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Abstract—1In the context of a Human-in-the-Loop (HITL)
system, the accuracy of reachability analysis plays a significant
role in ensuring the safety and reliability of HITL systems.
In addition, one can avoid unnecessary conservativeness by
explicitly considering human control behavior compared to
those methods that rely on the system dynamics alone. One
possible approach is to use a Gaussian Mixture Model (GMM)
to encode human control behavior using the Expectation-
Maximization (EM) algorithm. However, relatively few works
consider the admissible control input ranges due to physical or
mechanical limitations when modeling human control behavior.
This could make the following reachability analysis overestimate
the system’s capability, thereby affecting the performance of the
HITL system. To address this issue, we present a constrained
stochastic reachability analysis algorithm that can explicitly ac-
count for the admissible control input ranges. By confining the
ellipsoidal confidence region of each Gaussian component using
Sequential Quadratic Programming (SQP), we probabilistically
constrain the GMM as well as the corresponding stochastic
reachable sets. A comprehensive mathematical analysis of how
the constrained GMM can affect the stochastic reachable sets
is provided in this paper. Finally, the proposed stochastic
reachability analysis algorithm is validated via an illustrative
numerical example.

I. INTRODUCTION

Reachability analysis has been widely used in the field
of cyber-physical systems, as it can ensure the safety of
systems. Especially in a Human-in-the-Loop (HITL) system,
reachability analysis can significantly enhance the safety of
the involved human, such as collision avoidance [1] and loss-
of-control prevention of aircraft [2]. However, the existing
reachability analysis methods that only rely on the given
HITL dynamics might yield overly conservative results. To
tackle this problem, one can model the human operator’s
control behavior using the human control behavioral data.
Such a model allows us to predict the human control input
at given time steps, and we can incorporate it to improve
the accuracy of reachability analysis. For instance, the au-
thors in [1] proposed a method incorporating the human
control behavior model. Such incorporation has shown less
conservative results, thereby improving the overall system
performance and reliability.

One of the major challenges in processing human control
behavioral data is the inherent stochastic nature of human
actions [3]. In this paper, we select the Gaussian Mixture

The authors would like to acknowledge that this work is supported by
NSF CNS-1836952.

1 Cheng-Han Yang, Joonwon Choi, Suriyan Anandavel,
and Inseok Hwang are with School of Aeronautics and
Astronautics, Purdue University, West Lafayette, IN 47907 USA

{yang2323, choi774, sanandav, ihwang}@purdue.edu

979-8-3503-9154-1/24/$31.00 ©2024 IEEE

Model (GMM) as a basis model to address such stochasticity.
The GMM has shown better performance with respect to the
stochastic features of human control behavior compared to
other deterministic approaches [4]. Additionally, the GMM
can conform to any trajectories and be used as a generative
model [5]. It has also been shown to be an excellent approach
to modeling non-Gaussian data [6]. More applications of
the GMM for human motion and control behavior modeling
can be found in [7]-[9]. With a GMM, one can predict the
human control input at a given time step using the Gaussian
Mixture Regression (GMR) and further derive the stochastic
reachable sets using the Chapman—Kolmogorov equation [1].

Nevertheless, an inappropriately processed human con-
trol behavior model could degrade the performance of the
reachability analysis [10]. Hence, modeling human control
behavior plays a vital role in the HITL reachability analysis.
Many existing works encode human control behavior into a
GMM using the Expectation-Maximization (EM) algorithm
and have shown comparatively good performance. However,
the conventional EM algorithm cannot address constraints on
parameters other than the weight coefficients, so the trained
GMM cannot explicitly account for given side information,
e.g., the admissible control input ranges. To resolve this
limitation, many variations of the EM algorithms have been
proposed to address the constraints on the parameters, e.g.,
mean and covariance. For instance, the Gradient Projection
(GP) EM algorithm employs the gradient projection algo-
rithm to handle linear constraints [11]. The authors in [12]
proposed the Expectation-Maximization-Projection (EMP)
algorithm to handle linear and nonlinear equality constraints
by adding the Projection step (P-step). In [13], the authors
proposed a Sequential Quadratic Programming (SQP)-based
EM algorithm that incorporates SQP in the conventional EM
algorithm.

