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Abstract— Pressure injuries in long-term care facilities
present a significant problem for the well-being of bedridden
patients and the overall cost of the healthcare systems. Mitigat-
ing risks of pressure injury formation might be possible through
monitoring and control of the main extrinsic factors that cause
them, including temperature, humidity, and normal and shear
loads at the skin-support surface interface. An instrumented
soft robotic pad system serving as a support surface is a poten-
tial solution. In this work, we present the design of two-degree-
of-freedom soft actuators that when combined in a grid form an
instrumented soft pad. The actuators have integrated humidity
sensor, thermistor, and embedded force sensitive resistor (FSR).
We investigate the optimal placement of the embedded sensors
to monitor temperature, humidity, and applied normal loads
during various actuation modes. We utilize a long short-term
memory (LSTM) neural network to obtain estimated values of
humidity and temperature at the expected contact interface, and
also estimates of the normal loads exerted on the soft actuators
under various actuation configurations that affect raw FSR
sensor measurements. The developed system can be potentially
used to monitor and mitigate pressure injuries risks factors in
long-term care patients and enhance the quality of care of those
patients.

I. INTRODUCTION

Pressure injuries in long-term care facilities pose a signif-
icant challenge for the welfare of bedridden patients. Each
year, more than 2.5 million people in the US develop pres-
sure injuries [1]. Increased risks for pressure injuries have
been associated with extrinsic factors including temperature,
humidity, and both normal and shear loads at the skin-
pad interface. Therefore it is important to develop systems
enabling to actively monitor and regulate these factors.

Among the existing technologies to mitigate these risks,
various specialized support surfaces have been developed.
These include specialized pressure-redistributing mattresses,
such as alternating pressure and low-air-loss mattresses [2],
[3], which help dynamically distribute pressure across the
body. Our research team previously proposed the IntelliPad
system [4] to manage both normal and shear stresses at
the skin-bed interface, which are significant risk factors
in pressure injury development [5]. However, this design
lacked temperature monitoring and precise load estimation
based on multi-mode actuation. Other pads for normalizing
contact pressure distribution have been developed and em-
ploy lead screw-driven surface manipulators with integrated
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Fig. 1: a) Soft robotic pad setup in a cross sectional view with a
user sitting on top. b) View of a full pad. c) A cross-section of the
soft actuator with three internal pressure chambers and embedded
sensors. d) View of the full actuator. Note that the final configuration
only uses the bottom FSR and humidity sensor.

force sensitive resistor (FSR) sensors that provide pressure
feedback [6]. A recent review on sensor-based pressure
injury prevention technologies demonstrated the need for
actual data acquisition that enable predictive components
using intelligent algorithms [7]. The existing approaches
for temperature and humidity monitoring include the use
of resistive hydrogels [8] and nanowire-based temperature
sensors [9]. Related existing built-in sensors for force esti-
mation and monitoring have also been developed recently.
Hyperelastic pressure sensors [10] and a conductive sponge
pressure sensor [9] have been developed for pressure-sensing
applications. Similar liquid metal-based strain sensors have
been used for soft robotic gripper and tactile applications
[11]. Commercially available strain gauges and air pressure
feedback have been used for robotic surgery applications
[12]. However, some of the materials used in these sensors
limit their applications to be used in medical settings.

In this paper, we present the design of a soft actuator
with embedded temperature, humidity, and force sensors
(Fig. 1). The actuator is designed to be integrated into a
larger grid and form a soft robotic pad (Fig. Fig. 1b) used
as an actively controlled human-pad interface for mitigating
risks of pressure injury formation. The design of a proposed
actuator was inspired by our previous work [4], [13] and
was advanced by the integration of three different sensor
modalities. Possible sensor locations were investigated for
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each sensor type and the compensation algorithms have
been developed to obtain precise estimates. We developed
a load estimation algorithm that considers various internal
pressures inside the three chambers of the soft actuator in
different inflation configurations that affect the reading of
the embedded FSRs. Precise load estimation is important for
active feedback control of a support surface when multiple
actuators are connected to normalize pressure distribution.
Additionally, humidity and temperature sensors locations are
evaluated and data-driven models are developed to estimate
the temperature and humidity at the contact interface. The
main contributions of this paper are the developed unique
mechatronic platform and algorithms for monitoring factors
contributing to pressure injury formation. The developed
estimation algorithms can be used for other similar soft
robotic applications, where precise monitoring of tempera-
ture, moisture, and force is required.

