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Abstract— Future planetary explorations require versatile
robots to adaptively traverse extreme access environments with
optimal energy-consumption to address the current rovers’
limitations. This paper discusses a study of the dynamics
and velocity-based optimization for planar snake-robot muscle-
driven locomotion. The system has two adjacent links connected
by a pair of pneumatic artificial muscle (PAMs) series with
extension springs. An alternate actuation of PAMs causes
rotational motion about the connecting joint. The robot’s
kinematics in the joint and Cartesian space were derived with
respect to the muscle motion. The robot’s dynamic model were
obtained for an N-Link system using Lagrangian mechanics.
The performance of the dynamic model was then demonstrated
through a MATLAB simulation for a two-link robot. Addi-
tionally, a velocity-based optimization was done to analyze the
optimal linkage’s geometric parameters and dynamical model
properties that yields optimal forward velocity.

I. INTRODUCTION

Animals have inspired roboticists to develop robotic sys-

tems with greater versatility and adaptability in their locomo-

tion to address the challenges of conventional robots. Robots

inspired by biological snakes have the potential to meet these

growing needs. However, most snake-like robots developed

over the last fifty years are made of rigid links actuated by

either pneumatic actuators or electric motors. Having a short

range of operation, low payload capacity, low agility, and

high energy consumption. Unlike most conventional snake-

like robots that used rotary shafts actuated by electric motors

at the joint for forward propulsion, the MOIRA, developed

by by Koichi Osuka and Hiroshi Kitajima [1], used two air

cylinders acting as a joint driving actuator with a single fixed

shaft producing little flexibility at each joint. The OmniTread

design followed a similar concept using Pneumatic Bellows,

one of the many pneumatic actuators that has been studied

[2]. With emergence of soft robotics, it has become possible

to create snake robots with more structurally deformable

bodies that can perform complex motion with low cost,

weight, and reduced complexity of the mechanical structures.

Pneumatic Artificial Muscles (PAMs) or ”McKibben Mus-

cle” have biomimetic behavior, self limiting factors, high

power-to-weight ratio/force-to-volume ratio and energy ef-

ficiency highlight their advantageous in soft robotics [3].

However, disadvantages lie in their low bandwidth and
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non-optimal force models due to the hysteresis caused by

Coulomb friction between the shape changing bladder and

braids of the mesh cover. An inner tubing (bladder) with its

elastic properties expands radially. The braided expandable

sleeve serves to translate this radial expansion in to lateral

contraction. On average PAMs contract 25% of their original

length, although some have been shown to yield 40%. PAMs

have also proven effective in energy consumption efficiency

when compared to other soft actuators [3]–[5].

Recently PAMs have been used to replicate the muscu-

loskeletal system of snakes considering the axial skeleton

as a mechanical system comprised of a series of rigid

rods hinged together and the axial musculature as a series

of elastic elements (muscles) placed adjacent to the rod

operating lateral to the hinges. The tension from the muscles

acting antagonistically to each other generates potential

energy to propel the snake forward. Gray’s study of the

biology and mechanics of a snake, mentions how a snake

achieves serpentine movement or rather lateral undulation

by sinusoidal propagation [6]–[10]. Whereas other snake-

like robots with PAM actuators are fully soft with no rigid

elements [11], [12], studies show the advantages a hybrid

design has on improving the forward velocity.

In our previous work [13]–[15], PAM-driven snake robots

were introduced. It was demonstrated through experimen-

tal and analytical studies that the kinematic and dynamic

performances of the snake robot were promising, especially

in low energy consumption, however, the forward velocity

was only at 1.24 mm/s. With this new design, by adding

extension springs we address the restricted movement and

through dynamic optimization, we address improving the

forward velocity of the previous design.

This work also presents the kinematics in the joint and

Cartesian space derived with respect to the muscle motion.

An extensive study on the dynamics for a planar muscle-

driven spring series N-link snake robot was done using

Lagrangian mechanics. A joint-torque controller was utilized

to generate the relative muscle forces. Simulation studies

were carried out using MATLAB on a model of a two-

link system as the building block of the snake robot. Finally,

a velocity-based design optimization was performed on the

dynamic model for achieving optimal forward velocity.