Motivated by the aforementioned works, this paper aims
to probabilistically constrain the GMM within the admissible
control input ranges. Moreover, we seek more accurate
stochastic reachable sets that explicitly consider human con-
trol behavior and the admissible control input ranges. To this
end, we confine the ellipsoidal confidence region of each
Gaussian component by imposing a constraint related to the
Mahalanobis distance using the SQP-based EM algorithm
[13]. The Mahalanobis distance can be used to measure how
far an observation is from a Gaussian distribution, where its
absolute value corresponds to a confidence level following
a x-square distribution [14]. We design a constraint that
restricts the Mahalanobis distance between the limits of
admissible control input ranges and the Gaussian component
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(called confidence region constraint). The SQP-based EM
algorithm is selected since the confidence region constraint is
a nonlinear inequality which can be addressed efficiently by
SQP [15]. Consequently, we can probabilistically constrain
the GMM within the admissible control input ranges. We
further analyze how the constrained GMM can improve
the prediction of human control input and the stochastic
reachable sets.

The contributions of this paper are as follows: 1) we
propose constrained stochastic reachability analysis that can
explicitly account for the admissible control input ranges of
human control, 2) we present a mathematical analysis of how
the confidence region constraint affects the predicted human
control input by the GMR and the stochastic reachable sets,
and 3) we perform a numerical simulation to compare the
performance of stochastic reachable sets between the con-
strained and unconstrained human control behavior models.

This paper is organized as follows: In Section II, we
provide the design preliminaries of the stochastic reacha-
bility analysis method, including control input prediction
and the stochastic reachable sets computation. Section III
presents the details of the EM algorithm and the confidence
region constraints. A comprehensive mathematical analysis
of the confidence level propagation from the human control
behavior model to the reachability analysis is presented in
Section IV. A numerical simulation is presented in Section
V. Finally, we conclude our study in Section VI.

II. REACHABILITY ANALYSIS OF A
HUMAN-IN-THE-LOOP SYSTEM

A. Human Control Behavior Modeling

This section presents the reachability analysis of the
Human-in-the-Loop (HITL) system. In our previous work
[1], we computed the close-loop stochastic reachable sets
by modeling the human operator’s control behavior as a
Gaussian Mixture Model (GMM). In this paper, we consider
the HITL system which can be represented as the following
discrete-time linear time-invariant system:

= Ax; + Bug, (1)

where x; € R” and u; € R™ are the state and control input
vectors at time step k, and A € R™" and B € R are the
state and input matrices, respectively. We assume the control
input uy is governed by a human operator in the HITL system
(1). Thus, the human operator’s control behavior needs to
be modeled to compute the closed-loop stochastic reachable
sets. To this end, we model such human control behavior as
a GMM to address the uncertainty in human motion.

Considering a set of control input trajectories, which can
be written as § := [¢],¢T, ..., ¢L], where § = [, ul T, 1 €
R is the elapsed time at time step k (k € [1,...,K]), and K
is the number of data, we encode human control behavior
into a human control behavior model .# as a GMM with ¢.
The joint probability density function (PDF) of .# can be
written as:

Xi4-1

L
P(u,t|6) =Y w;N(u,t|u;,%;), 2)
Jj=1

where u=[ul ... uk]7, t=11,....tx]7, w; € R is the weight
coefficients of the j-th component satisfying Z le =
1, 6 = [6,...,6;)7 is the parameter vector w1th 0;:
(Wi, 1), 2}, wj € R™ ! and £; € RUHDX0m+1) are the mean
and covariance matrix of the j-th component, respectively,
and N(-|u;,X;) is the Gaussian PDF with parameters pu;
and X;. L is the number of Gaussian components and can
be heuristically determined based on various information
criteria such as Bayesian Information Criterion (BIC) [16].
Throughout this paper, we assume that L is fixed. By
applying the Expectation-Maximization (EM) algorithm, an
optimal set of parameters 6 can be estimated.