II. METHODOLOGY

A. Actuator Design with Embedded Sensors

The dimensions of the soft actuator are 50 mm × 50
mm × 80 mm. Actuators are placed in a grid formation
with a 25 mm gap (Fig. 1b). Each actuator contains three
internal pressure chambers (two side and one top); see Fig.
1c. The fabrication process is demonstrated in Fig. 2. The
main body of the actuator has a material hardness of Shore
A 22, and is molded from 200 g of dental grade silicone
rubber (Elite Double 22, Zhermack, Badia Polesine, Italy),
selected specifically due to its inert nature when interfacing
with human skin and moisture. The soft actuator integrates
a thermistor (10K Ohm, Uxcell, China), an FSR (1.5 inch
square, Pololu, Las Vegas, NV), and a humidity/temperature
sensor (AHT10, Songhe, China); see Fig. 1. The thermistor
and (bottom) FSR are molded into the material, while the
humidity sensor and top FSR are attached to the side and
top exterior faces of the actuator, respectively. The thermistor
is embedded in a silicone rubber layer between the top
exterior surface and the top pressure chamber. Three different
depths from the top surface were analyzed including 4, 6,
and 8 mm deep. The thermistor measures the temperature
at the interface of the actuator with the environment (e.g.,
skin). Two FSR sensors were integrated for testing. One was
molded at the bottom and one was attached at the top of the
actuator. The top FSR was removed when the temperature
tests were performed. Two humidity sensors were attached to
the side of the actuator. One was located 10 mm and another
40 mm from the bottom (Fig. 1). These two exterior sensors
measure the ambient temperature and humidity.

B. Fabrication of Actuator with Embedded Sensors

Fig. 2 shows the mold setup and fabrication steps. The
main body is made from a four-part mold. The mold is
designed to create the internal chambers and passageway for
the internal wiring and pneumatic lines (Fig. 2a). The side
piece is molded separately and attached later (Fig. 2e-h).
Four custom molds are first 3D printed using polylactic acid
(PLA) material. Two outer ones form the actuator’s main

shape and an internal one forms the chambers. These molds
are first secured together (Fig. 2a). The internal thermistor is
temporarily affixed to a desired 4 mm stand-off in the top of
the mold with glue. Then the silicone rubber is mixed and
poured into the mold (Fig. 2b). The fourth mold that is used
as a lid to form the inlets for the air chambers is pressed on
top to create the side ports (Fig. 2c). The silicone cures for
90 minutes. The demolding process starts with the removal
of a lid and proceeds with removing the bottom shaft mold
to reveal the created cavities (Fig. 2d).

Fig. 2: Fabrication of soft actuator with embedded sensors. a)
Preparation of 4-part 3D printed mold. b) Silicone is poured into the
mold. c) Mold cap is placed onto mold to make airline pass-through
holes. d) After 90 minute curing the actuator is de-molded. e)
Preparation of 3D printed mold for actuator sidewall. f) Silicone is
poured into mold. g) Placing mold cap onto mold ensuring sidewall
has correct thickness. h) Attaching sidewall to actuator’s main body.
i) Filling in remaining space in central airline after airlines have
been run through actuator body. j) Placing FSR in bottom mold
cavity and covering it with silicone to seal it. k) Attach FSR and
humidity sensors on top of actuator.

Following the demolding of the main body, lead wires
for the embedded thermistor and pneumatic line for the
top chamber are routed through the body. The lead wires
are soldered to the sensor when the mold is still open. An
additional mold and a lid are 3D printed to form the sidewall
of the actuator. A mold for the sidewall of the actuator (Fig.
2e) is filled with silicone rubber (Fig. 2f) and a lid placed
on top. All lids contain holes for the removal of any access
material. The prepared sidewall is then attached to the open
end of the mold (Fig. 2h) to seal the chambers. The central
air-line hole at the bottom part of the actuator is sealed (Fig.
2i), before the FSR is molded inside (Fig. 2j) to produce the
final actuator (Fig. 2k). To test the optimal FSR placement,
the top FSR and two humidity sensors are attached as shown
in Fig. 2k.