II. KINEMATICS

The kinematics of robots is best described through the

mapping between three configuration spaces, actuator, joint,

and Cartesian/operational spaces. The interrelationship of the

three spaces was studied for a muscle-driven snake robot
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Fig. 1: Schematic of the artificial-muscle-driven snake robot

kinematics, (a) geometry of the mechanism and (b) kinemat-

ics of the muscle length and the joint angle.
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Fig. 2: Kinematics of a snake robot modeled as an articulated

body with N moving links and N joints.

to develop kinematic models which were used in dynamic

modeling and velocity-based design optimization.

A. Joint Position-Muscle Vector Relationship

The relationship between the joint position and the chang-

ing length of the muscle and spring was developed and

studied. As illustrated in Fig. 1a, each muscle is coupled

with a tension spring attached to two points on either side of

a set of rigid links. To describe the motion of each muscle-

spring coupling, vectors dm,i and ds,i on the right side are

defined with respect to the body frame {bi} at the floating

joint {ji−1} to form the muscle-spring vector, di.

di = dm,i + ds,i (1)

This relation between the muscle and spring vectors con-

siders the geometric parameters h1, h2, ω, φk, which are the

length of each link, distance from the joint to the attachment

point, half width of each link, and joint angle, as shown

in Fig. 1a,b, respectively. Note that the joint angle is the

orientation of the link {bi+1} with respect to the orientation

of the previous link {bi}.

B. Joint Space to Cartesian Space

The relationship between the joint space and the position

and orientation of the moving links can be described by the

forward kinematics of the planar snake robot as shown in

Fig. 2. The Joint Space can be transformed to the Cartesian

Space, where a link angle is introduced describing the robot’s

orientation with respect to a fixed reference frame {b0}. The

first joint is considered as a floating planar joint with two

translational degrees-of-freedom (x, y) and one rotational

DOF (link angle, θ1), the remaining joints are one rotational

DOF (joint angles). The link angle in relation to the joint

angle where N is the number of links can be written as

θi = θ1 +
i−1
∑

k=1

φk {i = 2,· · · , N} (2)

The connecting points p2,i and p1,i+1 can then be rewrit-

ten with respect to the frame at joint ji−1

b0p2,i =

[

x

y

]

+
i

∑

k=1

(b0bkR

[

w

h1 − h2

]

) (3)

b0p1,i+1 =

[

x

y

]

+

i
∑

k=1

(b0bkR

[

w

h2

]

) (4)

where 0
iR is a rotation matrix of simple rotation about the Z

axis of the joint. The muscle-spring vector is described by

di =
b0p1,i+1 −

b0p2,i (5)

The relation between the lengths of the muscle, lm,i and

spring, ls,i with the connecting points can be calculated as

lm,i + ls,i = ‖b0p2,i −
b0p1,i+1‖ (6)

The mass of the connecting point between the muscle and

the spring is negligible therefore this point can be considered

as massless, b0p3,i with respect to the fixed reference frame.

This point is not attached to a body like the previous points,

and depending on the circumstance its position is calculated

by three different methods. The first method states, when

describing the motion of the snake robot with relation to its

dynamics there are some instances when the length of the

muscle which has become passive is said to be constant. If

this is true the position of the point which joins the muscle

to the spring, b0p3,i can be calculated as

b0p3,i = lm,0 êi +
b0p2,i (7)

where lm,0 and êi are the constant muscle length and unit

vector of the muscle-spring vector, respectively.

The second method of b0p3,i uses a similar equation as (7)

where the length of the spring, ls,i, is used instead. Notice

how unlike in (7) where the initial muscle length is used, the

changing length of the spring is now used.

b0p3,i = −ls,i êi +
b0p1,i+1 (8)

The last method, refers to the muscle becoming active

on either side where there is both spring and opposing

muscle forces which are of the same magnitude but opposite

directions of each other acting on b0p3,i. In this analysis an

assumption is made which states that the spring and muscle

are always aligned with each other. Therefore, utilizing this

balance of forces and the relation between the connecting

points b0p2,i and b0p3,i for the length of the spring yields,

‖b0p1,i+1 −
b0p3,i‖

2 = (
‖fm,i‖

k
+ ls,0)

2 (9)
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where ls,i, ls,0, k, fm,i are the changing and initial spring

lengths, spring constant, and muscle force respectively.