B. GMR for Reachability Analysis

Once # is trained as a GMM, the Gaussian Mixture
Regression (GMR) can be used to predict how the human
operator controls the system based on .#. In other words,
the GMR provides the conditional PDF of the human control
input at a given time step [7]. We only focus on the reacha-
bility analysis within #; € [t;,7x], where #; and tx denote the
minimum and maximum elapsed time in §, respectively. The
mean f; and covariance X; of ./ are denoted as:

‘uu Zu yut
v-[)=-B 3 o
] 'uj J yu th

where u;‘ €R™ and u} € R are the mean of the human control
input and elapsed time, respectively, and Z‘;, Z‘;’ , Z‘j“, and Z‘j
are the corresponding covariance fractions, respectively. The
GMR prediction result, which provides the conditional PDF
of the human control input at time step k, can be derived as

[7]:

L
P(wilte) = P(ug) = Y w;(t)N (e 2 (1), %), (4)
j=1
where
. N (|, X
Wit) = < L (5a)
Yi1 WiN(tk|/vli azi)

Iy u i -1

R() = ujf +XJ'%5 (6 —kj) (5b)

$ u u “lstu

£ =54 _xwy! 'y (5¢)

With the conditional PDF (4) of human control input and
the system dynamics (1), one-step propagation of the state
PDF controlled by the human operator can be predicted by
solving the Chapman—Kolmogorov equation as [1]:

P(Xpq1) / ZWJ )N
X

k j=

(Xk 114X+ B (1), BE; B )dx;..
(6)

By repeating this process up to the desired time step, 7, one
can compute the state PDF at ¢, P(x; f), which we define as
the stochastic reachable sets of (1).
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III. SIDE INFORMATION OF HUMAN CONTROL
BEHAVIOR

A. EM algorithm

A GMM is often trained by feeding { to the EM algorithm.
The conventional EM algorithm is composed of Expectation-
step (E-step) and Maximization-step (M-step) [17].

1) E-step: It computes the expectation of the complete-
data log-likelihood with the posterior probability using the
current parameters as follows:

Z Z YJYI:FIIOg wiN (G|, Z5)), (7N
j=lk=
where )i,jl is the posterior probability that can be derived
by the Bayes rule as:

s+1 . WSN(C]{“'L;?ZS)

A ,

T EE wIN (G B
where the superscript s denotes the sequence of iterations.

2) M-step: It maximizes the expectation (7) by updating
the parameters as follows [17]:

K +1
Ws+1 _ Zk:l /y;k

®)

S (9a)

LRt

;“:T l"ﬂ : (9b)
s+1 S+1

E;+1:Zk:1f j(« — ;)G — ) 90)

Zk:l V,S'k

With the parameters updated in the M-step (9), one can
update the posterior probability in (8). By repeating the E-
step and the M-step until the convergence condition is met,
an optimal set of parameters can be obtained. More details
on the EM algorithm can be found [17], [18].

Although the conventional EM algorithm has shown good
performance in many applications, it cannot handle param-
eter constraints other than weight coefficients. Therefore, to
improve the performance of reachability analysis by explic-
itly accounting for given side information, such limitations
need to be addressed.

B. Side Information and SQP-based EM Algorithm

In real-world applications, the magnitude of control input
is typically constrained due to physical or mechanical limita-
tions. Such admissible control input ranges can be considered
as side information that can be described as follows:

<uk<u vd el,...,m], (10)

max»

where the superscript d denotes the d-th element of u; and
ul € RT is its corresponding maximum magnitude. In this
section, we aim to enforce the human control behavior model

A to satisfy the following inequality:
P(~ttyge S U Stlyy) > 8, Vd€[lom], (D)

where 6 € [0,1] is the desired confidence level.

If the confidence region of each Gaussian component is
confined within the admissible control input ranges (10),
we can ensure that the entire GMM is also probabilistically
constrained. Hence, we apply Sequential Quadratic Program-
ming (SQP) to the EM algorithm to yield a GMM that can
explicitly account for the control input constraints (11). The
SQP-based EM algorithm has the same E-step in (7) but
it maximizes the expectation using SQP as a modified M-
step [13], which allows one to impose constraints on the
parameters.

