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Abstract— This paper presents a novel manipulation strategy
that uses keypoint correspondences extracted from visuo-tactile
sensor images to facilitate precise object manipulation. Our
approach uses the visuo-tactile feedback to guide the robot’s
actions for accurate object grasping and placement, eliminating
the need for post-grasp adjustments and extensive training.
This method provides an improvement in deployment efficiency,
addressing the challenges of manipulation tasks in environments
where object locations are not predefined.

We validate the effectiveness of our strategy through ex-
periments demonstrating the extraction of keypoint correspon-
dences and their application to real-world tasks such as block
alignment and gear insertion, which require millimeter-level
precision. The results show an average error margin signif-
icantly lower than that of traditional vision-based methods,
which is sufficient to achieve the target tasks.

I. INTRODUCTION

In the field of robotics, manipulation tasks that focus on
the precise picking and placing of objects pose significant
challenges, especially in environments where object locations
are not predefined. Achieving precise manipulation in these
environments requires advanced perception capabilities that
allow robots to adapt their actions according to the identified
object pose.

Traditionally, vision-based methods with color and depth
cameras or LiDAR sensors have been used to estimate the
pose of objects. However, these methods are often susceptible
to sensor noise and environmental disturbances, which can
affect the accuracy of manipulations. To overcome these
limitations, research has explored the fusion of different
sensing methods, including the novel application of visuo-
tactile sensors. These sensors typically utilize a flexible
elastomer material and a color sensor [1], [2], [3], [4]. It
enables the transformation of tactile data into visual images.
These sensor components are attached to the robot’s end
effector or the tip of a gripper. This configuration allows
for direct observation of the object’s contact state during
manipulation tasks.

Compared to traditional visual-based methods, such tactile
sensors provide improved manipulation accuracy. The direct
sensing of contact state through tactile feedback enhances the
robot’s ability to grasp and manipulate objects with greater
precision. This visuo-tactile sensors have been applied to
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Fig. 1. Displacement estimation based on keypoint correspondences from
visuo-tactile sensor images for pose adjustment in robot manipulation

various tasks including grasping, part identification, pose
refinement and stability assessment during manipulation,
although challenges such as the need for extensive training
[5] and object marking [6] for improved recognition remain.

This paper presents a novel manipulation approach that
uses keypoint correspondences from images captured by a
visuo-tactile sensor to guide manipulation. After extracting
feature descriptors from both the goal image and the current
acquired sensor image, we compare the values corresponding
to predefined keypoints in the feature descriptors of the
goal image with the similarities between the entire feature
descriptors in the acquired image. Following this comparison,
we proceed to select the point with the highest similarity
for finding correspondences. We conduct displacement es-
timation based on the keypoint correspondences and pose
adjustment for robot manipulation. This approach has two
advantages: it eliminates the need for additional adjustments
after grasping and eliminates the requirement for extensive
training, making deployment more efficient and faster.

The research has two contributions. Firstly, we propose
a method that uses keypoint correspondences from visuo-
tactile sensor data to enable precise manipulation without
the need for additional learning. Secondly, we demonstrate
the feasibility of this approach in real-world tasks, showing
its effectiveness and reliability in enhancing manipulation
precision.

The paper is organized as follows: Section II provides
a detailed explanation of the proposed method, explaining
the technical aspects and underlying principles. Section III
presents the experimental setup and results, validating the
efficacy of our approach across manipulation scenarios.
Finally, Section IV concludes the paper by discussing the
proposed approaches and their significance for manipulation,
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as well as suggesting future research directions.

II. MANIPLUATION WITH TACTILE KEYPOINTS
CORRESPONDENCES

This paper presents a novel framework for manipulation
using keypoints extracted from images captured by visuo-
tactile sensors. Keypoint correspondences have previously
been shown to be effective for object pose estimation and
adaptable across variations within object categories [7], [8].
Our research expands on this approach by utilising it for
visuo-tactile sensor data, allowing for accurate manipulation
tasks through focused interaction with the object of interest.

