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Abstract— This paper presents a comprehensive position
uncertainty analysis in a switched current amplifier-driven
precision positioning system with an integrated full-state control
structure. A mathematical system model is used combining
the mechanical, electrical, and magnetical subsystem and their
dynamic couplings. Further an internal quantization error
feedback in the state-observer of the control is proposed,
that reduces the unwanted effect of PWM-quantization on
the positioning uncertainty of the system. The presented error
budgeting analysis and practical experiments on a built proto-
type system demonstrate fast reference position tracking and
a steady-state positioning uncertainty of 0.6nm (rms), which is
an improvement by a factor of 65 as compared to conventional
control implementations.

I. INTRODUCTION

High-precision positioning systems play a critical role in
various high-tech applications, ranging from semiconduc-
tor manufacturing [1], atomic-force microscopy [2] to 3D-
printing [3]. These systems often rely on electromagnetic
Lorentz-force actuation, with its favorable properties such as
a linear force-current relation and quasi-zero stiffness, which
make it well-suited for precision positioning applications on
the nano-scale [4].

In Lorentz-force actuated positioning systems, the prevail-
ing control architecture involves cascaded structures with
inner current and outer position control loops [5]. For driving
the current in the actuator coil, switched current amplifiers
are preferred over linear amplifiers for their energy efficiency
and reduced heat generation [5], which is especially im-
portant in space constraint environments. However they are
still often avoided due to concerns related to their voltage
ripple and for electro-magnetic interference (EMI) reasons
[6]. Additionally they are more challenging to implement
than their linear counterpart, because more complex modu-
lation schemes and an advanced current sensing technology
is required. Especially, as the current measurement noise
emerges as a significant source of positioning uncertainty,
when closing the inner current-control loop [7].

For this reason major emphasis was taken on the de-
velopment of high-precise switched current amplifiers and
their control, e.g. by combining a Luenberger estimator
and a Linear Quadratic Regulator (LQR) for fast transient
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response and an outer frequency domain controller [8]. While
the focus in this study is on the amplifier errors itself, a
more general approach studies the contribution of current
amplifier errors in positioning systems by including the entire
mechatronic control loop in the analysis [9], [10]. By doing
so, also the effect of the position control dynamics and the
mechanical system on the resulting positioning uncertainty
can be studied.

The authors recently proposed a highly integrated model-
based control structure for a switched amplifier-driven nano-
positioning system [11]. In a dynamic error budgeting anal-
ysis, the dominant error sources affecting the positioning
uncertainty are analyzed. It is shown, that the positioning un-
certainty can be vastly reduced in comparison to a traditional
cascaded frequency domain control structure, by attenuating
the prevailing current measurement noise with the state-
observer in the control. While the positioning uncertainty
analysis in the study is focusing on the dominant error
sources, a comprehensive dynamic error budgeting analysis
including all possible error sources is beneficial for a deeper
understanding of the entire mechatronic system. A general
error budgeting framework is of great importance for scaling
the system to different sizes or to adapt for different applica-
tions, because the dominance of each error source can vary
depending on the specific system and controller parameters.

The contribution of this paper is the comprehensive anal-
ysis of different error sources affecting the positioning un-
certainty in a switched amplifier-driven precision positioning
system with integrated state-control structure. Additionally,
an internal quantization error feedback in the state-observer
of the control is introduced for uncertainty reduction.

II. SYSTEM DESCRIPTION

This section introduces the developed switched amplifier-
driven precision positioning system together with its inte-
grated state-control structure based on a mathematical system
model. A more detailed description of the system and the
model derivation can be found in [11].

A. 1-DoF Precision Positioning System

The developed precision positioning system together with
a compact custom made switched current amplifier is shown
in Fig. 1. It allows precise positioning of a mover in one
degree of freedom (DoF) by a Lorentz force based voice-coil
actuator (VCA). The mover is restricted in the non-actuated
DoFs by an aluminium flexure structure which is connected
to the base of the system. An interferometric measurement
system (IDS3010, AttoCube Systems AG, Germany) allows
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Fig. 1. Switched amplifier driven 1-DoF precision positioning system
actuated by Lorentz-force based voice-coil actuator (VCA) [11].

measurements of the mover position in the sub-nm range.
For the prototype the mover mass is kept as low as possible
to enable high accelerations. Additionally, lighter masses
are inherently more responsive to disturbance forces, which
makes the system well suited for evaluating the presented
error budgeting analysis and for showcasing the achievable
precision with the switched current amplifier.

