through modularity. The
architecture features a CoTS logic board, power electronic
packaging, and sensor assembled on our printed circuit board
(PCB) [18] or assembled on a breadboard.

1) Logic Board: A critical feature of haptic platforms is
the ability to simulate physical systems (e.g. mass-spring-
dampers) realistically. To produce competitive, identifiable
and effective haptic inputs to the hand, most haptic paddle
designs make use of CoTS logic boards that can provide
1000 Hz bandwidth of closed loop feedback control (often
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Fig. 3. The Auburn Haptic Paddle design features a friction-based
transmission design (10), with a DC motor (9) and rubber tubing. The circuit
board (8) houses a compact motor driver (8C) and a logic board (8A) for
the hall effect sensor (8A), which measures the angular displacement of a
small magnet (4A) mounted in the paddle handle.

packaged in a development board, like the Arduino Uno [4]).
While the selection between different CoTS logic boards
can be made according to convenience or familiarity, we
desired a selection that maximizes control performance and
capabilities in nonlinear, robust, and optimal approaches, es-
pecially in context of data-driven control. To accomplish this,
we required a microcontroller with a high processing power
and clock speed, large flash memory capacity, and robust
analog and digital general purpose input-output (GPIO) and
pulse width modulation (PWM) capabilities. To achieve these
capabilities, we selected the RP2040 microcontroller [16].

Conventional microcontrollers and logic boards like Ar-
duino platforms have limited flash storage capacity which
is not conducive to data-driven methods and conventional
Raspberry Pi platforms have large size and limited GPIO
capabilities are inconsistent with the objective to minimize
size, weight, cost, and power (SWaP-C) in the Auburn Haptic
Paddle. The RP2040 microcontroller has gained much inter-
est for small-scale robotics applications, due to its minimal
SWaP-C footprint, large (2 MB) flash memory capacity
supporting a wide variety of data-driven methods, and robust
analog and digital GPIO capabilities. This is accomplished
using dual-core ARM Cortex-M0+ processor core and nom-
inal clock speeds of 133 mHz (higher than many conven-
tional microcontrollers) supporting high processing speeds,
accessible development capabilities via sufficient storage to
support C++ and python (via a flash-able python interpreter),
and UF2 USB-based bootloader to facilitate USB access
facilitating transmission and reception of data. We further
selected the Seeed Studio XIAO RP2040 logic board, which
has a minimized size and GPIO footprint compared with
other RP2040-based microcontrollers like the Raspberry Pi
Pico, and which requires only 3.3 - 5.0 V, 2.0 mA input [16].
The RP2040 is one of the few widely available boards that
satisfies the SWaP-C and memory requirements previously
outlined in Section II-A.

2) DC Motor and Motor Driver: Next, we selected a
DC motor and motor driver to drive the paddle. The DC
motor specified in a common version of the haptic pad-
dle [4] (Jameco PN 238473) was selected due to its minimal
SWaP-C, high electromagnetic power density (lending to
high torque capabilities), as well as its low rotor friction,
inertia, and cogging torque. Many motor drivers for 12V
motors are designing using bi-polar junction transistors
(BJTs), which support high current loads and have lower
cost and complexity in their construction. However, motor
drivers constructed using metal–oxide–semiconductor field-
effect transistor (MOSFETs) are increasingly considered for
their numerous advantages, including high input impedance
(i.e., low current consumption), higher switching speed and
efficiency, support for higher voltage ranges, and better
thermal efficiency. We selected the Toshiba TB6612FNG
MOSFET-based H-bridge DC motor driver with low (5V)
logic-level power requirements and sufficient output current
(3.2 A intermittent).

3) Sensor: The sensor selected in our design represents
a low SWaP-C electromagnetic transducer that is often used
for position measurement in small-scale robotics applications
and is functionally similar to the hall-effect sensor selected
by other prominent haptic paddle platforms [4]. We selected
the Allegro MicroSystems A1369EUA-24-T.

To provide students with an easy-to-use interface to the
paddle software, which will allow them to select different
control modes and tune control hyperparameters, our design
features a user interface with an 2x16 I2C-based LCD screen,
and an I2C potentiometer with detents enabling discrete
physical selection modes. The wiring configuration for the
user interface components is shown in Fig. 4 below. All
microelectronic components of the Auburn Haptic Paddle
can be readily purchased. The printed circuit mounting
board can be purchased by sending the opensource CAD
files to a commercial PCB manufacturer or replaced by a
solderable breadboard for custom assembly. The total cost
of all components in the Auburn Haptic Paddle including
filament required for 3D printing is $85.