Solving (9) for the position vector b0p3,i results in two

unique solutions. The muscle lengths can be written as,

lm,i = ‖b0p3,i −
b0p2,i‖ (10)

The previously mentioned rotation matrix in addition to

translation vector, birc is used to find the center of mass

(CoM) of each rigid link described as

b0pC,i =

[

x

y

]

+

i−1
∑

k=1

(2 b0
bk
R bkrc) +

b0
bi
R birc (11)

where
birc =

[

0
h1

2

]

i = 1, 2, · · · , N. (12)

Differentiating (11) with respect to time, the linear velocity

can then be described as

b0 ṗC,i =

[

ẋ

ẏ

]

+
i−1
∑

k=1

(2 b0
bk
Ṙ bkrc) +

b0
bi
Ṙ birc (13)

where the angular velocity and differentiation of the rotation

matrix for i = {2, · · · , N}are as follows

θ̇i = θ̇1 +

i−1
∑

k=1

φ̇k (14)

b0
bi
Ṙ =

[

0 −θ̇i

θ̇i 0

]

b0
bi
R (15)

For optimization, Section IV, the forward velocity of

the snake robot is considered with respect to the robot’s

orientation (heading). This can be considered as the average

of the link angles, where θ̄i ∈ R.

θ̄ =
1

N

N
∑

i=1

θi (16)

Due to every link being of the same mass, the velocity

at the CM of the snake robot in the global frame can be

transformed to the body frame using the following relation,

b0 ṗC,i =

[

ṗx
ṗy

]

=
1

N

N
∑

i=1

b0
bi
R

[

biṗc,x

biṗc,y

]

(17)

The main contributor to forward velocity is the tangential

component at the CoM in the body frame, v̄t ∈ R, along

the orientation of the robot, θ̄, represented by the following

equation where subscript t denotes tangential.

v̄t = ṗy cos(θ̄)− ṗx sin(θ̄) (18)

III. DYNAMICS

The dynamics of the snake robot, as shown in Fig. 2,

with N links connecting N − 1 revolute joints in addition to

the antagonistic artificial-muscle-driven spring mechanism at

each joint, was derived. The dynamic model neglects side-

slip constraints (non-holonomic constraints) and assumes that

anisotropic friction is applied at each link. Therefore, the

robotic system has N + 2 DOF. The forward dynamics of

the snake robot were derived using Lagrangian mechanics.
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Fig. 3: The free body diagram of a module of the snake robot

including the forces acting on the body of the snake robot.

A. Lagrangian of Artificial-Muscle-Driven Snake Robot

The generalized coordinates and generalized

velocities q = [x, y, θ1, φ1,· · · , φN−1]
T ; q̇ =

[ẋ, ẏ, θ̇1, φ̇1,· · · , φ̇N−1]
T will be found using forward

dynamics based on the Lagrangian method as follows

T =
1

2

N
∑

i=1

(vT
i Mvi + ICω

2
i ) (19)

where vi = b0 ṗC,i , ωi = θ̇i , M ∈ R
N×N is the mass

matrix, and IC ∈ R
N×N expressed in the body frame and

will be Izz is a matrix of the moment of inertia about the

z-axis of rotation for each link.

No potential energy is considered due to the force of

gravity, however, potential energy due to the tension springs

of the system is considered by the following,

U =
1

2
k

N−1
∑

i=1

((∆lRs,i)
2 + (∆lLs,i)

2) (20)

corresponding to the change in length of the spring on the

right (R) and left (L) sides of the links. The Euler-Lagrange

equation can then be described as

d

dt

∂T

∂q̇j

−
∂T

∂qj

+
∂U

∂qj

= Qj (21)

where j = {1, 2, · · · , N + 2} and with Qj being the

generalized and non-conservative forces.

B. Generalized and Non-Conservative Forces

The free body diagram of two-adjacent links is shown in

Fig. 3. The forces and moments acting on each body can

be categorized into four groups: 1) joint reaction forces, 2)

friction forces, 3) muscle actuation forces (on the left and

right sides of each body), and 4) non-conservative spring

forces. The following equations are written for link {bi},

1128



note forces for other links can be found in a similar manner.

The friction forces, normal and tangential, acting at the CM

of the link with respect to the corresponding body frame can

be written as follows

f
f,n
i = −µnmig

bivi,x

|bivi,x|
(22)

f
f,t
i = −µtmig

bivi,y

|bivi,y|
(23)

where the friction with the ground was modeled as Coulomb

friction with anisotropic properties, µt ≪ µn, where sub-

scripts t and n denote tangential and normal directions.

