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Abstract— Exploration strategies of ground robots are often
applied in indoor structured environments. However, numerous
challenges persist in outdoor 3D unstructured environments,
particularly in rough and rugged terrains. This paper proposed
an autonomous exploration framework (SFRE) for ground
mobile robots in uneven environments. The realization of SFRE
can be broken down into three stages. First, the 2D traversabil-
ity grid map is obtained by analyzing the terrain features
of 3D uneven environments. Second, to improve exploration
efficiency, we partition the exploration space and utilize the
sparrow search algorithm to determine the visit order of each
subspace. Finally, to ensure that the robot explores unknown
regions safely, a new frontiers selection criterion that combines
the height and slope of the frontiers is proposed, which has not
been considered in previous methods for frontiers selection.
Experiments are conducted to validate the safety and high
efficiency of the proposed autonomous exploration framework.
All tests show a reduction of 27% in exploration time and
32% in traveling distance compared to the comparative method.
(Supplemented video link: https://youtu.be/-eVXv8Zx6VA)

I. INTRODUCTION

Autonomous robotic exploration aims to search for fea-
sible paths, guiding the robot to effectively explore un-
known spaces, and create and update its map. Autonomous
exploration has many functionalities, such as disaster res-
cue [1], target search [2], safety inspection [3], and so
on. Currently, autonomous exploration technology for two-
dimensional indoor ground mobile robots [4], [5] is relatively
mature. However, achieving autonomous exploration in un-
even terrains remains a challenge, which limits the effective
implementation of aforementioned functionalities. Therefore,
it is of great significance to enable robots to achieve efficient
and safe autonomous exploration in uneven terrains.

A. Related Work

In the past few decades, extensive research has been con-
ducted on enabling robots to autonomously explore unknown
environments. Many methods have been designed to achieve
this goal, with classical methods including frontier-based
methods and sampling-based methods.

Frontier-based methods utilize the frontiers of known and
unknown regions to guide the robot into unexplored spaces.
The core issue lies in selecting the frontiers to explore,
that is, determining the order in which frontiers are visited.
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Greedy selection of the nearest frontier often leads the robot
into small unknown spaces, reducing overall exploration
efficiency. Many researchers have improved upon greedy
strategies. For example, the work in [6] proposed repetitive
rechecking method and segmentation of structured indoor
environments, which is applicable only to environments
composed of several rooms and cannot be generalized to
uneven terrains. The work in [5] utilized global and local
frontier detector to obtain frontiers, enhancing efficiency
and ensuring probabilistic completeness, but it is limited to
two-dimensional environments. Moreover, neglecting terrain
features associated with frontiers can potentially lead the
robot into unsafe spaces in unstructured environments.

Sampling-based methods utilize viewpoints sampling in
the free space to guide the robot towards unexplored areas
by selecting a branche with the highest utility value. The
NBVP method [7] is a typical sampling-based approach that
employs Rapidly-exploring Random Trees (RRT) to generate
sampled viewpoints and calculates the information gain for
each viewpoint. However, this method lacks consideration
for global exploration strategies, often resulting in the robot
getting trapped in local regions and leading to insufficient
exploration. Additionally, the Dual-Stage Viewpoint Planner
(DSVP) method [8] extends the RRT more towards the cur-
rent exploration direction using a biased sampling scheme.
The process of evaluating the information gain of nodes by
searching for unmapped voxels requires a significant amount
of computation in these methods. Moreover, sampling-based
methods tend to overlook certain regions, especially nar-
row areas with small openings, resulting in incomplete
exploration. The work in [9] achieves fast exploration path
planning with low computational cost, but its application
in uneven terrains is limited due to the constraints of its
2D terrain-map functionality, which prevents it from finding
frontiers in unstructured areas.