Fig. 4. Electronics layout and packaging in the Auburn Haptic Paddle

1508



III. SYSTEM CHARACTERIZATION
The Auburn Haptic Paddle paddle can be readily modeled

via analysis of its time- and frequency-domain dynamic
characteristics. To characterize the frequency response of
our haptic paddle, we passed multiple sine-waves at discrete
frequencies from 1.5Hz to 20Hz as inputs to the motor driver
(i.e., PWM commands transmitted to the DC motor), and
recorded the position response of the paddle using the on-
board position sensor. We then constructed a Bode magnitude
plot, and estimated a model of the form: τ = Ieqθ̈ +beqθ̇ +
keqθ using least squares estimation. We artificially imposed
a spring constant in our control to ensure that the paddle
returned to the center of the workspace (i.e. minimizing the
physical drift of the paddle from its neutral position) [4].
Model parameters are reported in Table I, alongside the
physical parameters of a similar device, Stanford University’s
HapKit 2.0 [4].
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Fig. 5. A Bode plot of comparing common haptic paddle models with
experimental characterization (red), and least-squares based model (blue
dashed) is shown. Our design has higher bandwidth than similar alternatives
due to the reduced mass of the paddle.

TABLE I
MODEL PARAMETERS OF HAPTIC PADDLE AND HAPKIT 2.0 [4].

Design Ieq (Kgm2) beq ( Nms
rad ) keq ( Nm

rad )
Hapkit 2.0 1.82×10−6 26.6×10−6 15.9×10−4

HAUptic Paddle 3.56×10−7 27.8×10−6 15.9×10−4

The Stanford Univeristy Hapkit (versions 1, 2, and 3)
was a key inspiration for our design. Versions 1 and 2
utilize friction drives, whereas version 3 utilizes a capstan
drive which has been noted to be more difficult for users
to assemble and debug. Our paddle has a higher position
bandwidth due to reduced mass and resulting inertia of
the paddle, which was designed to be thinner and lighter,
taking advantage of developments in commercial 3D printers
including robust temperature and force sensors, high-fidelity
position control of servo motors, and reduced material costs
to print thinner and lighter components with higher resolu-
tion, allowing reduction of the paddle inertia [19].

It was desired to characterize the friction drive transmis-
sion and to determine what loads would cause the paddle to
slip. To accomplish this, a mechanical strain gauge was used
to measured force applied to the paddle handle as shown in
Fig. 6 while the paddle was set to initial displacements of -
20, 10 0, 10, and 20 degrees from its upright resting position.

It was found that approximately 4.5N of force applied normal
to the vertical plane would cause the paddle to slip at each
starting angle.

Fo
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e

Fig. 6. Auburn HP transmission slip force (N) at standard starting angles.

IV. DATA-DRIVEN CONTROL DEMONSTRATION

We demonstrate the capabilities of the Auburn Haptic
Paddle embedded system, which features robust memory
storage and high computational bandwidth, in the context of
data-driven approaches. Specifically, we selected a classical
machine learning and reinforcement learning-based control
demonstration which could be used to as an introductory
project in a controls course [20].

A. Sample Task and Algorithm

To accomplish this, we designed a trajectory tracking task
which can be readily ported as a workable example. The
trajectory tracking task featured: 1.) Sim-to-real transfer of a
feed-forward neural network (NN) - developed in MATLAB
and trained on simulated data - to the physical system by
exporting and storing pre-trained network weights on the
microcontroller flash storage 2.) Implementation of data-
driven model predictive control (DDMPC) which utilizes the
trained network weights to generate and send control signals
to the physical system online to track reference trajectories,
and 3.) A basic reinforcement learning-based tuning of the
NN in simulation using stochastic gradient descent (SGD)
to handle time-variability in the plant model (i.e., sudden
changes in the inertia, damping, and spring coefficients Ieq,
beq, and keq). A schematic-level diagram of the trajectory
tracking exercise is illustrated in Fig. 7, and summarized in
Algorithm 1.

The algorithm describes the DDMPC development in
MATLAB, which begins with initialization of actor network
featuring a hidden layer with ten neurons. The actor network
is pre-trained on a multi-sine position reference trajectory
injected with gaussian noise. Then the actor is trained
online using a stochastic gradient descent algorithm which
optimizes the weights and biases of the neural network
based on reward feedback. This system represents a low-
level control-oriented reinforcement learning approach as the
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Fig. 7. A learning-based data-driven predictive control scheme for online
trajectory tracking was developed to showcase the Auburn Haptic Paddle
capabilities.

reward signal (position tracking error) is being used to update
the actor as it acts on its environment (paddle simulation)
[21]. More sophisticated RL approaches can be developed
and implemented according to educational requirements.