With mi, g, vi,x, vi,y representing the mass of a single link,

gravitational acceleration, and the linear velocities at the CM

acting in each component direction. The velocity vectors at

the CM with respect to the body frame can be found by

[

bivi,x
bivi,y

]

= b0
bi
RT vi (24)

The friction forces are then translated with respect to the

reference frame for consistency.

The torque about the connecting joint was generated from

the use of a proportional-derivative (PD) controller which

assisted with the derivation of the muscle actuation forces.

The proportional-gain kp and the derivative-gain kd terms

were taken as 29 and 1.2, respectively. The required torque

was derived as follows

τi = kp(φi,d − φi) + kd(φ̇i,d − φ̇i) (25)

where φi,d and φ̇i,d are the desired joint angle and desired

angular velocity given by,

φi,d = α sin(ωt) (26)

φ̇i,d = αω cos(ωt) (27)

where α = π
12

rad, ω = π rad/s, and t as time in seconds.

The muscle actuation forces can then be described as

fmi =
|τi|

‖b0rm,i × êi‖
(28)

There are two methods for finding the spring forces which

are dependent on which method is used for finding the

connection of the muscle and spring, b0p3,i. The first method

is from the reaction forces on the two bodies with relation

to torque similar to the generation of the muscle forces. the

second method is by the restoring force from the extension

spring,

fsi =
|τi|

‖b0rs,i ×−êi‖
= k(ls,i − ls,0) êi (29)

where b0rm,i,
b0 rs,i are the moment arms from the muscle

and spring respectively, to the connecting joint.

Therefore, the generalized and non-conservative forces

term is as follows

Qj =

N
∑

i=1

(Jf
i (qj)

T · ffi ) +

N−1
∑

i=1

(Jm
i (qj)

T · fmi )

+
N−1
∑

i=1

(Js
i (qj)

T · fsi )

(30)

where J
f
i (qj) =

∂
b0
i−1

pC

∂qj
, Jm

i (qj) =
∂ b0p2,i

∂qj
, and Js

i (qj) =
∂ b0p1,i+1

∂qj
are the Jacobian matrices at the center of mass of

each link and the two attachment points corresponding to the

locations of where each of the forces are acting upon.

C. Equations of Motion

Substituting (19), (20), (30) into (21) yields the following

equations of motion

M(q)q̈+ c(q, q̇) = J
f
i (qj)

T · ffi + Jm
i (qj)

T · fmi

+ Js
i (qj)

T · fsi
(31)

where M(q) is a symmetric and positive-definite mass

matrix and c(q, q̇) is the nonlinear acceleration expressions

including centrifugal and Coriolis terms.

D. Dynamic Related Cases of Snake Movement

As a result of having three methods of finding the location

of the mid-point between the muscle and the spring, b0p3,i,

relating to joint torque, muscle length, and joint angle, six

cases emerge to describe the dynamics of the system.

When the muscle is passive during free extension there

is no work being done by the muscle which results in

the muscle force being zero. However, force is generated

from the coupled extension spring. For this reason using

the balance of forces approach from (9) is not feasible. We

instead use the reaction forces of the muscle and springs

acting in series on the bodies to determine the spring force

as a response to torque, see (29). Then by using the second

relation from (29), we can solve for the spring length. With

this, (8) can be used to find the location of b0p3,i. Once the

muscle has returned to its initial length while still passive,

method 1 (7) can be used to find b0p3,i. It is only when the

muscle is active that the third method (9) can be used.

IV. VELOCITY-BASED DESIGN OPTIMIZATION

Following the formulation of the dynamic model, a

velocity-based design optimization was done to improve the

snake robot’s velocity. The tangential velocity along the

robot’s orientation is the main contributor to the forward

velocity. Previous studies show the geometrical design aspect

greatly impacted the robot’s forward velocity [13]–[15],

therefore, the following parameters h1, h2, w, lm, ls, k,m

were selected for the design optimization. Consider the

following optimization problem of maximizing v̄t(x) in (18),
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subjected to,

h2 −
h1

2
≤ 0 (32)