C. Determining Optimal Placement of Humidity Sensor

An important factor in preventing pressure injuries is to
keep the skin cool and dry [14]. To effectively monitor the
micro-climate at the skin-pad contact, our system is designed
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to estimate the humidity levels at these contact surfaces.
This approach is essential because direct measurement of
humidity is not feasible as the sensors cannot be in direct
contact with the skin due to the electronics in the sensor and
rigid sensor housing. Therefore, the estimation is achieved
by a humidity sensor placed on the outside surface of the
actuator and use a data-driven model utilizing the local
humidity in the channels between the actuators. To determine
if the distance from the actuation surface had an effect on
the sensor reading, we prepared a small grid of actuators and
placed two sensors on a single actuator (Fig. 3a).

Fig. 3a shows the experimental setup to test the optimal
sensor location. To simulate increasing humidity at the top
surface of a grid of four actuators, a microfiber towel was
placed over and a spray bottle was used to mist the towel.
The towel was sprayed every 15 seconds from a distance of 8
inches above the towel. A control humidity sensor was fixed
directly under the towel to serve as a reference. The overall
test was run for 35 min to investigate the sensor responses
even after the control measurements reached 100% humidity.
We examined the humidity measurements by comparing
values of both humidity sensors to the control values. To
obtain precise estimates, we utilized a data-driven learning
approach. With minimal difference between the top and
bottom results we identified optimal placement to be the
bottom location. The humidity sensor was then used to train
a neural network with a structure as shown in Fig. 4a to
create a model for accurate humidity estimation based on
measurements of a single sensor (see Section II-F).

D. Determining Optimal Placement of Thermistors

One of the factors in preventing the development of
pressure injuries in long-term care patients is to prevent the
formation of hot spots on the skin [15]. Therefore, our system
aims to measure the skin contact temperature by sensing
the temperature at the actuator’s top surface that will be
in contact with the skin. For this purpose, we embedded a
thermistor in the top layer of the actuator. To determine the
optimal distance of the thermistor from the contact surface,
we prepared three samples with a thermistor embedded at
depths of 4, 6, and 8 mm. Smaller depths were not considered
to avoid possible perforation of the layer.

We investigated thermal conductivity by comparing the
thermistor’s readings with the measured reference tempera-
ture to create a compensation algorithm. To test this, samples
were placed on a temperature-controlled surface (i.e., 3D
printer’s bed) and its accuracy was validated with a non-
contact thermometer. A custom G-code for an Ender-3 3D
printer was prepared to heat the printer’s bed. The testing
regime was set to increase in varying temperatures steps
of 10°C, 5°C, 2°C, and 1°C and record the response rates
at different temperature gradients ∆T . Each test was run
individually with the sample located in the center of the
bed directly over the heating element. The bed was allowed
adequate time between tests to fully cool back to room
temperature. The results of the optimal placement were

Fig. 3: a) Experimental setup for humidity sensor placement test.
A microfiber towel (not shown) was placed over the top and sides
of four actuators placed in a grid 25 mm apart. The bottom and
top humidity sensors were placed 10 mm and 40 mm from the
bottom, respectively. The reference humidity sensor was placed
at the top surface touching the microfiber towel. The towel was
sprayed every 15 seconds by a spray bottle from a distance of 8
inches. b) The experimental setup for testing optimal placement
of FSR sensors. The actuator is placed in a UTM that exerts
normal load. c) Experimental setup for thermistor placement test.
Samples with the 4, 6, or 8 mm thermistor depth is placed onto the
bare heater plate of 3D-printer. G-code with temperature profile
is selected to control the bed temperature in set intervals. Bed
temperature readout is confirmed with an IR laser thermometer,
and the thermistor data is recorded by an Arduino.

utilized to train a neural network (Fig. 4b) to obtain estimates
of the contact surface temperature (see Section II-F).

E. Determining Optimal Placement of embedded FSRs

With the goal of normalizing the pressure distribution over
the grid array of the soft actuators, optimal placement of
FSRs within an individual soft actuator was investigated. The
choice of FSR placement holds significance in characterizing
its response to the applied forces. We tested two specific
locations (i.e., at the top and bottom of the actuator). The
experimental setup is shown in Fig. 3b. The actuator was
placed in a universal testing machine (UTM) with all ports
open (i.e., no applied pressure in chambers). The actuator
was compressed vertically for 7.5 mm with a maximum
exerted force of 120 N. The FSR values were recorded from a
12-bit Analog-to-Digital converter. Force and displacement
readings from the UTM’s load cells and values from both
FSRs were synchronously collected for comparison purposes.

