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Abstract— This paper explores the model identification of
a novel tendon-driven soft continuum actuator, intended as
a functional joint for the social robot HARU. The actuator’s
design is customized for integration into HARU’s eye joints,
emphasizing safety in interactions with children, in accordance
with UNICEF’s "Policy Guidance on AI for Children". The
performed experimental study assesses and compares the ac-
curacy of various auto-regressive with exogenous inputs (ARX)
modeling techniques—linear, nonlinear, and recursive—through
motion data from dynamic experimental tests of the actuator
under different orientations. The results provide insights into
the efficiency of these modeling strategies in dynamic conditions
with continuum actuators, thereby offering a basis for model
selection in the integration of soft actuators into robotic systems
for practical applications.

I. INTRODUCTION

The field of social robots has witnessed a surge in growth
and development over the last decade [1]. Given the potential
upsides and ethical issues, the United Nations has issued a
Policy Guideline document [2] outlining, the conditions nec-
essary when developing and deploying robots and AI related
products designed for children. In accordance with these
policy guidelines, the robot platform HARU was developed
[3], with the research goal of serving as a companion and
educational robot for children.

As first presented in [3] and shown in Fig. 1 (left),
HARU’s design was characterized by a pair of eyes con-
nected to the body through a neck structure. Over time, the
robot has undergone modifications to improve the structure
in terms of compliance, expressiveness and ability to interact
safely with users and the surroundings [4]. One of the
currently investigated modifications is the incorporation of
soft actuators in the eyes and neck components to enable
additional degrees-of-freedom (DOFs), as shown in Fig. 1
(right) and conceptually depicted in Fig. 2.

Structurally compliant actuators, a term used interchange-
ably with soft actuators, are devices that generate motion
through structural deformation in the body of the actuator
[5], [6]. While the structure and material provide compliance,
motion in these actuators is often implemented using various
methods, such as heat, air pressure (pneumatic), liquid pres-
sure (hydraulic), mechanical (force), electrical (hydrogels),
electrostatic, liquid crystals etc [7], [8]. These actuation
methods vastly differ from each other with respect to actua-
tion speed, power requirement, materials, manufacturability
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Fig. 1. (left) HARU as first presented in [3] and (right) the revised prototype
structure incorporating soft joints in the head and eye structures, for enabling
life-like motions and enhancing safety during interactions. This work is
focused on the development and modeling of a soft continuum actuator
for enabling the yaw motion of the eye structures (highlighted in blue and
conceptually presented in Fig. 2).

etc. Most actuation methods of soft robots lack the forces
required to actuate and move masses of significant weights
and inertia (>200g). In addition to these, most methods
also involve mass transport, which can typically be slower.
Other methods require the use of external compressors or
high voltage supplies, which tend to be bulky and energy
intensive.

For HARU, wire-driven mechanical methods of actuation
were selected, as they can provide fast and high actuation
forces with relatively small components. In related literature,
wire-driven actuators are known as Tendon-Driven Contin-
uum Actuators (TDCA) and typically involve routing tendons
along the robot’s backbone, fixed at predefined locations,
leading to the bending of the corresponding segment towards
the tendon’s direction when pulled.

The modeling of TDCAs usually involves distributed and
lumped backbone parameterizations to describe the back-
bone’s curvature and orientation [9]. However, the majority
of related research has focused on static or quasi-static mod-
els, providing insights into steady-state conditions without
significant external loads [10], [11]. These models typically
assume that the actuator’s shape can be described by a set
of equilibrium equations neglecting dynamic effects such
as inertia and damping, as for example piecewise constant
curvature and state-space model representations [12], [13].

Recent efforts have also explored the use of autoregressive
models with exogenous inputs (ARX) to capture the behavior
of TDCAs [14], [15]. ARX models offered a promising
modeling approach by incorporating past output values and
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Fig. 2. Conceptual sketches of the re-imagined HARU platform. From left to right: HARU with highlighted main components, and its three dominant
neck and eye degrees of freedom (neck pitch, neck roll, eye yaw).
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Fig. 3. Graphical representations of the soft continuum core with annotated design specifics: (middle) isometric view, (left-right) sagittal and transverse
section views displaying the interior structure and tendon routing.

external inputs into the prediction of future states. However,
these studies primarily validated the models under static
conditions or with minimal external loading, limiting their
applicability for dynamic scenarios influenced by loads and
rapid movements in various inclinations [16], [17].