The amplifier consists of a MOSFET full-bridge structure
with the VCA acting as the load in between two half-bridges,
which allows driving the VCA in positive and negative
direction with a single power supply Vs. The MOSFETs are
PWM-modulated and switched according to the respective
duty-cycles α1 and α2. Symmetric LC output filters on either
side reduce the current ripple and unwanted EMI effects. To
damp the resonance peak of the filter, additional snubber
circuits (Rs, Cs) are added.

B. Mathematical Modeling

The goal is to have a mathematical model which in-
corporates the mechanical and electrical dynamics of the
system from Fig. 1. For a generalized duty-cycle input α
with α1 = α, and α2 = 1 − α and under the assumption
of symmetric component values on both sides (L1 = L2,
C1 = C2, ...), the amplifier full-bridge circuit can be reduced
to an equivalent state-space averaged circuit model according
to Fig. 2 [11], [12]. With the supply voltage Vs and the

Fig. 2. Equivalent circuit model of switched amplifier for generalized duty-
cycle input α and mechanical system model as mass-spring-damper system.

generalized duty-cycle α the input voltage of the model
is expressed by upwm = (2α− 1)Vs, with α ∈ [0, 1].

The mechanical system is modeled as a mass-spring-damper
system, with the actuator force F acting on the mover mass
m. For the VCA-model the inductance, copper resistance
Rvca and the back-induced voltage into the coil uemf are
considered. Mostly a constant inductance is assumed, which
is however not the case in reality due to eddy-current effects
that lead to a reduction of inductance for higher frequencies
[13]. This effect is included by splitting the VCA model
in its electrical and magnetical domain, and by including a
"magnetic inductance" G into the flux path [11], [14]. The
coupling between these two domains is given by

Nivca = GΦ̇e +RmΦ , (1a)

uvca = Rvcaivca +N Φ̇ + uemf , (1b)

Φp =
GΦ̇e

Rp
. (1c)

Considering also the dynamical coupling to the me-
chanical domain, a linear state-space formulation of
the entire system can be derived with the state-vector
x =

[
ẋ x iL′ uc′ ucs′ Φ̇e Φe

]T
, the system input u = upwm,

and the output y =
[
x ivca

]T
[11]:

ẋ =

A11 0 A13

0 A22 A23

A31 A32 A33


︸ ︷︷ ︸

A

x+
[
0 0 1

L′ 0 0 0 0
]T︸ ︷︷ ︸

bT

u , (2a)

y =

[
0 1 0 0 0 0 0

0 0 0 0 0
G(Rm+Rp)

NRp

Rm

N

]
︸ ︷︷ ︸

C

x . (2b)

The dynamic matrix A is partitioned into the mechanical
part
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and the magnetical part

A33 =

[
a1 a2
1 0

]
, (5)

with

a1 =
− ((Rvca +R′

s)R
′
C +RvcaR

′
s) (Rm +Rp)

N2 (R′
C +R′

s)
− Rp

G
,

(6a)

a2 = −Rm ((Rvca +R′
s)R

′
C +RvcaR

′
s)Rp

GN2 (R′
C +R′

s)
. (6b)
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The dynamic coupling between the 3 domains is given by
the off-diagonal matrices

A13 =

[
Gkm(Rm+Rp)

RpNm
Rmkm

Nm

0 0

]
, A31 =

[−Rpkm

NG 0
0 0

]
, (7a)
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. (7c)

C. Integrated Control Structure

The integrated state-control structure is based on the
derived state space-model (2) and is shown in Fig. 3. A

Fig. 3. Integrated state-control structure including a linear quadratic
regulator (LQR) with additional integral state (I) and a kalman filter (KF) for
estimation of the unmeasured states. The a-priori known PWM quantization
error dq is internally fed back to the KF in every cycle.

combination of an LQR with additional integral compo-
nent (I) and a Kalman filter (KF) as state-observer are
implemented in a rapid prototyping system (MicroLabBox,
dSPACE GmbH, Germany). The measured actuator current
ivca is sampled by an analog-digital converter (ADC) and
the mover position x is transferred via a digital interface.
Due to the digital implementation of the control anti-aliasing
filter (GLP,i, GLP,x) are added. As the goal is to track a
desired reference position xd, the LQR is formulated in the
translated coordinates z = x − xs and u∗ = u − us, with
xs and us being the steady-state state-vector and control
input respectively, because the LQR usually stabilizes the
zero state-vector. With the derived system model xs and us

are given by [11]

xs =
[
0 1 k

km

Rvcak
km

Rvcak
km

0 Nk
Rmkm

]T
︸ ︷︷ ︸

X

xd , (8a)

us = k
RL +Rvca

km︸ ︷︷ ︸
U

xd . (8b)