Due to the fact that the internal pressures in air chambers
affect the FSR readings, we experimentally investigated
their effects. We performed tests by pressurizing all three
chambers in different combinations accounting for every
combination resulting in 8 tests in total. To compensate for
their effects we designed an estimator utilizing a data-driven
learning approach (see Section II-F).

1443



Fig. 4: Network topology of the each of the learning models. a)
The Humidity estimation network consists of 10 hidden layers.
The first layer consists of 128 LSTM neurons, followed by 9
layers of 24 neurons, and the output, respectively. Each neuron
uses a rectified linear activation function. Each input represents a
set of 4 humidity samples. b) The temperature estimation network
consist of five hidden layers. The size of all layers is 24, except
for the input layer, which is 10. The layers shown in blue color
use rectified linear activation function, and the one in orange color
uses a sigmoid activation function. Each input consists of the current
thermistor reading and the temperature difference values (∆T ) for
the last 10 time steps. c) The force estimation network consists
of 4 hidden layers. The first layer consists of 128 LSTM neurons,
followed by a layer of 48 neurons, 24 neurons, 10 neurons, and the
output, respectively. Each neuron uses a rectified linear activation
function. Each input represents a set of 10 samples with each sample
consisting of 4 data points from sensors. The data points are the
raw values from the left, right, and top pressure sensors and the
raw FSR sensor value.

F. Multi-modal Compensation Matrix Training

To obtain estimates about the exerted normal load, contact
temperature, and humidity, we utilize a learning approach by
creating neural networks to train a compensation matrix and
obtain estimates. The model can capture complex behavior
of the non-linear material/structure/environmental responses
and compensations due to imperfect sensor location and their
readings. We employ a Long Short-Term Memory (LSTM)
network stacked with a dense network configuration. An
LSTM network, known for its ability to capture sequential
dependencies and long-term dependencies in data, offers a
dynamic framework for learning and predicting the model’s
response. We utilize this approach with different network
typologies to estimate the humidity (Fig. 4a), contact tem-
perature (Fig. 4b), and normal load under varying inflation

conditions (Fig. 4c). All data sets were split into 70% for
training and 30% for testing.

The training regime involves feeding the LSTM network
with data obtained when loading the samples during UTM
testing with different chamber pressurization configurations.
The resulting compensation matrix enables accurate normal
load predictions regardless of the pattern of chamber pres-
surization.

The learning process is then performed for temperature
estimation considering only one thermistor whose depth was
identified as optimal. Our network was designed to consider
the rate of change of temperature ∆T s and the current
temperature data from the thermistor and correlate them
to the surface temperature. Therefore, the input data was
formatted to include the current temperature and temperature
gradients from the last ten time steps (∆T1, ...,∆T10). Such
structured data was fed into the training of a neural network,
whose structure is shown in Fig. 4b. Lastly, the learning
process for humidity estimation considers only data from the
humidity sensor whose height was identified as optimal. The
network uses four samples of data from the humidity sensor
and correlates them to the control humidity value. Fig. 4a
shows the neural network structure.

III. RESULTS

A. Optimal Placement of embedded FSRs

The resistance values of top and bottom FSRs were
compared to determine when sensors become saturated. Fig.
5 shows a comparison of their resistance values. During
the tests, the top FSR becomes fully saturated at a load of
approximately 105 N, while the bottom FSR does not fully
saturate (up to 120 N). Despite the smaller value range of
the bottom FSR, both resistances intersect at approximately
45 N. This yields a similar window for the high-end force
range resolution and reduced resolution for the lower range
on the bottom FSR. However, due to the average pressure
at the human buttock and cushion interface being 20 kPa
[16], the higher range is important and the bottom FSR was
chosen as the preferred location.

Fig. 5: Average experimental FSR resistance for load applied on
the non-pressurized actuator.
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B. Optimal Placement of Humidity Sensors

Fig. 6 shows the results of humidity measurements for
both humidity sensors. The measurements are compared
to the true/control values. Sensors at both locations show
almost identical measurements. Therefore, the location of
the bottom sensor was chosen as optimal to minimize
possible physical interference when actuators are displaced
horizontally. Estimation results of a trained model show
convergence of the model to the actual values (Fig. 6).
The model can capture rapid changes in humidity, while its
ability to predict humidity saturation is achieved with a delay
(6 min). Despite the delay, the estimates show significant
improvement compared to the raw humidity reading of the
sensor where the sensor only reaches 81% humidity, which
would result in an error of 19%.

