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Abstract— In the realm of aerial vehicle navigation, the
reliance on satellite-based and external localization methods
presents vulnerabilities to various interferences. This drives
the necessity for a self-sufficient absolute navigational system.
Image-based localization methods, particularly Absolute Visual
Localization (AVL), directly determine the pose in the global
frame from a given image. A workflow using 360-degree
panoramic images for image-based localization, driven by a
Deep Convolutional Neural Network (DCNN), is proposed. Uti-
lizing panoramic imagery offers the advantage of encompassing
visual information from all angles. Synthetic data generated
from multiple sources such as photogrammetry, Open Street
Map (OSM), and official 3D building data are used to train
the localization network. Domain adaptation using cycleGAN
is also used to bridge the Sim2Real gap and enhance model
performance. Utilizing OSM features are shown to improve
localization performance (median Euclidean error) by at least
13%, and a further 20% with cycleGAN dataset augmentation.
Closed loop control is also achieved using a trained model,
enabling a quadrotor prototype to hover within a 1 m circle.

I. INTRODUCTION

With the increasing popularity of aerial vehicles, whether
manned or unmanned, significant research has been de-
voted to developing a more robust navigational suite. These
vehicles primarily rely on a combination of an Inertial
Measurement Unit (IMU) and the Global Navigation Satel-
lite System (GNSS) to establish their location in three-
dimensional space. However, there is a growing need for
a self-sufficient absolute navigational system, given the vul-
nerability of satellite-based and external localization methods
to a range of interferences, including natural obstacles such
as weather and multi-pathing, as well as artificial disruptions
such as jamming and spoofing.

Image-based localization methods can be divided into Rel-
ative Visual Localization (RVL), where the pose difference
between two successive frames is estimated, and Absolute
Visual Localization (AVL), where the pose in the global
frame is directly determined. In this work, we specifically
focus on the AVL aspect, aiming to directly localize the
absolute pose from a given image.

One of the earliest works involving AVL include [1], [2]
and [3], which directly regress 6DOF pose from a single
image, attempting to solve the ”kidnapped robot” problem.
Using 360 panoramic images for this is rather attractive
as visual data from all around can be used to infer the
location. In [4], the authors use 360-images to implement an
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indoor localization service. Other works using 360-images
for navigation include [5], [6].

As using deep learning-based methods usually require a
rather dense distribution of training data, synthetic data can
provide a controlled and versatile alternative to purely real-
world datasets. In the realm of AVL, one such work [7]
utilizes synthetic data generated from a 3D model to train a
localization network in an indoor environment.

However, depending on the type and quality of the syn-
thetic data, there is a simulation-to-reality (Sim2Real) gap
which needs to be bridged for the trained network to be de-
ployed in the actual environment. This is where generative AI
for domain adaptation/style transfer such as Pix2Pix [8] for
paired images and CycleGAN [9] for unpaired images can be
leveraged. The work in [10] successfully utilizes a Generative
Adversarial Network (GAN) for domain adaptation between
unpaired simulated and real images. [11] instead utilizes
paired 360◦ images to transform a multi-channel image from
a 3D scene into a photorealistic street-view image.
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Fig. 1. Summary of the workflow presented in this work. Multiple data
sources can be used to build 3D model in unity to generate the required
synthetic panoramic images. Multiple augmentations are applied to enable
the network to generalize better to real data. (SLA Virtual SG = Singapore
Land Authority (SLA) Virtual Singapore [12]).
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This can be paired with generating visual
features/buildings based on OpenStreetMap (OSM) data.
OSM is a publicly available map of the world, containing
crowd-sourced data of streets, buildings, and other features.
The authors in [13] were one of the first to integrate OSM
data directly for autonomous robot navigation. Works in
[14] and [15] leverage OSM data to localize a vehicle
equipped with a 3D-lidar scanner to navigate without prior
mapping.

Our previous work [16] introduced the possibility of using
panoramic images for localization, and focused on using real
panoramic images for training. In this work, we focus on
expanding the possibility of using only synthetic panoramic
images for training, utilizing multiple data sources including
non-panoramic images. A visual summary of the workflow is
presented in Fig. 1. Also, our previous work only contained
a single outdoor environment, thus we expand our workflow
to additional outdoor environments. We also demonstrate the
capability for the trained network to be deployed on an actual
drone.

A. Contributions

• Demonstrate building a panoramic visual localization
pipeline using data from multiple sources

• Training a localization model using only synthetic
panoramic images

• Implemented domain adaptation for data augmentation
• Evaluation of trained model at multiple locations
• Demonstrate closed-loop control via deployment on an

Unmanned Aerial Vehicle (UAV)

II. DATA GENERATION

In this work, we rely on several data sources to build the
synthetic data generation pipeline. Using these data sources,
we can build a visually accurate 3D model that can be used
to generate the images. The advantage of this method is that
the data can come in many forms and is not restricted to be
in the form of a panoramic image.