Visuo-tactile sensors have the advantage of focusing on
the object in contact, which facilitates accurate position
estimation. It also features self-illuminating components,
enabling superior performance even in changing lighting
environments. Additionally, our method utilizes foundation
models, which are pre-trained deep learning models capable
of understanding a wide range of data patterns and features.
These foundation models offer several advantages, including
their ability to identify features without requiring object-
specific training. This not only simplifies the process but
also enhances the system’s adaptability across diverse tasks
and domains, thereby increasing its versatility and usability.

Thus, our framework’s applicability to a wide range of
objects and tasks is greatly enhanced by this aspect, without
the need for extensive learning phases for each new object
category.

A. Overall Procedure

This section describes a two-phase manipulation process
that uses visuo-tactile sensing and keypoint correspondence
to achieve precise object handling. Our approach assumes
that when an object is grasped, its features, such as points,
lines, and textures, can be observed. These features can then
be aligned between two images to establish correspondences.
The proposed method is illustrated in Fig. 2 and detailed in
Algorithm 1.

Correspondence points are identified between the sensor
image acquired from human demonstration and the image
captured during actual execution. These points are then used
to calculate displacement, enabling pose adjustment based
on the obtained values.

• Demonstration phase: In the first phase, a human
demonstrates to the robot the grasp pose and grasping
width required to perform a specific task. Although sev-
eral approaches could be utilized for this purpose, our
method involves the demonstrator manually positioning
the robot’s gripper to grasp the object. This action
allows the visuo-tactile sensor to capture the object’s
shape, and keypoints are pre-defined and saved based
on this captured image. In this process, we acquire a
visuo-tactile image data Ig ∈ RW×H×C containing the
target pose suitable for a task, K keypoints with (u, v)
pixel coordinates kg = {ui, vi}Ki=1 designated by the
demonstrator, and the gripper width w ∈ R.

Algorithm 1 Manipulation Algorithm with Visuo-Tactile
Keypoints Correspondences

1: Initialize: Threshold for displacement τ
2: Demonstration Phase:
3: 1) Human demonstrator positions the gripper and cap-

tures Ig stores gripper width w.
4: 2) Define keypoints kg = {(ui, vi)}Ki=1.
5: Execution Phase:
6: 1) Attempt object grip and capture Ic.
7: 2) Process images through dense descriptor model:
8: fD(Ig) and fD(Ic).
9: 3) Apply correspondence function for finding correspon-

dences between kg and keypoints in Ic:
10: kc = fC(fD(Ig), fD(Ic),kg).
11: 4) Estimate displacement:
12: ∆P = EstimateDisplacement(kg,kc).
13: if |∆P| < τ then
14: terminate with success.
15: else
16: Adjust robot’s end-effector pose in the Cartesian

coordinate system by ∆P.
17: Go to Step 1).
18: end if

• Execution phase: In the execution phase, the robot at-
tempts to pick up the object using the approximate pose
information obtained with a sensor such as a camera.
It graps an object and then acquires a visuo-tactile
image Ic ∈ RW×H×C from the sensor and identifies
correspondences with the predefined keypoints kg .
Tactile images Ig and Ic are processed through a dense
descriptor model fD(·), followed by a correspondence
function fC(·), resulting in kc, which corresponds to
kg . Based on this correspondence, a displacement ∆P is
estimated, indicating the deviation from the target pose
for manipulation in the Cartesian coordinate system.
If the norm of the displacement |∆P| is below a
predefined threshold, the process terminates; otherwise,
the robot releases the object and adjusts its position
by the calculated displacement amount, repeating the
process as necessary.
This iterative approach allows a more accurate deter-
mination of the grasp position and manipulation by
taking into account how the object is held and ad-
justing accordingly. While a single attempt might fail
due to recognition errors, iteration refines the robot’s
perception of the object’s position and orientation. This
approach provides a refined strategy for manipulation,
combining visuo-tactile feedback with visual feature
matching to improve the accuracy and reliability of
manipulation.

