Learning to Detect Slip through Tactile Measures of the Contact Force Field and its Entropy

Xiaohai Hu, Aparajit Venkatesh, Guiliang Zheng, Xu Chen University of Washington, Department of Mechanical Engineering

Motivation

- Robotic grasping and manipulation has found application in numerous industries.
- However, one of the biggest challenges in this field is detecting and preventing slip during manipulation.
- Slip can lead to dropped objects, damage to the robotic hand or the object itself, and safety hazards for nearby humans.
- Detecting and preventing slip is critical safe object handling.

Background

- Traditional methods of slip detection rely on either visual or force feedback, which prove to be unreliable.
- Tactile sensing has emerged as a better alternative due to rich contact surface information available.
- GelSight, an optical-tactile sensor, is able to provide surface contour and contact forces of contact surfaces.
- We use this rich information to develop a robust algorithm for slip detection and prevention by formulating slip detection as a classification problem by using sensor readings as features.

Hardware Setup

- UR5e robot fitted with custom machined metallic grippers to house GelSight mini sensor.
- Robotiq Hand-E robotic gripper used as the end effector for the UR5e robot.
- Robot controlled using ROS Noetic running on PC with Ubunutu 20.04.

Figure 1: UR5e robot fitted with Robotiq Hand-E Gripper adapted to house GelSight Mini

Methodology

- GelSight sensor outputs images which provide qualitative information about the contact forces and also surface contour as shown in Figure 2 • The image needs to be parameterized so they can be
- used as features for the classifier
- shear force
- change of the shear force.

Figure 2: Output from GelSight and Entropy as object starts to slip

- slip.

H(X)

• Arrows indicate the direction and magnitude of the

• The rate of change of arrows indicate the rate of

$$V_{x_i}(t) = f \cdot \left(D_{x_i}(t) - D_{x_i}(t-\Delta t)
ight)$$

$$\bar{V}_x = \frac{1}{n} \sum_{i=1}^n v_{x_i}$$

$$\bar{V}_y = \frac{1}{n} \sum_{i=1}^n v_{y_i}$$

• In prior research, the inhomogeneity of the marker displacement field has been used as a metric detect

• This inhomogeneity is called entropy, given by:

$$= -\int_X p(x)logp(x)dx$$

• Rate of change of entropy and entropy can be used as features for the classification problem.

$$f \cdot (E(t) - E(t - \Delta T))$$

Results

Classifie	r Accur	acy% Precis	ion% Recall%	% F1 Score%		Classifier	Accuracy	% Precision%	6 Recall%	F1 Score%
Logistic Regr	ession 52.	.25 10	0 0	0	\neg	Logistic Regressi	on 87.60	92.83	80.88	79.52
SVM	94.	.42 10	0 88.59	93.95		SVM	90.26	98.89	80.98	89.85
KNN	96.	.72 99.	34 93.93	96.55		KNN	97.61	99.88	95.23	97.50
RF	96.	.83 96.	83 94.66	96.69		RF	99.14	99.14	98.80	99.11
Macro Avg:	Screw driver	Tennis ball	Contact Solution	Mouse	Box	Highlighter	Toy Raccoon	Sponge	Toy Owl	Floss
Accuracy	99.63%	100%	100%	99.74%	99.35%	99.73%	99.35%	100%	99.44%	97.59%
Recall	99.60%	100%	100%	99.57%	99.35%	99.67%	99.34%	100%	99.34%	98.07%
F1 Score	99.61%	100%	100%	99.66%	99.35%	99.70%	99.34%	100%	99.38%	97.82%

Classifie	r Accur	acy% Precis	sion% Recall%	% F1 Score%		Classifier	Accuracy	% Precision%	Recall%	F1 Score%
Logistic Regr	ession 52.	.25 10	0 00	0) I	Logistic Regressi	on 87.60	92.83	80.88	79.52
SVM	94.	.42 10	0 88.59	93.95		SVM	90.26	98.89	80.98	89.85
KNN	96	.72 99.	34 93.93	96.55		KNN	97.61	99.88	95.23	97.50
RF	96.	.83 96.	83 94.66	96.69		RF	99.14	99.14	98.80	99.11
									U	
	Commentation of the second	Trunis hell	Contact Solution		REALISE		Ter Decision	Snorra		
Macro Avg:	Screw driver	Tennis ball	Contact Solution	Mouse	Box	Highlighter	Toy Raccoon	Sponge	Toy Owl	Floss
Accuracy	99.63%	100%	100%	99.74%	99.35%	99.73%	99.35%	100%	99.44%	97.59%
Recall	99.60%	100%	100%	99.57%	99.35%	99.67%	99.34%	100%	99.34%	98.07%
F1 Score	99.61%	100%	100%	99.66%	99.35%	99.70%	99.34%	100%	99.38%	97.82%

No Contact

Contact with Incipient Slip

Slip

Stable Grasp without Slip