A. Data Sources

1) Self-Collected Photogrammetry/Image Data: Using a
camera-equipped drone, both normal and panoramic images
can be acquired, utilizing the normal images for photogram-
metric reconstruction to build a 3D model where more
synthetic panoramic image data can be generated. Fig. 2
shows the drone setup used for data collection. To establish
a correspondence between the taken image and the location
ground truth, an RTK GPS logger was mounted on the drone.

To build the photogrammetry 3D models, RealityCapture
[17] software was used. Presented in Fig. 3 are overviews of
the 3D models built for the different environments.

2) Authoritative Sources: With the increasing push toward
smart cities, authorities such as the Singapore Land Authority
(SLA) possess ’digital twin’ data of the city such as high
fidelity 3D models and textures of the building facades.

Fig. 2. Top Left: RTK GPS logger used for ground truth collection. Top
Right: Drone with mounted Insta360 Sphere camera and RTK GPS logger.
Bottom: Example of collected panoramic 360 image in 2:1 equirectangular
format (from Kallang Riverside).

Fig. 3. Photogrammetric model for the different environments. Left: Aeri-
alArena@SUTD, Middle: Kallang Riverside, Right: Tuas South.

3) Generation using OpenStreetMap Data: We opted to
utilize CityGen3D [18], a plugin within Unity that converts
OpenStreetMap (OSM) data into a 3D landscape. Normally
used for procedural game world generation based on real
life locations, we propose that it can also be utilized to fill
in incomplete visual data. Features such as roads can be
procedurally generated and combined with the photogram-
metric or building facade data, either self-collected or from
authoritative sources. A visual example of this is presented
in Fig. 4.

Fig. 4. Left: Generated roads by CityGen3D using OSM data. Right:
CityGen3D + SLA Building Model and Facade Data. Buildings in green
are generated by CityGen3D using OSM Building information.

B. Rendering of Visual Images

For our synthetic data generation pipeline, we opted to use
Unity, taking advantage of its real-time rendering. The Unity
Perception [19] module was used for domain randomization
of the environment, such as the skybox, sun angle, lighting,
etc.. This domain randomization is built into the synthetic
dataset. Data points also randomized following a uniform
distribution within a specified bounding box. Data points that
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collide with buildings are removed from the datasets. Some
examples of the generated images are shown in Fig. 5.

Fig. 5. Example synthetic images generated in Unity (Kallang Riverside),
presented in 2:1 equirectangular format. Environmental conditions such as
lighting, skies and sun angle are randomized.

C. Environments

In this work, several environments in different areas of
Singapore were selected for testing. Each of them possesses
a unique set of features that serves as a testbed for our AVL
model.

1) Aerial Arena @ SUTD: The Aerial Arena is an en-
closed and netted semi-outdoor testing area located within
the university compound. Approximately 1000 m2.

2) Kallang Riverside Park: A small open field located
near the Singapore National Stadium, bounded by two con-
dominium complexes. Approximately 47,000 m2.

3) Tuas South Ave 16: An industrial estate with low-lying
buildings and a large field with relatively low amount of
features. Approximately 51,000 m2.

4) 3D Virtual Singapore Dataset - Ang Mo Kio (AMK):
Courtesy of the Singapore Land Authority (SLA) [12], a high
fidelity 3D model of Singapore was obtained, encompassing
the Ang Mo Kio region, covering approximately a 1 km x
1 km area. Using this 3D model, synthetic panoramic image
data can be generated. Due to confidentiality reasons, only
the building facade texture data was provided, with no terrain
and contour data. In this work we focus on a smaller area
of about 150,000 m2, along Ang Mo Kio St 31.

D. Dataset Format

The ground truth location for each environment is pro-
jected to a flat XYZ format in metres from the lat-lon-
altitude (LLA) format of each image. Each environment has
its own unique reference point to be used as the origin of
the projection. A summary of the datasets used is presented
in Table I.

III. LOCALIZATION METHOD

A. Network Architecture

The network consists of a feature extractor network (Xcep-
tion) followed by a fully connected regression network.
A dropout layer of 0.5 is added before each dense layer
(dimension of 4096). The final output layer is of dimension
3. ReLU activation is used for the dense layers and linear
activation for the output. This is visualized in Fig. 6.

EncoderImage

Feature
Vector

Regressor

2048

4096 4096

3

(x, y, z)

299 x 299 x 3

Fig. 6. Localization network architecture - Input image is fed to an encoder
to be represented as a feature vector, where the fully connected regressors
output the position estimate.

B. Training

The framework for building and training the model is
Keras (Tensorflow). A batch size of 48 and learning rate
of 0.000075 is used.