B. Keypoints Correspondences

To build dense descriptors for the tactile sensor data at
the step 2 of the execution phase, we used the DINO, which
uses a pre-trained Vision Transformer (ViT) to extract deep
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Fig. 2. Manipulation process using keypoints extracted from visuo-tactile sensor images. The correspondence points between the sensor image obtained
from human demonstration and the image captured during actual execution are identified. Displacement is calculated using this correspondence, and a pose
adjustment is performed based on the value.

Fig. 3. Experimental setup. A GelSight Mini sensor, which is a visuo-
tactile sensor, is attached to the end-effector of the Franka Emika Panda
robot to acquire sensor data and estimate displacement.

features that serve as dense visual descriptors [9], [10]. These
features capture strong, well-localised semantic information
with a high degree of spatial granularity. Furthermore, the
semantic information encoded in these features is applicable
across a spectrum of related, yet distinct, object categories.
In this paper, we used the DINO method to generate dense
descriptors, but it is also possible to use other methods.

Depending on the characteristics of the object, more than
one keypoint may be required. However, this paper focuses
on using two keypoints to find correspondences, which is
sufficient for calculating two-dimensional displacement in
terms of position and angle. While three keypoints could
allow for three-dimensional displacement calculations, the
nature of visuo-tactile sensors limits the accuracy of depth
measurements, making two-dimensional information more
reliable for precise manipulation. However, since the number
of keypoints required for pose estimation varies from object
to object, it is necessary to adjust this parameter according
to the specific problem at hand.

Fig. 4. Objects for gear insertion task. A robot picks up gears and inserts
them into holes on a panel.

III. EXPERIMENTS

To investigate whether keypoint correspondences can be
extracted from visuo-tactile images, the precision of the
displacement estimation method, and whether this method
can be applied to real manipulation tasks, we conducted a
series of experiments.

Our experimental setup consisted of equipping a Franka
Emika Panda from Franka Robotics 1 with a GelSight Mini
sensor from GelSight 2 at the gripper end of the robot, as
shown in Fig. 3. This sensor captures contact information
within an area of 18mm×24mm at a resolution of 240×320,
which we adjusted to 224×298 for keypoint extraction. The
experiment was conducted using only one of the two sensors
attached to the robot. For feature extraction, we used the
DINO method with the ViT-S/8 model, with a step size of
4.

The task performed by the robot and the size of the objects
are shown in Fig. 4. This task involves picking up gears with
holes and inserting them onto a shaft. The experiment was
conducted with the gripper, equipped with sensors, grasping
the upper part of the gear.

1Franka Robotics, http://www.franka.de/
2GelSight, http://www.gelsight.com/
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Fig. 5. Example of successful keypoint correspondence. Keypoint matching
has been performed, associating the left corner of the object in the goal
image with the left corner of the object in a captured tactile sensor data.

Fig. 6. Example of unsuccessful keypoint correspondence. The keypoint
matching has incorrectly associated the left corner of the object in the goal
image with the right corner of the object in a captured tactile sensor data.

A. Keypoint correspondences

The first experiment aimed to verify the effectiveness of
extracting keypoint correspondences from images captured
by the visuo-tactile sensor, and to measure the deviation
of these keypoints from their ground truth positions. The
experiments are conducted targeting the task of grasping the
gear at the appropriate position to ensure successful insertion.
The robot’s end-effector was manually moved and oriented to
the pose where insertion should occur. At this pose, an image
acquired from the tactile sensor were set as the goal image,
and keypoints were manually defined on the goal image.