For the control design the system model (2) is discretized
with the sampling time Ts = 1

fs
and an integrator state zI

is included

za =

[
z
zI

]
, zIk+1 = zIk + Ts

(
xd
k − x̃k

)
, (9)

forming the augmented discrete time system

zak+1 = Φazak + Γauk , (10a)
yk = Cazak . (10b)

The added state, which integrates the difference between
desired position xd and the position measurement x̃, assures
zero steady-state error due to model uncertainties or slowly
changing system parameters. Taking (9) into account, the
augmented state-space matrices result in

Φa =

[
Φ 0

−C1 0

]
, Γa =

[
Γ
0

]
, (11)

with Φ and Γ denoting the discretized dynamic matrix and
input vector of the system, and C1 being the first row of
the matrix C. This is, because for the integral part only
the position x̃ is considered. For this augmented system
a discrete LQR is designed for the state-weighting matrix
Q ∈ R8×8 and control output weighting R ∈ R with the
Matlab command lqrd. In a similar manner the KF is
designed with the noise covariance matrices Qn ∈ R7×7

and Rn ∈ R2×2 with the command kalmd. Given the state
estimate x̂k of the KF the control output uset is calculated
by

uset,k =
[
Kz KI

]︸ ︷︷ ︸
K

[
x̂k − xs

zIk

]
+ us . (12)

with K being the LQR gain. It is important to point out,
that for the control the difference between state-estimate x̂
and steady-state vector xs is used, because the LQR control
design is done in the translated coordinates z, and that the
steady-state control input us is added to the output of the
LQR.

Usually the measurements (x̃, ĩvca) and the control output
uset are directly used for the state-estimation in the KF. How-
ever, in some applications the quantization of measurement
signals can not be neglected and has to be considered in the
KF design [15]. In this case the output voltage of the con-
troller is quantized, because only a finite timing resolution
can be achieved with the digital control system and therefore
only certain minimum voltage steps can be outputted with
the switched amplifier. For the implemented direct PWM-
modulation scheme (constant switching frequency with vari-
able duty-cycle) this quantization voltage steps are defined
by the supply voltage Vs, the PWM switching frequency fs
and the clock-frequency of the digital system fclk according
to

qpwm = 2Vs
fsw
fclk

. (13)

The factor 2 results from the fact, that the entire positive
and negative supply range is covered with the full-bridge
topology (see Fig. 1). As the variables in (13) are known,
the quantization error dq = upwm − uset can be calculated
a-priori in each sampling step of the controller by

dq =

{
uset

qpwm

}
qpwm − uset , (14)
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TABLE I
SYSTEM AND CONTROL PARAMETERS

Parameter Nominal value Parameter Nominal value
L1 = L2 22.5 µH m 47·10−3 kg
RL1 = RL2 70mΩ k 4.1·103 N/m
C1 = C2 15 µF d 8.79N s/m
RC1 = RC2 10mΩ Vs 16V
Cs1 = Cs2 21 µF fs 50 kHz
Rs1 = Rs2 1.35Ω fsw 50 kHz
Rvca 5.36Ω fclk 100MHz
G 1.98·103 1/Ω fc 100 kHz
N 243 nsens,i 6·10−12 A2/Hz
Rp 1·108 1/H nsens,p 2·10−23 m2/Hz
Rm 3.47·107 1/H
km 12.87N/A
Q diag

(
1·107 ,4·1013 ,1, 1, 1, 1, 1, 5·1019

)
R 1
Qn diag

(
106, 2.5·109, 1, 1, 1, 1, 1

)
· 10−6

Rn diag
(
1·10−12 , 0.3

)

with {•} denoting the rounding operator to the nearest
integer value. For this reason it is proposed, to use the
quantized voltage upwm for the state-estimation instead of
the ideal control output uset. With the KF estimation gain L
the state-estimation equation follows with

x̂k+1 = Φx̂k + Γ(uset + dq) + L (yk −Cx̂k) . (15)

In Table I the identified system parameters and chosen
control parameters are summarized.