This limitation points to a gap in the literature, as dynamic
conditions—where loads can change rapidly—are crucial
for real-world applications of TDCAs. To this goal, the
present paper performs a comparative study between linear,
nonlinear, and recursive implementations of ARX models to
provide valuable insights concerning a novel TDCA designed
to operate in dynamic scenarios while under load. Through
an experimental validation of the developed TDCA proto-
type, this work aims at contributing to a better understanding
of the trade-offs between model complexity and accuracy.

The remainder of this paper is organized as follows: Sec-
tion II provides an overview of the methods used to design
the TDCA’s core component and the model identification
algorithms selected for the comparative study. Section III
presents the main components of the TDCA prototype and
provides information on the experimental setup used for
the core’s dynamic identification study. The comparative
results and commentary related to the identification accuracy
under the performed tests are given in Section IV. Finally,

discussion points on the results are given in Section V and
concluding remarks are provided in Section VI.

II. METHODS

A. Continuum Core Design

The continuum core component’s design underwent an
iterative optimization process, aimed at achieving a bal-
ance between the application’s requirements. These include
satisfying spatial constraints for given robot body and eye
compartments, reducing the overall weight to minimize in-
ertia effects, enhancing the bending range, and ensuring that
the torque required for these movements remains within
the motor’s capability. The design for the continuum core
is conceptually presented in Fig. 3, focusing on the core
mechanism of the TDCA composed of three spacing discs
positioned between two mounting pieces. This assembly is
supported by two backbone structures, ensuring structural
integrity and bending functionality, while facilitating the
passage of two wires through symmetrically aligned holes
on the transverse plane of the discs and mounting pieces.
These wires are securely clamped and anchored at one end
of the core to prevent slippage during operation. The opposite
ends of these wires are connected to a motor pulley whose
rotational motion is converted into a force that induces a
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bending moment in the backbones. This mechanism allows
for precise control over the actuator’s range of bending
angles and trajectories. To allow for attachment of the core
to the robot’s body and eye components, both end pieces are
equipped with screw holes and respective cuts for nut inserts
ensuring a secure and stable installation. Additionally, the
core is designed with an internal cylindrical cavity for cable
management, enabling routing of power and data wires from
the eye components to the robot’s main body.

B. Model Identification

Autoregressive models with exogenous inputs (ARX) are
forms of polynomial models where the system output is a
linear combination of previous inputs and outputs (called
regressors). ARX models possess the ability to effectively
capture the dynamic relationships between the actuator inputs
and outputs while incorporating the influence of external
factors or disturbances. This is particularly beneficial for TD-
CAs, which exhibit highly nonlinear and complex behaviors
due to their flexible, continuously deformable structures. The
ARX model, characterized by its simplicity and flexibility,
allows for the inclusion of previous output values and current
and past values of exogenous inputs, making it well-suited
to model the dynamic interactions in TDCAs [18].

With y(t) as the system output, u(t) the system input
and an and bn constants determining the system order and
behaviour, the output of the system is determined by a linear
combination of the previous system states y(t − n) and
u(t − n). These are called regressors (or lags) and are all
contained in the regression vector φ. The parameters a and
b are similarly be written as a parameter vector θ. A ARX
model can, thus, be written as:

φ(t) = [y(t− 1), y(t− 2), . . . , y(t− na),

u(t), u(t− 1), . . . , u(t− nb + 1)]

θ = [−a1,−a2, . . . ,−ana
, b1, b2, . . . , bnb

]
T

y(t) = φ(t)θ

(1)

When identifying this type, the "best fit" parameter vector is
commonly found using the least squares method [19].