B. Contributions

Inspired by the aforementioned issues, a novel autonomous
exploration framework is proposed specifically designed for
ground mobile robots operating in uneven terrains. In sum-
mary, the main contributions of this work are as follows:

1) A hierarchical exploration strategy called SFRE is
proposed, which provides a global route for the robot by
partitioning the unknown space and obtaining the visit order
of subspaces.

2) A new frontiers selection criterion is proposed to
prevent the mobile robots from entering hazardous areas by
considering both the height and slope of the frontiers in
uneven terrains.
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Fig. 1. The overview of exploration framework of SFRE

3) Extensive experiments are conducted to validate the
superior performance of the proposed framework, demon-
strating a reduction of 27% in exploration time and 32% in
traveling distance compared to the comparative method.

II. METHODOLOGY

Define S ⊂ R3 as the work space to be explored. Let
Sob ⊂ S be the observed known space and Sunk ⊂ S be the
current unknown space. As demomstrated in Algorithm.1, 2D
traversability grid map is generated by analyzing the flatness,
slope, and roughness of the terrain. Then, the multiple rapidly
exploring randomized trees are employed to detect frontiers.
The exploration space is divided into 9 regions of 3 × 3,
and the proposed method determines the visiting sequence
for each subregion and the frontiers within the subregion.
Exploration is considered complete when the number of
frontiers to be visited reaches zero.

Algorithm 1 SFRE
1: Constructing a 2D traversability grid map Map
2: Frontiers FRS ← Frontiers Detection(Map)
3: SPbest ← Global Subspace Division(SP0)
4: for N = 0,1, . . . ,n−1 do
5: if pi ∈ FRS and pi in spbest

N then
6: Compute the total gain T G(pi)
7: if T G(pi) > BestGain then
8: BestGain ← T G(pi)
9: end if

10: end if
11: end for
12: if number(FRS) = 0 or time limit then
13: Exploration Complete
14: end if

A. Terrain Analysis

The terrain analysis module obtains the normal vectors
and flatness of a plane through covariance analysis within a
specified fitted plane size range, and then the plane’s slope,
roughness, and height can be calculated. Based on these data,
a 2D traversability grid map is constructed.

The method of calculating the normal vector n of the
fitted plane P is presented in [10]. The plane analysis
module is designed to obtain information such as the flatness,
slope, roughness, and height of a plane, which can be used
for constructing a 2D traversability grid map and selecting
frontiers in subsequent steps.

(a) Plane Flatness: Plane Flatness f represents the scatter
of the point cloud for a fitted plane. It can be represented by
the surface variation

f =
λ0

λ0 +λ1 +λ2
, (1)

where λ0 ≤ λ1 ≤ λ2 are are eigenvalues of the covariance
matrix C for points in the fitted plane.

(b) Plane Slope: Plane Slope s reflects the steepness of
the fitted plane. s represents the angle between the normal
vector n of the fitted plane and the vector nz =[0,0,1].

(c) Plane Roughness: Plane Roughness r measures the
ruggedness of the fitted plane, which is proposed in [10].
The distance between the highest and lowest points in the
direction of the normal vector on the fitted plane is projected
onto the normal vector as r.

(d) Plane Height: Plane Height h is the distance between
the center point p of the fitted plane and the horizontal plane.

Based on this, s and h are used to select the frontiers for
exploration. f , s and h are used to assess the traversability
τ of the fitted plane

τ =

{
0, f < fcrit ∧ s < scrit ∧ r < rcrit
1, otherwise , (2)

where fcrit , scrit , rcrit are the maximum flatness, slope, and
roughness thresholds that allow the robot to traverse the fitted
plane. When τ = 0, it means the robot can pass through the
fitted plane, conversely, when τ =1, it means the robot has
difficulty passing through.

A 2D traversability grid map Map is constructed based
on the traversability τ of the fitted plane, similar to the 2D
occupancy grid map. When the center of the fitted plane can
be projected onto the terrain surface, its traversability can
be used to set the value of the corresponding grid. When
τ = 0, the grid is set to be free. When τ = 1, the grid
is set to be occupied. When the center of the fitted plane
cannot be projected onto the terrain surface, the value of the
corresponding grid is unknown.