Fig. 6: Comparison results for the relative humidity measurements
of each sensor. Results are compared to the control/reference value
and filtered predicted values of our learning model.

C. Optimal Placement of Embedded Thermistors

Fig. 7 shows the results of thermistor measurements at
three different locations. The sensor located at a depth of
4 mm showed the best performance and was chosen as the
optimal location of a sensor due to the reduced thermal lag.
The temperature steps show calibration for when a patient
may first get on the pad, and shows the ability to adjust
to smaller temperature changes. The data from this sensor
was used to train the neural network model to obtain the
estimates. Fig. 7 shows the comparison of estimates to the
true (bed) temperature. The model is able to estimate the
surface temperature for both large and small temperature
changes well. This helps to reduce faulty readings due to
the delayed heat conduction through the material.

D. Multi-modal Learning Model for Load Estimation

Fig. 8 shows the normal load estimation results for various
patterns of internal pressures (15 psi) in the air chambers as
they affect the FSR readings. The estimation results match
the true values measured by the UTM load cell. In the high
load regions, the estimates show increased deviation from the
expected true value compared to low force values. This might
be due to the sensor reaching near its saturation point. The
model slightly under-predicts values when the top and one
side chambers are simultaneously inflated (Fig. 8e-f). This
might be due to modified stability of the actuator’s structure,
due to bending of the internal walls and therefore, uneven

Fig. 7: Comparison of temperature readings for sensors at depth of
4, 6, and 8 mm from the top surface of the actuator along with
the true values (controlled bed temperature) and filtered estimated
values of our learning model for sensor depth of 4 mm.

load on the FSR sensor. Nevertheless, results show that the
trained model can reasonably predict normal load for any
given pattern of internal pressure conditions. The model is
able to predict with minimal error for each loading condition
as shown in Fig. 8.

E. Discussion

To improve resolution of high range results of the FSR
sensors, future iterations may implement a 16-bit analog-
to-digital converter (ADC) to capture smaller changes in
resistance The bottom FSR is also ideal due to the initial
irregularity in resistance readings of the top FSR when
initially loaded (Fig. 5). This irregularity may be due to the
increase in errors that occur when the sensor is bent [17].
Due to a soft mounting surface, the top FSR is bound to
bend during the deformation of the actuator. The bottom
FSR placement is also preferred due to practical reasons,
including easier maintenance and cleaning of the sensors
when used by the patients, easier integration of the sensors
as there is no direct contact with the skin, and better thermal
conductivity that does not affect readings of the embedded
thermistor. The bottom humidity sensor location was selected
as ideal due to the minimal effect of the distance between
the top and bottom locations. Having the sensor further away
from the top of the actuator reduces the chance of direct
skin contact that can cause irritation, and allows for easier
maintenance and cleaning of the pads. Lastly the 4 mm
thermistor depth was selected for its quickest response times.
We acknowledge that our setup has not been tested with
a human sitting on it to investigate the coupling affect of
sensors or in a clinical setting and these testings remain part
of our future plans.

IV. CONCLUSION

In this paper, we presented the integration of embed-
ded temperature, humidity, and FSR sensors in a soft
robotic actuator, and investigated their possible locations.
In addition, we trained data-driven models to estimate the
force, humidity, and temperatures under various loading and
environmental conditions. The normal load estimator can
accurately account for the various chamber pressurization
configurations that alter the stiffness of the actuator. Our
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Fig. 8: Results of load predictions from the model are compared to the average true-load on the actuator. Combination of inflated chamber
to 15 psi are shown for a) left only, b) right only, c) top only, d) none inflated, e) left and top, f) top and right, g) left and right, and h)
all chambers. Chambers marked in red color were pressurized, while those in blue were not.

models can estimate humidity and temperature at the contact
surface. The process of adding these sensors into the fabrica-
tion process allows for feedback from the contact interface
and adaptation of conditions to patient needs. This model
enables estimation of the true load accounting for the variable
stiffness of the actuator. This feature enables the utilization
of the actuator in a grid format, for normalizing the pressure
applied to patients. Future work will include more testing
configurations with the addition of testing chambers under
vacuum. This preliminary work enables the development of
testing actuators in a full grid configuration with a human
thigh-buttock physical analogue developed in [18] to further
validate the model.
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