Building on linear ARX models, nonlinear ARX models
(NARX) introduce nonlinear components and are particularly
useful for capturing complex behaviors in systems where the
current output depends on previous outputs and inputs [20].
The basis for these models is a modified equation 1 where
a nonlinear mapping function F is used instead of a linear
combination of the regressors:

y(t) = F (y(t− 1), y(t− 2), . . . , y(t− na),

u(t), . . . , u(t− nb + 1))
(2)

Differing from a linear ARX model, the NARX model’s
regressors are not limited to linear combinations of the input-
output variables, with polynomial or trigonometric functions
of like u(t−3)2 or sin(y(t−1))2 being used. The regressors
can, in theory, be set to arbitrary functions of previous inputs
and outputs, but polynomials and trigonometric functions are

among the more common nonlinear regressors [19], while for
this work a wavelet network was used as F [21].

In the case of NARX, the parameter vector is calculated
using numerical methods, which results in variable execution
times making the models unsuitable for on-line identification.
To amend this, the recursive form of the least squares
algorithm is used to adapt the parameter vector to new data
[19]. Such models are particularly useful for time-varying
systems where the model parameters need to be adapted
continuously to reflect changes in the process dynamics. In
the recursive ARX (RARX) case, parameters {ai} and {bi}
are updated at each time step based on new data, giving
them a stronger influence on the parameter updates. The
forgetting factor λ, where 0 < λ ≤ 1, modifies this process
and it’s applied to progressively reduce the weight of older
data points in the error function that the parameter updates
seek to minimize.

III. EXPERIMENTAL SETUP

A. Continuum Core Development

The continuum core prototype, shown in Fig. 4 (top), was
fabricated using Thermoplastic Polyurethane (TPU) with an
85A shore hardness on an FDM 3D printer (Raised 3D E2),
with settings of 90% infill and 0.1 mm layer height. The
design and material choice for the continuum core were iter-
atively optimized to minimize deflection angles, specifically
the two passive degrees of freedom at the continuum joint’s
right end-cap (illustrated in Fig. 4 (top) and referred to as the
TDCA’s end-effector), under a target load of 0.4 kg placed
0.04 m from the end-effector.

Subsequently, two ends of a single plastic-coated multi-
strand steel wire were secured and affixed to the core’s end-
effector. This wire was routed around a motor pulley fabri-
cated from Polylactic Acid (PLA) using FDM 3D Printing.
To achieve consistent and repeatable actuator performance,
the use of an tightening rig facilitated the wire’s routing and
fixation, ensuring uniform tension across the system.

B. Setup Components

For the purposes of testing the TDCA and comparing the
model performance, an experimental setup was designed and
developed in different iterations. The setup iteration depicted
in Fig. 4 (middle) enabled changing the load on the actuator’s
end-effector with removable weights, while the actuator’s
base remained at a zero pitch inclination. Microprocessing
units were also used to control the motor’s operation and
read the actuator motion measured via an IMU.

For testing the TDCA under varying loads and base pitch
inclinations (defined as neck pitch in Fig. 2), the setup was
modified to support fixed (4 (bottom-left)) and manually
adjustable (4 (bottom-right)) pitch variations. The fixed pitch
was predetermined to ±22.5 and ±45 degrees, the latter
value aligning with HARU’s neck’s maximum permissible
pitch. In the manually adjustable pitch, the actuator assembly
was affixed to two bearing carrier brackets.

In all setup iterations, the TDCA was loaded with 0.4 kg
symmetrically placed at a longitudinal distance of 0.04 m
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Fig. 4. (top) Continuum core prototype connected to the motor pulley
via plastic-coated multi-strand steel wire. (middle) Setup used for testing
and data acquisition of the actuator’s performance. (bottom) Modified setup
for enabling manually varied (bottom-left) and fixed (bottom-right) pitch
variations for the actuator’s model identification sequences.

from the end-effector, both selected to match the current
weight and center of mass of HARU’s eye compartment
(Fig. 1). A Dynamixel XC330 smart servomotor powered the
TDCA, controlled and powered by a U2D2 microprocessing
unit. A BNO055 IMU measured the end-effector’s sensed
orientation in Euler format, acquired via an Arduino Nano
33 IoT microprocessing unit. A second IMU was mounted on
the actuator’s base to serve as a reference frame (4 (bottom-
right)). All components were mounted on an acrylic plate
via connection parts designed and 3D-printed using PLA.
All acquired data and control signals were managed through
a personal computer running MATLAB and Simulink.