Algorithm 1 Dynamic Data-driven Model Predictive Control
with Stochastic Gradient Descent

1: Define transfer function coefficients a, b, and c
2: Define time parameters dt, tend, and time vector t
3: Simulate noisy training data using multi-sine inputs
4: Split data into training and testing sets
5: Define and train an actor feedforward neural network
6: Define prediction horizon
7: Load desired trajectory
8: Define learning rate γ and number of iterations for SGD
9: for each iteration do

10: for each prediction horizon do
11: Extract desired trajectory for prediction horizon
12: Predict control inputs using neural network
13: Simulate system with predicted control input
14: Calculate MSE (Loss) of simulated trajectory
15: Compute ∇θ Loss wrt. network weights (θ )
16: Update network weights θ +=−γ∇θ Loss
17: end for
18: end for

B. Results

We characterize the performance of the Auburn Haptic
Paddle in the data-driven control task of predicting and
implementing torque outputs needed to track a desired tra-
jectory in the machine learning and reinforcement learning
paradigms. The NN, pre-trained on multi-sine data, was
evaluated in simulation and in the physical system (Fig. 8)
illustrates the performance of the pre-trained actor neural
network (i.e., classical machine learning example).

Next, the agent was trained over 900 iterations with time-
variable plant dynamics. on the first iteration, Ieq was tripled
(fig 9 far left), on the 300th iteration beq was tripled (middle
left), on the 600th iteration keq was increased by a factor
of ten (middle right). The evolution from red to black
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Fig. 8. Trajectory tracking performance on the physical haptic paddle
demonstrating efficient and effective training and illustrating robust capa-
bilities of the haptic paddle in data-driven control applications.

trajectories illustrate iterative convergence to the optimal
actor network weights in each case. Then, to exemplify the
capability of the optimized actor on the physical system,
the trained optimized agent is implemented on the physical
paddle where these altered dynamics were implemented
artificially via resistive control effort to counteract the agent’s
control effort. The results illustrate good performance of
trained actors, congruence between the simulation and phys-
ical environment, and robust usability for students to develop
innovative control designs to counteract disturbances.

TABLE II
PERFORMANCE OF SIMULATED (S) AND EXPERIMENTAL (E)

MACHINE LEARNING (ML) AND REINFORCEMENT
LEARNING (RL) ARCHITECTURES)

Condition Approach
S. ML E. ML S. RL E. RL

MAPE 5.44 % 6.05 % 6.55 % 9.36 %

The resulting trajectory generated by the agent in sim-
ulated and experimental machine learning (S. ML and E.
ML) schemes yielded 5.44 % and 6.05 % mean absolute
percentage error (MAPE), and the simulated and experimen-
tal reinforcement learning (S. RL and E.RL) schemes yielded
6.55% and 9.36% MAPE respectively.

V. DISCUSSION

Taken together, the data-driven frequency domain system
modeling, reliable simulation environmental, and experimen-
tal data-driven control (all code available on Github [18])
indicate that the Auburn Haptic Paddle is well modeled and
readily amenable to data-driven control approaches. Despite
the success of the Auburn Haptic Paddle in supporting
reliable and robust data-driven control in a low-cost, high-
bandwidth platform, there are several drawbacks in our
design and implementation. While fully 3D printable, the
design can take up to 5 hours to print with reliable speed and
accuracy settings on nominal commercial 3D printers [19].
Further, while all components are CoTS, their indefinite
commercial availability from manufacturers is not guaran-
teed, such that continual updates to the design to support
CoTS available components is necessary. Finally, while our
Github repository includes robust device documentation for
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Fig. 9. The actor neural network was tuned in an RL scheme to time-variability in the plant dynamics. This is exemplified when Ieq was tripled (fig 9,
beq was tripled, and keq was increased by a factor of ten at three different points during RL tuning of the pre-trained network. The trained actor was
implemented on the paddle with the varied dynamics. Results indicate that the trained actor network is able to stabilize the MPC control dynamics in
simulation and practice under diverse dynamics.

assembly, programming, and troubleshooting, effort remains
to establish reliable materials for integration of the Auburn
Haptic Paddle into system dynamics curricula, including
expanded workable exercises for faculty and students, sup-
port for high-fidelity characterization (i.e., attachment points
for digital multimeters and oscilloscopes), and experimental
characterization of learning outcomes in the classroom [9].

VI. CONCLUSIONS
In this work, we propose fundamental advancements to the

state of the art in design and fabrication of the haptic paddle,
an educational platform which has been, and continues to be
successfully employed to improve system dynamics curricula
by providing students with a physical system. We expand
on prior work by optimizing the design of the paddle for
efficient 3D printing and assembly and sourced CoTS mi-
croelectronics which can be readily assembled on the open-
source PCB design we provide or a soldered breadboard. We
exemplify innovative approaches in data-driven control in-
cluding reinforcement learning and model predictive control
using the advanced memory capabilities of the latest RP2040
microcontroller. We exemplify model-free trajectory-based
haptic guidance in various dynamic conditions, an archetypal
case of data-driven control, to empower students not only
with the ability to produce data-driven control systems but
to experience them in a hands-on paradigm. Together, these
capabilities provide students and educators with an integrated
platform for data-driven DSC education.
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