1) Loss Function: Mean absolute error (MAE) is used as
the loss function for training.

2) Train-time Data Augmentation: A number of image
augmentation techniques during train-time were employed
to make the network generalize better. We use RandomRain,
HSV, Horizontal Shift (with Wraparound), Coarse Dropout,
and Elastic Transform as described in [16]. The Albumenta-
tions library [20] was used for this portion.

3) Auto-Augment: AutoAugment [21] is a technique em-
ployed during train time to automatically learn certain image
augmentation. We utilize AutoAugment transfer which uses
learned policies from the Reduced-CIFAR10 dataset instead
of learning from scratch. The operations included in the Au-
toAugment policy are: [Color, Equalize, ShearY, Brightness,
Sharpness, AutoContrast, Rotate, Posterize, Contrast, Invert,
Solarize]. These are mostly color-based transformations, and
for our purpose, translation augmentation is removed.

C. Data Augmentation using CycleGAN

Original CycleGAN-Augmented

Fig. 7. Comparison between original synthetic image and the same image
put through cycleGAN. Images are re-scaled from 2:1 equirectangular
format to 1:1 aspect ratio to fit the network requirements.

Compared to the other 3 environments where photogram-
metric reconstruction was used, the AMK dataset provided
by SLA is visually quite different compared to the actual
location. In order to bridge the this gap, we introduce a
style transfer data augmentation technique leveraging Gener-
ative Adversarial Networks (GANs). cycleGAN [9] utilizes
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TABLE I. Summary of all datasets. Test images are all real images.

Environment Area (m2) #Images
(train + val)

split #Images
(Test)

Training Data Sources Origin Point (LLA)

AerialArena@SUTD 1,000 7,500 85/15 51 Photogrammetry [1.341007◦, 103.962742◦, 68.394]
Kallang Riverside 47,000 7,500 85/15 201 Photogrammetry [1.298913◦, 103.783326◦, 19.840]

Tuas South 51,000 7,500 85/15 154 Photogrammetry [1.266157◦, 103.625434◦, 27.594]
Ang Mo Kio (St 31) 150,000 13,422 85/15 177 Authoritative, OSM Generated [1.360934◦, 103.843622◦, 8.297]
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Fig. 8. XY Plot (Top View) for each environment on their respective test sets. The lines connect the predicted point to the respective ground truth.
Displayed on the right of each plot are the images with the top 3 highest error.

unpaired images to synthesize a style transfer relationship
between the original and target images and vice versa. We
utilize this to enrich dataset diversity by capturing visual fea-
tures and color palettes not present in the original synthetic
dataset. Furthermore, the training images do not need to have
a ground truth label for them to be used. Training data for
this was collected via a combination of aerial and ground
videos. We used Keras to train and deploy the cycleGAN
network. Training was run for 300 epochs and a learning
rate of 0.000075 was used. The output resolution was set to
384×384 pixels. Fig. 7 illustrates an example of an image
before and after being put through the trained cycleGAN
network.

IV. RESULTS AND DISCUSSION

A. Performance on Independent Test Set

This section presents the results of the different con-
figurations. An independent test set is reserved for each
environment and contains only real images. Images in
this test set were not used during the training pro-
cess for both the localization and cycleGAN networks.
Median Euclidean Distance error is used as the per-
formance metric for comparison. It is calculated as:
Median

(√
(xi − x̂i)2 + (yi − ŷi)2 + (zi − ẑi)2

)
. The lo-

calization performance of each environment is presented in
Table II.

From the images with the highest error presented in
Fig. 8, we can see that most of the images are near the
ground level. We suspect that this is due to limited visibility
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TABLE II. Summary of the median error reported for each configuration.

Environment Med. Euclid. Err (m) X-Med. Err. (m) Y-Med. Err. Z (Altitude)-Med. Err.

AerialArena 1.496 1.234 0.503 0.537
Kallang Riverside 8.874 3.772 4.692 3.920
Tuas 12.142 6.619 6.504 2.445
Ang Mo Kio 18.616 13.717 4.763 3.055

of the surrounding environment, and also features that are
present at that proximity to the ground might not match
the features that the trained network is looking for. We
also present a histogram of the euclidean errors with the
ground truth altitude in Fig. 9. As seen from the histograms,
the localization performance for most of the environments
drastically decreases at lower altitudes near the ground. For
most of the outdoor environments, the localization starts to
be more stable at around 10-15 m above ground, where
more of the surrounding features start to be visible and
consist most of the image, enabling the network to localize
better. We suspect this discrepancy manifests less in the
smaller AerialArena@SUTD environment as the surrounding
features are much closer to the inference points.