We positioned the robot’s end-effector at the pose and
moved it randomly in a range of +/- 5mm in x and z axis
to acquire test tactile images. The deviation between the
keypoints extracted from these images and those identified
by the operators was then evaluated. After extracting feature
descritors using the DINO from both the goal image and
the acquired sensor image, we compared the values corre-
sponding to predefined keypoints in the descriptor of the goal
image with the similarity between the entire descriptor in the
acquired image. Following this comparison, we proceed to
select the point with the highest similarity.

The displacement estimation error was calculated with (1),

derror =

∑N
i=1

√
(pixreal

− pixest
)2 + (pizreal

− pizest)2

N
(1)

where pixreal
and pizreal

are real position of displacement
which were measured from robot’s end-effector position with
kinematics information and pixest

and pizest are estimated dis-
placement calculated from suggested method, respectivley.

We conducted 10 experiments, and the average error was
1.29 mm and its standard deviation was 0.71mm.

We found that in most cases the displacement estimation
was succesed, as shown in Fig. 5. The left corner of the
object in the goal image has been matched to the left corner
of the object in the currently acquired image. However, when
only part of the object was visible, or when it crossed the
boundaries, keypoints corresponding to the opposite side
were detected, leading to errors as shown in Fig. 6. The left
corner of the object in the goal image has been incorrectly
corresponded to the right corner of the object in the currently
acquired image. One such case resulted in an error of 50
pixels, corresponding to an error of 3.75 mm. The limited
detection range of this sensor leads to ambiguity at the
boundary areas, resulting in such outcomes. However, this
error margin, which is relatively small compared to vision-
based methods, is considered sufficient to achieve the target
tasks using techniques such as impedance control, assuming
a rough alignment between features such as lines and points
in the captured and target images.

B. Manipulation tasks

To demonstrate the capability of the proposed method
for precise tasks, we conducted experiments on gear in-
sertion and block alignment tasks, both of which required
millimeter-level accuracy that could not be achieved with
external cameras alone. The method enabled alignment fol-
lowed by robot control via impedance control. The experi-
ments successfully confirmed the feasibility of both tasks, as
shown in Figs. 7 and 8. After gripping the object, the sensor
image was acquired, and the displacement was estimated
by performing keypoint correspondence. From the obtained
correspondences, the displacement is estimated. Based on
this estimated displacement, an offset adjustment is applied
to the robot’s end-effector pose, enabling it to re-grasp the
object and complete the task. In cases of insufficient pre-
alignment, the use of sensors such as force-torque sensors
and iterative search techniques or reinfocement learning are
necessary to achieve correct positioning [11]. However, our
method reduces the burdens associated with completing the
task, which is essential for applying the robot in real-world
applications.

IV. CONCLUSION

In this paper, we have introduced a manipulation strategy
that uses keypoint correspondences from visuo-tactile sensor
images to improve the precision of object picking and
placement tasks. This method not only reduces the need for
post-grasp adjustments, but also minimises the dependency
on extensive training, thus increasing deployment efficiency.

The experimental results have validated the effectiveness
of our approach, demonstrating that keypoint correspon-
dences can be accurately extracted from visuo-tactile im-
ages, with an average positional error low enough to allow
precise manipulation through techniques such as impedance
control. Furthermore, our method has proven capable of
performing tasks requiring millimeter-level accuracy, such as
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Fig. 7. Snapshot of gear insertion task using the proposed method

Fig. 8. Snapshot of block alignment task using the proposed method

block alignment and gear insertion, which are challenging for
traditional vision-based systems.

However, our method requires a rough initial alignment
and the presence of detectable features for successful key-
point extraction. This could be a limitation in scenarios
where such conditions are not met, suggesting the need for
further research into active alignment strategies. In addition,
the current approach requires predefined keypoints for each
object category, which could be a drawback when dealing
with new categories.

Future research will address these limitations through the
development of algorithms that can actively adjust the posi-
tion of the robot’s end effector for optimal feature extraction.
Additionally, automating the process of keypoint selection
for new object categories would increase the versatility and
applicability of our method, enabling robots to perform
more complex and varied tasks in dynamic and unstructured
environments.
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