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Background
Collision avoidance and mitigation
for small aircraft

1

▶ Visual-inertial navigation [1] >> high 
computational demand
▶ Mechanical resilience for impact 
mitigation [2] >> added weight
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simultaneously planning the shape and time profile of a trajectory, 
also called spatial-temporal trajectory planning, is crucial for safe 
and efficient drone flights. Despite this, such joint optimization 
has a historically difficult problem for multicopters, because the 
spatial and temporal parameters determining the trajectory together 
are highly coupled (38, 39), which, for example, results in ~40 min 
to compute a time-optimal trajectory (1). In the proposed approach, 
we achieve real-time spatial-temporal optimization by decoupling 
the spatial and temporal parameters in objective function com-
putation and achieving a linear complexity mapping between the 
optimized variables and intermediate variables that represent a 
trajectory.

Under the trajectory-planning framework, the task-specific re-
quirements of generating a trajectory can always be formulated as 
goals to reach; multiple objectives, such as shorter flight time, higher 
smoothness, and closeness to a given path; and constraints, such as 
collision avoidance and dynamical feasibility. For the first require-
ment, we build our planner under the goal-chasing scheme, which 
receives users’ goals continuously and keeps chasing the latest one. 
For the second and third requirements, the nonconvexity among 
them makes the optimization problem difficult to solve. To achieve 
high compatibility, we adopt the constraint transcription method 
(40) that converts all objectives and constraints to weighted penalties. 
Specifically, penalties derived from constraints are assigned with 
weights orders of magnitude higher than other objectives. Note that 
here, terms “objectives” and “constraints” refer to task requirements, 
while “penalties” are their relative mathematical formulations form-
ing the final cost function. The trajectory-planning problem can 
then be solved quickly by standard solvers leveraging sparse para-
metric optimization and constraint transcription. To simplify the 
situation, we provide detailed examples of adding task-specific ob-
jectives and constraints intuitively with preformulated general- 
purpose penalties (GPPs). GPPs consist of time minimization, 
smoothness maximization, collision avoidance, and dynamical 

feasibility, which are defined in Materials and Methods. This trajec-
tory planning framework is illustrated in Fig. 2D.

Except for the proposed trajectory planning, we adopt visual-inertial 
odometry running on each drone independently for aerial swarm 
localization. However, accumulative odometry drift may result in 
drone collisions when they continue to report, maintaining a safe 
distance, so we develop a decentralized drift-correction algorithm 
by minimizing relative distance error measured from onboard ultra- 
wideband (UWB) sensors.

As shown in Fig. 2 (A and B), each drone is equipped with full 
perception, localization, planning, and control functionalities and 
loosely coupled by a broadcast network sharing trajectories. Coinci-
dentally but reasonably, the proposed system is similar to birds 
capable of flying freely through the forest while avoiding obstacles 
and other moving creatures. For example, in short-range navigation, 
birds mainly rely on eyes and their vestibular system (41), and we, 
accordingly, develop improved visual-inertial odometry. Further-
more, birds adjust path and speed simultaneously to avoid collision 
while considering flight time and smoothness to save energy (35), 
and we thus propose joint optimization of spatial-temporal trajec-
tories with multiple objectives. Beyond the capability of small birds, 
we further use the advantage of our electrically powered artificial 
system characterized by high-fidelity wireless communication for 
trajectory sharing and high-speed computing for fast planning. 
Furthermore, decentralized coordination concerning both individual 
and swarm intelligence is met naturally by our solution, which im-
proves robustness. As Murphy (42) pointed out, weakly centralized, 
distributed organization of the swarm shows higher robustness and 
resilience and can even retain actions when communication and 
Global Positioning System (GPS) data are lost.

We propose a versatile multirobot navigation solution, allowing 
users to incorporate various task-specific requirements and also pro-
ducing locally spatial-temporal optimal motions in real time. The 
proposed solution is embodied on drones that are only the size of a 

Fig. 1. Overview of the proposed aerial swarm. (A) Static closeup. (B) Comparison with swarm gradient bug algorithm (SGBA) (8), flocking (29), and nonlinear model 
predictive control (NMPC)–Swarm (30). The ticks of each axis from the graph center to the outward are as follows: Optimality: handcrafted rules, optimized rules, spatial 
optimization, and spatial-temporal optimization; size: arm-sized and palm-sized; computing: offboard and onboard; weight: below 100 g, above 100 g, and above 1 kg; 
extensibility: task specific, tasks with specific formulations, and tasks that can be analytically modeled of decision variables.
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▶ Can we use existing sensors to detect 
vertical surfaces? (think ground effects)

2 Motivation
Aerodynamics-based approach [3,4]

3 Changing Propelling Force
Ducts make a huge difference!

▶ Near the 
surface, the 
thrust vector tilts 
toward the wall.
▶ Without the 
duct, the 
proximity effect 
is effectively 
absent.
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4 Wall Tracking Flight
The robot keeps its distance!

t = 0 s

t = 10 s

t = 20 s

t = 30 s

t = 40 s

t = 50 s t = 60 s

t = 70 s

t = 80 s

[1] X. Zhou, X. Wen, Z. Wang, Y. Gao, H. Li, Q. Wang, T. Yang, H. Lu, Y. Cao, C. Xu, and F. Gao, 
"Swarm of micro flying robots in the wild.", Science Robotics, vol. 7, no. 66, 2022
[2] J. Shu and P. Chirarattananon, “A quadrotor with an origami-inspired protective mechanism,” IEEE 
Robotics and Automation Letters, vol. 4, no. 4, pp. 3820–3827, 2019.
[3] Y. H. Hsiao and P. Chirarattananon, “Ceiling effects for hybrid aerial–
surface locomotion of small rotorcraft,” IEEE/ASME Transactions on
Mechatronics, vol. 24, no. 5, pp. 2316–2327, 2019.
[4] R. Ding, Y.H. Hsiao, H. Jia, S. Bai, and P. Chirarattananon, “Passive wall tracking for a rotorcraft 
with tilted and ducted propellers using proximity effects.” IEEE Robotics and Automation Letters, 7(2), 
pp.1581-1588, 2022.

6 References

5 Complex Environments
Collision-free reactive navigation
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