2h2 − lm,0 − ls,0 = 0

lb,j ≤ xj ≤ ub,j xj ∈ x

−|v̄t(x)| < 0
bivin(x) = 0

where x ∈ R
7 is the optimization variable vector defined as,

x = [h1, h2, w, lm, ls, k,m]T , and the objective function is

defined by the velocity component along the orientation of

the snake robot, v̄t(x). The objective function is subjected to

a series of constraints, (32), including the nonlinear inequal-

ity constraint on the placement of the two attachments that

connect the spring and muscle to each body. Additionally,

there is a linear equality constraint to ensure that at rest the

lengths of the muscle and spring should be the distance from

one attachment to the other for the links to be aligned with

each other. There is a nonlinear inequality constraint for the

forward velocity to remain positive and there is a nonlinear

equality constraint on the velocity in the normal direction

with respect to each link to avoid any side-slip.

MATLAB’s nonlinear solvers ’fmincon’ and

’patternsearch’ were used to maximize v̄t(x). The

components of vector x are bounded by lower and upper

bound values, lb = [75.0, 15.0, 15.0, 30.0, 7.9, 0.04, 0.06]T

and ub = [150.0, 75.0, 30.0, 80.0, 25.0, 1.0, 0.12]T ,

respectively. Note the units are (mm) for the first five

terms, (N/mm) for 6th term, and (kg) for the last term.

V. EXPERIMENTAL SETUP

The experiment setup shown in Fig. 4a consisted of a

camera, the electronic circuitry including 2-way and 3-way

valves that would activate the muscles, a 6V power supply,

and the wheeled two link module robot shown in Fig. 4b.

There is no controlling of the pressure by the 2-way or 3-

way valves. The analytic and annotation tool Kinovea (0.9.5)

was used to track the link and joint angles, as well as the

positions of the two attachment points and muscle-spring

connecting point on either side of the body, Fig. 4c.

VI. RESULTS AND DISCUSSION

Three sets of data were compared for the joint position,

Fig. 5b, the desired φd set to be used in the torque controller,

the theoretical φ from the dynamic model, and the raw

experimental φexp. Tuning the torque PD controller, the

desired angle was made to follow the trajectory of the

experiment. The reference is used to match the actual joint

angle from the dynamic model with the experimental data.

Only the right muscle and spring lengths’ results are

shown in Fig. 5c-d. Between the experiment and simulation

there was noticeably more contraction in the actual muscles

compared to the model. Although the spring lengths were

similar in average magnitude, the pattern differed. The mus-

cles act antagonistically to each other where the left muscle

is activated first and is also the last to deactivate. At both start

TABLE I: Velocity-Based Optimization

Parameters
Optimal Values

Current Values
fmincon patternsearch

h1(mm) 111.4 75.0 111.4

h2 (mm) 40.7 37.5 40.7

w (mm) 25.97 25.97 25.97

lm (mm) 66.4 63.2 66.4

ls (mm) 15.0 11.8 15.0

k (N/mm) 0.464 0.464 0.464

m (kg) 0.082 0.082 0.082

and end time, the left muscle has no force resistance from

the right one because the right side is deactivated, therefore

there is a spike at these times in the results.

It is important to note that because a PD controller was

implemented to generate the needed torque in the dynamic

model and there was no controller used for the experiment

the lengths for the muscle and spring differ. In the future

the intake pressure of the actuators for the experiment will

be controlled to gradually insert and exhaust air to and from

the muscles resulting in clearer data.

A dynamics-based design optimization was performed to

maximize the robot’s forward velocity, Fig. 5e. Table I

shows that after optimizing the links’ geometric parameters

the maximum velocity for the 2-link robot was obtained.

Using fmincon, the parameters did not change from the

initial design resulting in an optimal velocity of 520.5 mm/s.

A second solver ’patternsearch’ was used to verify

that the global minimum was obtained rather than a local

one. The optimized parameters changed to some degree,

yielding 520.6 mm/s optimal velocity, which is a significant

improvement from the current model with 323.8 mm/s max

velocity. Although the velocity did not change between the

two solvers, unlike with the first solver, the second solver

resulted in a different set of parameters from the current. It

is important to note that ’patternsearch’ went through

five times the number of iterations from ’fmincon’.

Future work will include an N-link dynamic modeling in

the velocity-based optimization. An energy-velocity based

optimization will be performed to obtain the greatest velocity

with the least amount of energy consumption. The underlying

characteristics of the PAMs will also be explored.
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