Furthermore, we can measure the Mahalanobis distance
from each component to the bound of the admissible control
input ranges. Such bounds are denoted as du, i.e., there
exists at least one d such that |Jud| = u¢,,, where du‘
the d-th element of du. In other words, du has at least one
element equal to its corresponding maximum magnitude. If
such Mahalanobis distance is constrained, we can ensure the
confidence region of each component is confined within the
admissible control input ranges. Therefore, we construct the
confidence region constraint as follows:

(Qu—p)'E; (Qu—pf) >«
Vou € {du e R"3|0u?| =ul,,, dc[l,...,m}, (12)
where o := y*(1 — &,m) follows the y-square distribution
function with confidence level 6 and m degree of freedom
[19]. If the minimum value of (8u—/.1.}‘)TZ;l(8u—u}‘)
satisfies the above inequality, we can guarantee that the
confidence region constraint (12) is automatically satisfied.
Therefore, we search its minimum value in terms of d-th
dimension, which yields:

d d\2 /( ~dN\2

(iumaxiuj) /(G)) 2 aQ, vd € [1,...7111], (13)

where ,u € R is the d-th element of u}' and (of)* eR is
the d-th dlagonal value of Z“

By enforcing the constraints (13) with the SQP-based EM
algorithm, one can guarantee that the human control behavior
model ./ satisfies the control input constraints (11). Hence,
the M-step of the SQP-based EM algorithm can be modified
to solve the following constrained optimization problem:

L K
)= X Ll oe0niN(Glw )

L
subject to Z w;=1,

max 16

vde[l,...,m].
(14

(iumax ui)?/(of)? > a,

IV. PERFORMANCE ANALYSIS

A. GMR Prediction

In this section, we analyze the performance of the pro-
posed scheme introduced in Section III. If a GMM is trained
in a way that the constraints (13) are satisfied, we can
measure the Mahalanobis distance from the mean of the j-th
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component of the GMR prediction results (4) to du in terms
of the d-th dimension as:

B 1) == min (9u— f;(60))" (£,)” (u— (1))

subject to [Jud| =u,, Vd € [1,...,m]. (15)

In other words, the corresponding confidence level of ﬁ]‘?(tk)
means the probability that the j-th component of the GMR
prediction results (4) remains within the admissible control
input ranges. In the rest of this subsection, we consider
the case for du? = u,,. for notational simplicity and let
BJ‘-’ (t;) denote the corresponding squared Mahalanobis dis-
tance since the same analysis can be applied to du = —u¢, ..

Ff(tk) can be directly computed by the following equation:

B (1) = (o — )%/ (677,
where fif is the d-th element of {; in (5b) and (6¢) is

the d-th diagonal value of f? in (5¢). [fl;i and (6;1)2 can be
derived using (5) as:

(16)

05 (0) = i + (0 — ) 0" /(07)?, (172)
(67 = (o7~ (o/3})", (17b)

where G;»h is the d-th element of XY and o7 is the square
root of th. By substituting (17) into (16), we obtain:
— 1

AN
d . max J_ Jj
ﬁj (tk) - 1— (pd)2 ( Gd p] o' ) ’ (18)

J J J
where p¢ := o' /c¢ o is the correlation coefficient of uf
and #; of the j-th component.

To see how the proposed method improves the GMR
prediction results, we are interested in the value of ﬁ;’(tk).
Since we do not impose constraints regarding the correlation
between uy and 7, but ﬁ]‘-j(tk) can be affected by it, we search
its infimum with respect to p;-i to understand how likely
the conditional PDF of the GMR prediction results remain
within the admissible control input ranges after imposing the
confidence region constraints.

For a given #; and the fact that p;j € [—1,1], the infimum
of ﬁj‘-’ (#) can be derived by taking the derivative with respect
to p;’ equal to zero as:

<0, (u;inax_:u;i)z . (tk_“;)2> ' (19)

(of)? (c7)

The infimum of ,37](%) is then discussed under two cases.
First, if the following inequality holds:

(e — 1) (= p))?