III. POSITION UNCERTAINTY ANALYSIS

To analyze the control systems positioning uncertainty,
dynamic error budgeting is used, in which the propagation of
different error sources through the control circuit is analyzed
in the frequency domain [16], [17]. Therefore the frequency
domain representation of the plant and the controller is
required, which will be introduced in this section together
with the error sources affecting the precision of the system.

A. Frequency domain representation

While the frequency domain representation of the plant
can be directly calculated from its state-space representation
(2) via [

Gxu(s)
Giu(s)

]
= C (sI−A)

−1
b , (16)

it is not as intuitive with the controller. The control circuit
from Fig. 3 is thus redrawn as shown in Fig. 4. The

Fig. 4. Block diagram for dynamic error budgeting including all modeled
error sources and frequency domain representation of system. The internal
quantization error feedback is represented by the transfer function Guq .

combination of KF and LQR+I control can be represented by
the transfer function Gur from the reference position xd to
the control output uset, and the transfer matrix Guy ∈ R1×2

from the measurement to the control output. These transfer
functions are derived by combining the z-transform of (8),
(9), (12), and (15) and solving for uset, resulting in [11]

uset = (1−KzΛΓ)
−1

(
KzΛL− KI

z − 1

[
1 0

])
︸ ︷︷ ︸

Guy=

Gux

Gui



[
x̃

ĩvca

]
︸ ︷︷ ︸

y

+(1−KzΛΓ)
−1

(
U +

KI

z − 1
−KzX

)
︸ ︷︷ ︸

Gur

xd ,

(17)
with the matrix Λ = (zI−Φ+ LC)

−1. The internal quan-
tization error feedback is represented by the transfer function
Guq , which is derived in a similar manner resulting in

Guq = (1−KzΛΓ)
−1

. (18)

B. Error sources

The positioning uncertainty of the system is influenced by
several error sources distributed across different locations, as
depicted with the red arrows in Fig. 4. Certain error sources
are of linear nature and can be accurately modeled as noise
sources with well-defined power spectral densities (PSDs),
such as the position measurement noise (dsens,p), and current
measurement noise (dsens,i). These values can be determined
by measurement or datasheet values. Considering that the
position and current are sampled with the sample frequency
fs they are multiplied with some factor ka to account for
aliased noise components with frequencies greater than the
Nyquist frequency fn = fs

2 of the control system. This value
is calculated based on the cut-off frequency of the respective
anti-aliasing low-pass filter (GLP,i, GLP,p) fc and with its
equivalent noise bandwidth fenb = π

2 fc [18]. It is assumed
that up to this frequency fenb the noise can pass the filter
with unity gain and afterwards is perfectly suppressed. The
additional aliasing factor is calculated by

ka =
fenb
fn

=
π

2
fc

2

fs
= π

fc
fs

. (19)

Another error source of linear nature are external distur-
bances (dext), which are dominated by vibrations of the
environment, which are transmitted to the mover via the
flexure and act as a disturbance force to the mover. These
vibrations can vary over time, but still a worst-case PSD can
be assumed for modeling the effect on the overall positioning
precision. This is done by recording the position signal x
with disabled controllers for several seconds and performing
a Fast Fourier Transform (FFT) on the time-domain data. It
has to be noted, that in this measurement also the position
sensor noise (dsens,p) is included, but this noise is sufficiently
low to justify this assumption.

47



Among the other category are the PWM-switching, and
quantization errors of the system, which only can be approx-
imated to a certain extent in the linear model. Additionally to
the PWM-quantization error (dq), which is already described
in the previous section (refer to (13)), also the quantization
of the analog-digital converter used for reading in the current
measurement adds an additional error to the system (dadc).
The quantization errors are approximated by a white fre-
quency distribution up to the nyquist frequency fn of the
system according to

PSDq =
q2

12fn
, (20)

with the quantization step size q.
Of course also the PWM-switching itself contributes to the

position errors (dpwm). In general the output spectrum of a
PWM-modulator is given by a carrier dependent spectrum,
a signal dependent spectrum and the input signal itself [19].
Due to the fact, that it is hard to predict the output spectrum
of the controller, and therefore the input signal of the PWM
modulator, only the carrier dependent spectrum up to the
5th harmonic of the switching frequency is considered in
this analysis. Furthermore it is assumed, that the control
bandwidth is sufficiently low in comparison to the PWM-
switching frequency fsw, and therefore no inter-modulation
occurs. The carrier dependent output spectral density, which
is added to the signal itself, is given by [19]

dpwm(f) =

∞∑
k=0

2Vs

π (2k + 1)
δ (f − (2k + 1) 2fsw) . (21)

The factor 2 at the switching frequency fsw results from
the used PWM-modulation scheme in the full-bridge circuit
from Fig. 1 [11].