IV. RESULTS

A. Validation Specifics

Initially, TDCA motion tests were conducted utilizing a
unidirectional chirp signal for excitation, as illustrated in
Fig. 5 (top), which was repetitively deployed to gather an
extensive dataset. The signal’s lower frequency was set at 0
Hz, while the upper frequency limit was established at two-
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Fig. 5. Two period snippet of the signals used as input reference angles
to the motor ϕm,ref for the identification of the continuum actuator: chirp
(top), ramp-wise (bottom).

thirds of the theoretical maximum (2.75 Hz), derived from
the motor’s no-load velocity.

Data pertaining to TDCA angular responses were collected
at various discrete pitch angles (±45, ±22.5, 0 degrees) to
document changes in system behavior attributable to orienta-
tion variations. The gathered data served as a foundation for
the training of models to facilitate performance comparisons.
These models were characterized by an identical number of
lag terms in both input and output, with lags ranging from
0 to 4 being examined. The training of ARX and NARX
models utilized data procured at a 0 degrees pitch, presumed
to represent an optimal approximation for both positive and
negative pitch angles. The RARX model underwent training
on the identical dataset, yet it received individual training
based on data from each pitch angle prior to testing. This
approach enabled the model to adapt, potentially offering a
superior fit compared to the non-adaptive ARX model.

The forgetting factor λ of the adaptive model was config-
ured to 0.998, contingent upon the sampling interval ts of 7
msec and a stipulated "memory" duration of 30 sec, aimed
to encompass multiple cycles of the chirp signal and thereby
facilitating expedited data acquisition. Data acquisition ad-
hered to the protocol established for training data collection,
which entailed the utilization of both the chirp signal and
a ramp-wise signal. The latter incorporated movements at
varying velocities, as illustrated in Fig. 5 (bottom).

To extend the validation of the trained models to dynamic
motion scenarios, test sequences were conducted where the
pitch of the setup was modified continuously. Such modifi-
cations more accurately reflect the operational context within
the HARU robot, where actuator orientation undergoes dy-
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Fig. 6. Goodness of fit graphs for the three different models (ARX, NARX, RARX), model order (0–4) and discrete pitch angles (±45, ±25, 0 degrees)
for the cases of the (a) chirp and (b) ramp-wise input reference angles.
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Fig. 7. Graph showing model fit for differing models and model order in
the continuous pitch test.

namic adjustments concurrent with head movements. These
tests were executed with the setup affixed to brackets of fixed
inclination, as depicted in Fig. 4 (bottom-right). In this case,
an additional IMU was installed at the base of the test rig to
act as a reference frame for the end-effector’s frame. Data
collection occurred while manually adjusting the pitch angle
across the full range of motion, with the chirp signal (Fig.
5) serving as a reference. The input and output data thus
acquired were employed to compute simulated outputs for
both the ARX and NARX models. For simulations involving
the RARX model, the model underwent retraining with the
newly acquired test data, with the parameter vector being
logged at each time step. Utilizing this logged parameter
vector and the system’s initial conditions, a simulated output
for the recursive RARX was also generated.

The efficacy of the evaluated models was determined
through the application of the normalized root mean square
error (NRMSE) between the simulated and the actual system

outputs. This metric of error is delineated as the goodness of
fit (GOF) in accordance with equation 3. The computation
of GOF yielded the plots depicted in Fig. 6 and 7.