For the AMK test set, the aerial images consist of only a
smaller area due to flight permit restrictions. We supplement
this with additional ground data to span the area trained for
the localization. The aerial data is concentrated between 300-
400 m (x-coordinates) and 520-620 m (y-coordinates), which
is depicted by the zoomed in view shown in Fig. 8. As seen
in the Figure, the localization failure happens when too many
of the important features are obstructed, in this case by trees
and other roadside objects.
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Fig. 9. Histogram breakdown of the euclidean errors with the altitude
(ground truth).

B. Experiments on AMK environment

Several variants of the Ang Mo Kio dataset were created,
with different combinations of the OSM generated entities to
study their effect on localization performance. Each dataset
variant was trained with the same amount of iterations. In
the basic variant, only the data provided by SLA is included,
and the ground color is added into the domain randomization
process. The second variant includes only OSM generated
roads. The third includes roads and generated buildings with
the default textures included by CityGen3D. The fourth
variant randomizes the color of the building facade, and the
last configuration contains the synthetic images put through
the cycleGAN domain adaptation step, and combined with
the un-augmented image. The OSM generated buildings are
used to fill up the spaces where there are no SLA data
provided. Sample images from each variant is presented in
Fig. 10, where the additional generated buildings missing
from the SLA dataset can be seen.

As seen from the results in Table III, adding additional
generated features reduced the localization error, compared
to the pure AMK dataset with only the building facade. Using
the median Euclidean error as a metric, adding the generated
OSM roads helped to improve the error by around 13%, and
including the OSM generated buildings with random facade
color improved it by a further 5%. Interestingly, using the
default texturing scheme built into the CityGen3D program
made the performance worse. This might be due to the
network learning the wrong textural features on the building
facade instead of the building outlines. When put through
the cycleGAN domain adaptation process, the performance
greatly improved by a further 20% compared to the dataset
with randomized building colors. The biggest improvement
difference occurs between the pure building-only dataset and
the one with the generated roads. We can infer that in a dense
urban area like this, the network not only looks for visual
features on the building facades, but also the road layouts to
determine its position.

C. Closed-Loop Control

In this section, we test the capability of the trained local-
ization network to provide closed-loop positional reference to
an actual UAV. The UAV was outfitted with a Ricoh Theta X
360 camera, which features onboard stabilization and outputs
panoramic images in equirectangular format, and is fed to an
on-board computer for processing. The predicted location is
then fed to a quadrotor running the PX4 Firmware [22]. The
onboard computer communicates the predicted position to
the flight controller via MavLink. The setup is summarized
in Fig. 11. The block diagram is presented in Fig. 12.
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+ roads

AMK dataset
+ roads
+ buildings (textured)
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+ buildings (random color)
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+ cycleGAN-Augment

Fig. 10. Presented here are image examples of the different variants of the AMK dataset. Images are re-scaled to 1:1 ratio for standardization. Generated
road textures can be observed in the 2nd column. Missing buildings not present in the raw SLA dataset are generated via CityGen3D and OSM data (3rd
column onwards).
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Fig. 11. Setup diagram for closed-loop control using the onboard 360
camera.
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Fig. 12. Block diagram for closed-loop control.

We demonstrate a simple hover utilizing the onboard 360
camera for localization. The onboard network inference time
is ∼700ms. Figure 13 shows the setpoint together with
the filtered position data estimated by the PX4 EKF2 filter
(extended Kalman filter). Fig. 14 shows the raw unfiltered
position as output from the localization network. Onboard
GPS is disabled. As seen from Fig. 13, the UAV manages
to successfully hover about a single point using the visual
localization network as the only absolute positional reference
system. Together with the EKF, the UAV manages to stay
within a 1 meter circle. A step change in the Y-desired
position is input at around the 800 s mark. As seen in
the graph, the UAV successfully adjusts its position to the
new setpoint. This test was done in the AerialArena@SUTD
environment.

V. CONCLUSION

In this work, we successfully demonstrate the feasibility of
utilizing synthetic data generated from multiple data sources
in creating a neural network AVL model. The workflow is
successfully tested and validated on multiple environments.
Different levels of generated features using OSM data and
the effect on localization performance was also studied.

TABLE III. Results for the different variants of the AMK dataset.

Median Euclid. Err, (m)

Pure AMK dataset 28.985
+ roads 25.255
+ roads + buildings (textured) 42.306
+ roads + buildings (random color) 23.850
+ roads + buildings (textured) + images w/ cycleGAN-Augment 18.616
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Fig. 14. Raw XYZ position from the localization network, inferred on the
image stream from the onboard 360 camera

Model performance was shown to be enhanced by at least
13% (using Median Euclidean Error) via domain adaptation
(cycleGAN). Closed-loop control on a quadrotor was also
demonstrated using a trained AVL model. Further research
directions can include testing on night lighting conditions,
experiment with different panoramic representations, and
explore other network architectures.
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