B. Hierarchical Exploration Strategy

After constructing a 2D traversability grid map, the RRT
exploration is utilized to obtain frontiers. Then a hierarchical
exploration strategy is designed to visit the found frontiers,
including global subspace division and local frontiers selec-
tion.

1) Frontiers Detection: On a 2D occupancy map, there
are already many methods available for detecting frontiers.
The work in [5] is a classic method for extracting frontiers
on grid maps. Due to its probabilistic completeness and the
tendency of RRT to favor unexplored areas, we utilize it to
obtain frontiers (FRS).
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Fig. 2. The 2D traversability grid map and the detection of the frontiers

2) Global Subspace Division: After obtaining the fron-
tiers, the order of visiting these frontiers needs to be de-
termined. Since the number and position of frontiers are
varible during the exploration process, sorting all frontiers
on the entire 2D traversability grid map requires a signifi-
cant amount of computation, reducing the efficiency of our
method. As shown in Fig. 3, inspired by [11], we divide the
entire exploration space into 9 subspaces of 3 × 3, each of
which corresponds to a different part of the 2D traversability
grid map. Then, by determining the visit order of these 9
subspaces, the global guidance for autonomous exploration
can be provided.

During the exploration process, it is unnecessary to sort
all 9 subspaces every time. We select subspaces with a larger
number of frontiers and unknown grid cells as the subspaces
worth exploring. Therefore, we only sort the subspaces
that are worth exploring, reducing the computational load
for subsequent subspace sorting and improving exploration
efficiency.

When determining the visit order for the 3D uneven
subspaces, instead of simply prioritizing minimizing distance
as in solving the TSP problem, we balance exploration
efficiency and consistency of exploration routes to ensure
relatively short distances. The following requirements are
taken into consideration:

• Minimize total length as much as possible;
• Prioritize the visitation of subspaces with a higher

number of unknown grid cells;
• Ensure consistency between the newly solved route and

the previous route.

Assuming that the subspaces selected are defined as SP0 =
[sp0,sp1 . . .spn−1], we sort the centers C0 = [c0,c1 . . .cn−1] of
the grid maps corresponding to each subspace. n represents
the number of subspaces selected. To meet the aforemen-
tioned conditions, we apply the Sparrow Search Algorithm
[12] to determine the visitation order for each center. The
algorithm initializes with a sparrow population size of N,
comprising of explorers Ne, followers N f , and vigilantes Nv
in a ratio of 7:2:1. The maximum number of iterations is set

as Tmax. We define the fitness function as follows:

f = λuFunk(C)+λsFsim(C)+λl

n−1

∑
j=1

∥∥c j− c j−1
∥∥ , (3)

where λu, λs, and λl are constants, Fsim(C) is used to evaluate
the similarity between the current route and the optimal route
to ensure route consistency. We use the method proposed in
[11] to calculate Fsim(C). Funk(C) is used to calculate the
difference between the sum of unknown rates of the selected
subspace sequence in the first half and the sum of unknown
rates in the second half. Funk(C) can be computed by

Funk(C) =



n
2−1

∑
j=0

u j−
n−1
∑

j= n
2

u j, n%2 = 0

n
2
∑
j=0

u j−
n−1
∑

j= n
2+1

u j, n%2 = 1

, (4)

where u j =
Nunk
Nall

represents the unknown rate corresponding
to the subspace j. Nunk and Nall represent the number of
unknown grids and total grids in the traversability grid
map corresponding to the subspace, respectively. Funk(C)
can ensure that subspaces with a higher unknown rate
are prioritized for exploration, thus improving exploration
efficiency.