(a2 (92’

irbf ﬁj‘»i(tk) = max
J

(20)

its corresponding infimum of Ff(tk) can be obtained by
enforcing the constraints (13) as:
=7 (e — p5)?
inf B¢(t;) = ¢ — ——2—. 21)
ot CAE

Second, for the case that
(0 — pf)?
(o))

its corresponding infimum of ,B]d () is 0. One can easily
notice that if the magnitude of (# — u})/o;} increases from

(u%ax _'u;i)Z
(o)

(22)

(21), the infimum of ﬁf () will significantly decrease or
even become O if it satisfies (22). Nevertheless, it is worth
noting that the magnitude of (t — uf)/o} increases only
when the current time step #; deviates significantly from ,LL;».
In this case, we can observe from (5a) that the conditional
weight W;(t) of the corresponding Gaussian component
also significantly decreases. This means that the GMR pre-
diction result (4) is mostly contributed by other dominant
components. Accordingly, although we cannot guarantee the
confidence region of the j-th component remains within
the admissible control input ranges, its influence on the
overall conditional PDF is relatively small. In addition, since
the constraints (13) are also satisfied for du? = —u? ., the
analysis from (16) to (22) also holds for this case. This will
also be demonstrated through a numerical simulation in the
following section.

B. Stochastic Reachable Sets

In this subsection, we analyze the Mahalanobis distance
of the stochastic reachable sets based on the human control
behavior model .Z that satisfies the constraints (13). Given
the HITL system dynamics (1), the admissible control input
ranges (10), and the current state x;, one can derive the
boundary of the reachable sets at time step k+ 1 as:

R+ = Axy + Bdu,
Vou e {du e R"3|ou’|=ul,, del,...m}, (23)

With the human control behavior model .# that satisfies
(13), one can derive the one-step stochastic reachable sets
using (6) as [1]:

Wj(tk)N(Xk+| |Axy +B[:Lj(tk),BijBT)

™=

P(Xpi1) = (24

1

J
Same as (15), we measure the Mahalanobis distance from
the j-th component of the stochastic reachable sets to %
in terms of the d-th dimension of uy as:

Y (1) = min (s — 15(0)" (%) (B = B50)),

subject to [Qu!| =ul,,., Vd € [1,...,m], (25)

where

fj(te) = A + B (1),

8 . 26
%, =BE;B". (20)

By substituting (26) into (25), one can see that l//;l(tk) is
exactly equal to Bj‘-’(tk). Therefore, both the GMR prediction
results and the stochastic reachable sets based on the human
control behavior model .# are probabilistically constrained
in terms of the admissible control input ranges with a
confidence level that corresponds to ﬁj‘f (t).
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(a) Unconstrained GMM [17]
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(a) GMR predictions of unconstrained GMM
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(b) Constrained GMM

Fig. 1: Comparison of the Gaussian components between the
unconstrained and constrained GMMs

V. NUMERICAL SIMULATION
A. Simulation Environment

To demonstrate the effectiveness of the proposed algo-
rithm, we randomly generate 80 training sets and 30 vali-
dation sets using the following equation:

0.2(sin(z) + N(0,0.5))

—(cos(t) +N(0,05)) | @7

w () =
where #; is uniformly distributed within # € [0,10]s and
N(0,0.5) is the Gaussian noise term with mean O and
standard deviation 0.5. In addition, we intentionally sub-
stitute 7 with 7 +0.2 for 1/5 of the dataset to increase
the uncertainties. The state and input matrices of the HITL
system (1) are given as:

A {0.99 0

—-0.36 0.16

0 —0.2] ’ B_[ 4 —0.24]’ (28)
with the current state x; = [x;, 1,xk,2]T and the control input
u, = [uk71,uk72]T. The number of Gaussian components is
fixed as L = 4, and the desired confidence level is set
to be 6 = 99.7%, which can be changed as necessary.
The admissible control input ranges are u; € [—0.5,0.5]
and up € [—1.7,1.7], respectively, and we focus on the
reachability analysis within # € [0,10]s.

B. GMM Training

We encode the training dataset into two GMMs separately.
One is trained using the conventional EM algorithm [17], and
the other is trained with the confidence region constraints
(13) imposed.