The power-supply noise of the amplifier circuit (Fig. 1)
is modeled by adding dPS on the output of the switched
amplifier. As the VCA is the bridge-tied load between two
half-bridges which are supplied by the same supply voltage
Vs (refer to Fig. 1), the amount of noise on the VCA-voltage
is dependent on the duty-cycle value. For upwm = 0V,
which corresponds to a duty-cycle α = 0.5 both half-bridges
are switched synchronously, which eliminates this noise from
the VCA-voltage, whereas the worst-case is reached for
α = 1, in which one half-bridge is switched on permanently
and all of the noise is added to the VCA-voltage. As usually
a flexure guided positioning system is driven around its
equilibrium position (x = 0) the evaluation is done for the
case of α = 0.5. In Table II the modeled error sources with
their respective PSD calculation formula are summarized
together with the simplifications made in the analysis.

C. Sensitivity Functions

In order to calculate the position error contribution of
each error source, the sensitivity functions from each error
source’s locations to the position output has to be calculated.
The procedure is similar for all error sources and is demon-
strated in the following for the current measurement noise
dsens,i.

1) Set the input r and every error source except dsens,i
to zero (superposition principle).

2) Calculate the plant transfer functions Gxu abd Giu

from (2) and the controller transfer matrix Guy from
(17).

3) Use the block-diagram (Fig. 4) and solve for x(s)
depending on dsens,i(s) in the Laplace domain.

4) The error sensitivity function is then calculated by
Ssens,i(s) =

x(s)
dsens,i(s)

.
The error sensitivity function for dsens,i is given by

Ssens,i(s) =
GuiGxuGLP,i

1−GuiGiuGLP,i −GuxGxuGLP,x
. (22)

In Fig. 5 all sensitivity functions from each error source
location (refer to Fig. 4) are shown for the the given system
parameters from Table I. It is evident from the calculated

Fig. 5. Sensitivity functions from each error sources location to the position
x. Due to the internal quantization error feedback the quantization error is
reduced vastly in the lower frequency range (Sps vs. Spwm,q).

transfer functions, that beside the good attenuation of exter-
nal disturbances at very low frequencies due to the integrator
component in the control, the KF attenuates the current
measurement noise quite well, which is the reason for the
improved position precision as compared to a conventional
frequency domain cascade controller [11]. Furthermore, the
inclusion of the proposed internal quantization error feedback
(refer to Fig. 3 and (15)) improves the susceptibility to
PWM-quantization error in the lower frequency domain. This
can be seen by comparing Spwm,q to the power-supply noise
sensitivity function Sps, because without internal quantiza-
tion feedback, the quantization error enters the system at the
location of dps.

IV. EVALUATION

A. Simulation Model

To evaluate the modeled error sources, additionally to
the experiments on the prototype system (Fig. 1) a time-
domain simulation in Simulink (Matlab, MathWorks, CA,
USA) is performed, including all the non-linearities that can
only be approximated in the linear model, like the PWM-
switching, the quantization or the discrete implementation of
the control. The implementation details of each error source
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TABLE II
PSD CALCULATION OF ERROR SOURCES AND IMPLEMENTATION IN TIME-DOMAIN SIMULATION

Error source Power spectral density for DEB Simplification made Implementation in simulation
dsens,i nsens,ika,i - White noise source
dsens,p nsens,pka,p - White noise source
dps nps Noise depends on α White noise added in PWM-modulator supply
dext next nsens,p included in measurement Inject measured signal of ext. disturbances
dpwm

∑5
k=0

[
2Vs

π(2k+1)
δ (f − (2k + 1) 2fsw)

]
Only carrier harmonics considered (1-5) PWM-switching included

dadc
qadc
6fs

, qadc = FSR
2bit

= 20V
216

White-noise assumption Quantizer + zero-order hold

dq
qpwm

6fsw
, qpwm = 2Vs

fsw
fclk

White-noise assumption Quantizer before PWM-modulator

are listed in Table II. Each error source can be activated
and deactivated in the model, to evaluate the effect of each
error source on the position output separately, which is not
possible experimentally. Therefore the time-domain signal
of the simulation is used to calculate the frequency domain
uncertainty spectrum with the FFT for several simulation
runs with different activated error sources.