%GoF = (1−NRMSE) ∗ 100 (3)

B. Model Performances

The evaluation of ARX, NARX, and RARX models using
the chirp signal for discrete pitch inclinations, as depicted in
Fig. 6, demonstrates comparable performance across models.
Notably, at a +45 degree pitch angle, RARX exceeds ARX
and NARX by 7.5% in accuracy, with ARX marginally
surpassing NARX. Ramp-wise validation signals, shown in
Fig. 6 (b), reveal NARX’s inferior performance relative to
ARX and RARX models across pitch angles from -22.5 to
22.5 degrees. At 45 degrees, RARX’s superiority is nearly
10%, close to the findings from the chirp signal evaluations,
while NARX’s accuracy declines to a 47% fit for a single lag
term. Despite no explicit trend in the data, model accuracy
diminishes at extreme angles, particularly where RARX
significantly outperforms ARX and NARX at +45 degrees.
This disparity is not observed at -45 degrees, where model
performance is comparably aligned.

Further analysis involved model output comparison for
varying pitch signals, with the aggregated comparative results
for the three models shown in Fig. 7. GoF metrics appear
generally lower than those from discrete angle assessments,
with ARX and NARX yielding similar performances but
inferior to RARX. Contrasting discrete pitch angle eval-
uations, model fits display consistency across increasing
model orders. In summary, under dynamic conditions, RARX
achieves the highest performance with a 70-80% fit, while
ARX and NARX models lag with 60-70% fits.

215



V. DISCUSSION

As depicted in Fig. 6, performance across examined mod-
els was consistent at pitch angles near 0 degrees, except
NARX, which underperformed compared to ARX under
certain conditions with signals of varied velocities (Fig. 6
(b)). Contrary to Parvaresh and Moosavian’s findings [14],
no advantage of NARX over ARX was observed for this
TDCA design. The performance decline in nonlinear models,
particularly with the ramp-wise signal, might suggest overfit-
ting. However, this is unlikely as performance reduction does
not escalate with model complexity, even when compared to
chirp signals at the same angle.

The discrete angle tests revealed significant disparities
in performance across +22.5 and +45 degree pitch angles.
This variation can be attributed to dynamic changes between
the pitch orientations tested, which rendered non-adaptive
models ineffective. Consequently, these models exhibited
diminished accuracy, a limitation not observed in RARX.

At positive pitch angles, the load’s weight generates a
moment that displaces the actuator from its center, potentially
explaining the observed discrepancies in model performance.
At +22.5 degrees, the weight’s influence is minimal, allowing
the actuator’s bending moment to predominate and realign
the system. However, at +45 degrees, the weight’s influ-
ence intensifies, substantially altering actuator behavior and
reducing the system’s "self-centering" capability. This phe-
nomenon suggests that both linear and nonlinear dynamics
are impacted, disproportionately affecting the accuracy of
NARX due to the integration of both dynamic aspects.

The continuous angle tests indicate RARX’s superiority
in capturing the dynamic behavior of the system, achieving
the commendably high model fit of 70-80%. Compared
to Parvaresh and Moosavian’s outcomes [14], the fits in
this study are generally lower, yet they closely align with
Quevedo et al.’s results [15], who employed an adaptive ARX
model for a fixed-orientation MIMO system.

VI. CONCLUSIONS

In this work, a comprehensive comparison study between
linear, nonlinear, and recursive implementations of ARX
models was performed, for modeling a novel Tendon Driven
Continuum Actuator (TDCA) designed for dynamic oper-
ational scenarios as a functional eye joint of the social
robot HARU. Through the experimental validation of the
developed TDCA prototype under load and different setup
inclinations, the objective of this study was to provide new
insights on the trade-offs between model complexity and
accuracy within such dynamic environments. For inclina-
tions closely aligned with the ones used in the training
sessions of the models, all model types exhibited comparable
performance, achieving model fits between 80-90%. When
considering actuator inclinations diverging from those used
in training, the non-adaptive and nonlinear ARX models
demonstrated diminished efficacy, with fits ranging from
60-70%, whereas the adaptive model sustained fits around
80%. In dynamic scenarios characterized by varying actuator
orientations, adaptive ARX proved to be the most effective

in modeling the actuator dynamics, with fits approximately
at 75% (contingent upon the model order).
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