Figure 1 shows the 99.7% confidence regions of each
component of the unconstrained and constrained GMMs,
respectively. The red ellipses represent the 99.7% confidence

0 2 4 6 8 10 0 2 4 6 8 10
Time[s] Time[s]

(b) GMR predictions of constrained GMM

Fig. 2: GMR prediction results comparison between the
unconstrained and constrained models

region of each component, the blue lines represent the
verification dataset, and the dashed lines represent the limits
of u1 and u 5. Figure 1b shows that the 99.7% confidence
regions of each component in the constrained GMM are
bounded within the admissible ranges of u; ; and uy >, while
those of the unconstrained GMM exceed the bounds at most
time steps, which can be observed in Figure 1la.

C. Prediction of Control Input Using GMR

This subsection presents the human operator control input
prediction using the GMR with the GMMs from the previous
subsection. In Figure 2, the green area represents the 99.7%
confidence bounds of the GMR prediction results (4), where
the probability of the state located within the bound is 99.7%.
The blue lines and black dashed lines are the same as in Fig.
1.

Fig. 2 shows that the prediction based on the unconstrained
GMM has a much higher chance of exceeding the admissible
ranges of u; 1 and uy» than the constrained GMM since the
significant portion of the 99.7% bounds (green area) of the
unconstrained GMM are over the admissible control input
bounds while that of the constrained GMM are all within the
admissible bounds. This can be easily observed at # € [2,8]s
for uy; and the entire time horizon for uy >, respectively.
On the other hand, Figure 2b shows a more concentrated
prediction that the 99.7% confidence bound of the prediction
is within the admissible control input ranges for the entire
time horizon.

D. Stochastic Reachable Sets

Given the current state x; = [0,0]7, the HITL system
dynamics (1), and the GMR prediction results from the pre-
vious subsection, we can compute the PDF of the following
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—reachable set = verification data

3r "
b ~ 3.71 x 1077
B ~ 64.50%

o /
Wy ~ 5.34 x 10710
B ~ 50.54%

Fig. 3: Reachable sets comparison between the unconstrained
and constrained models at #; = 4.3]s]

state Xgy1 as P(Xg4+1) using (6). As an example, Figure 3
compares the stochastic reachable sets at #;, = 4.3[s]. The
red quadrilateral is the boundary of the reachable sets based
on the HITL system dynamics and the admissible ranges
of ug; and ug,. The blue and green areas are the 99.7%
confidence bounds of the stochastic reachable sets using the
unconstrained and constrained GMMs, respectively. The blue
squares are the verification data, and the pink dashed lines are
the 99.7% confidence regions of each component of P(x;1)
based on the constrained GMM. As one can easily notice,
the proposed method results in the stochastic reachable
sets whose 99.7% confidence bound is well-included within
the boundary of reachable sets, whereas those based on
unconstrained GMM exceed the boundary.

Meanwhile, w is the weight coefficient (5a), and B is
the corresponding confidence level of the minimum squared
Mahalanobis distance from each component to the red
quadrilateral (25), where the subscript j = [1,...,4] denotes
the sequence of components. Although the 99.7% confidence
regions of two components exceed the boundary, their weight
is relatively low (#; ~ 1077 and 14 ~ 10710). Thus, the
resultant P(x; 1) is dominated by the other two components,
which remain within the boundary. This result aligns with
the analysis in the previous section that those components
with higher W are guaranteed to have a higher infimum of
B. Accordingly, the proposed algorithm is shown to yield a
more accurate prediction that can be applied to improve the
efficiency and reliability of HITL systems.

VI. CONCLUSION

This paper proposed a constrained reachable analysis for
Human-in-the-Loop (HITL) that can explicitly account for
the admissible control input ranges of the human operator.
We modeled the human control behavior as a constrained
Gaussian Mixture Model (GMM) by confining the confi-
dence regions of each component using Sequential Quadratic
Programming (SQP). Then, the control input of the human
operator was predicted using Gaussian Mixture Regression
(GMR) and the stochastic reachable sets were computed
using the Chapman—Kolmogorov equation. Through the nu-

merical simulation, we demonstrated that the GMM can be
probabilistically constrained within the admissible control
input ranges by a desired confidence level using the SQP-
based Expectation-Maximization (EM) algorithm. Further-
more, we derived the corresponding confidence level of the
GMR prediction results and the stochastic reachable sets,
which were also shown to be probabilistically constrained
within their corresponding admissible ranges.
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