B. Evaluation of Dynamic Error Budget

With the PSD of the modeled error sources (Table II) and
sensitivity functions, the resulting PSD on the position output
x can be calculated for each error source by [20]

|PSDx,i(f)| = |PSDi(f)| |Si(f)|2 , (23)

with i referring to the respective error source and correspond-
ing sensitivity function. If it is further assumed that the error
sources are not correlated with each other, the total PSD of
the position output is simply the sum over all parts.

In Fig. 6 the square-root of the cumulative PSD is plot-
ted, representing the cumulative amplitude spectrum density
(ASD), which can directly be related to the resulting uncer-
tainty RMS-values. The solid lines represent the contribution
of each modeled error source to the output uncertainty and
the red dashed line represents the sum over all error sources.
The time-domain simulations are marked with circles and it
can be seen, that they match the theoretical analysis very
well, which confirms the underlying modeling assumptions.
However, for the PWM-switching the simplifications made
lead to the first error component at the 1st switching har-
monic at 100 kHz, whereas the signal dependent spectrum
is neglected. This leads to the deviation in the graph of
approximately a factor 2, but as the overall contribution
to the position uncertainty is a few decimal powers below
the other error sources this has no significant influence on
the total result. Another divergence can be observed in the
PWM-switching quantization error. The reason is, that for the
underlying assumption of white-noise quantization error, the
input signal of the quantizer has to be sufficiently higher than
the quantization steps itself, which is not the case for this
system. This leads to non-linear limit-cycling effects due to
the integrator included in the control and to an overall worse
error than predicted by the simple linear model [21]. This
error is also dependent on the steady-state position value,
as the necessary output voltage for holding this position is
located at different relative positions inside an output voltage
quantization step (refer to (13)). Despite the deviation, the

Fig. 6. Cumulative amplitude spectrum density (ASD) of position error
contribution of each error source via dynamic error budgeting (solid lines,
dashed line), together with results from time-domain simulation (circles)
and experimental result (red stars).

theoretical assumption can be used as a guideline during
system design, which however should be verified in time-
domain simulation. It is to note that the power-supply noise is
not visible in this graph because for the evaluated steady-state
operation point theoretically the noise perfectly cancels out
due to the PWM-modulation scheme of the current amplifier
(refer to Section III-B).

On top of the theoretical curves the measurement from
the experimental prototype setup is plotted with red stars,
confirming the validity of the simulation and theoretical
analysis, and showing an extraordinary low steady-state
uncertainty of 0.66 nm (rms).
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C. Evaluation in the time-domain

To evaluate the dynamics of the control and performance
of the proposed internal quantization error feedback, the re-
sponse to several 5 nm steps on the reference input is shown
in Fig. 7. The proposed integrated state-control scheme

Fig. 7. Response to 5nm-steps on the reference input xd. The integrated
state-control scheme shows a rise-time of 0.5ms. With the internal quan-
tization error feedback the positioning uncertainty can be improved by a
factor of 65 from 43 nm to 0.66 nm (rms).

shows fast reference position tracking with 0.5ms rise-time
in response to the negative 50 nm step. As predicted by
the sensitivity function Spwm,q from Fig. 5, the internal
quantization error feedback vastly improves the positioning
uncertainty by a factor of 65 from 43 nm to 0.66 nm (rms).
The achieved precision in the time-domain plot confirms
the results from the dynamic error budget analysis in the
frequency domain.

In summary, the effectiveness of the analytical dynamic
error budget analysis for the estimation of the positioning
uncertainty is successfully demonstrated in time-domain sim-
ulation and on an experimental prototype setup. Additionally
it is shown, that by introducing an internal quantization
error feedback in the state-estimator of the control, the
susceptibility to PWM-quantization errors can be reduced,
enabling sub-nanometer positioning uncertainty.

V. CONCLUSION

This paper presents a comprehensive position uncertainty
analysis for a switched amplifier-based high-precision po-
sitioning system with integrated full-state control structure.
The theoretical results from the dynamic error budgeting
analysis are validated by time-domain simulations and by
experiments on an experimental prototype system. With the
proposed control scheme extremely fast reference position
tracking with a rise-time of 0.5ms on a step-response
can be shown. Additionally the integration of an internal
quantization error feedback in the state-observer improves
the positioning uncertainty by a factor of 65 to 0.66 nm
(rms), enabling positioning resolutions in the sub-nanometer
range.
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