The optimal subspace sequence Copt is initialized as C0,
and the sparrow population is initialized by randomly swap-
ping the positions of two centers in C0. The position space of
each sparrow is n-dimensional. Calculate the fitness of each
sparrow, and then update the position of each sparrow. The
update formula for the position of each sparrow is consistent
with [11].

When the algorithm completes its iterations, the se-
quence corresponding to the optimal fitness is Cbest =[
cbest

0 ,cbest
1 . . .cbest

n−1
]
, and thus the optimal subspace access

order is SPbest =
[
spbest

0 ,spbest
1 . . .spbest

n−1
]
. The next step is

to determine the selection criteria for the frontiers of each
subspace.

Fig. 3. The result of global subspace division, with darker colors indicates
earlier visits to the subspace.

3) Local Frontiers Selection: After obtaining the visit
order for the global subspaces, the criteria need to be
established for selecting the frontiers within the subspace.
In contrast to the exploration of 2D structured environments,
we cannot solely prioritize maximizing the information gain,
as this may lead the robot into hazardous areas. With the
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premise of ensuring safety and exploration efficiency, we
have combined the terrain features near the frontiers to
propose the following criteria:
• Ensure the safety of the robot exploration process;
• Minimize the length of the exploration path as much as

possible;
• Efficiently explore information about unknown environ-

ments.
By considering the above factors, four indicators including

frontier height, frontier slope, information gain, and explo-
ration distance, have been defined. The definitions of these
indicators will be detailed below.

(a) Frontier Height: The frontier height FH(pi) is calcu-
lated based on the four-connected region near the grid where
the frontier point pi is located. FH(pi) is the average height
of the fitted planes corresponding to the free grid states
within the four-connected region.

In order to ensure that the robot first explores relatively
safe spaces while also identifying some non-traversable
regions, we prioritize the robot to visit frontiers with lower
heights, which is a significant difference compared with other
exploration methods.

(b) Frontier Slope: The calculation method for frontier
slope FS(pi) is similar to that of frontier height FH(pi).
FH(pi) is the average slope of the fitted planes correspond-
ing to the free grid states within the four-connected region.

A smaller FS(pi) indicates relatively flat terrain near the
frontiers, which is preferable for the robot to navigate. On
the other hand, a larger FS(pi) value suggests steeper terrain
near the frontiers, which is not conducive to safe exploration
by the robot.

(c) Information Gain: Information Gain IG(pi) is a mea-
sure of the size of the unknown space near the frontiers. We
use the number of other frontiers within a fixed radius near
the frontier point to represent the information gain. During
the exploration process, frontiers with higher information
gain have higher priority.

(d) Exploration Distance: Exploration Distance ED(pi)
is the distance between the current position of the robot and
the frontier point. Generally, the Euclidean distance is used
to represent the exploration distance. However, this is often
inaccurate since there are usually non-traversable terrain or
obstacles between the robot and the frontier point, causing
the actual distance traveled by the robot to be greater than
the Euclidean distance.

Fig. 4. Exploration Distance diagram. On the left: the green line represents
Euclidean distance, the blue line represents the distance calculated by A∗,
on the right: the actual movement distance of the car.

As shown in the Fig. 4, in uneven terrain, even if the

Euclidean distance between the position of the robot and the
frontier point is small, the robot may need to travel a long
distance to reach the frontier point in actuality. Therefore, we
use the A∗ algorithm to calculate the distance between the
robot and the frontier point on the 2D traversability grid map,
which approximates the exploration distance. After obtaining
the above indicators, we can calculate the total gain T G(pi)
of each frontier point in a subspace by

T G(pi) =
λiIG(pi)−λdED(pi)

λsFS(pi)+λhFH(pi)
, (5)

where λi, λd , λs and λh are coefficients of four indicators,
ensuring that they are of the same order of magnitude. We
then select the point with the biggest total gain BestGain as
our target point, send it to the motion planning module.

C. Supporting Modules

Fig. 1 shows the overview of the SFRE. Autonomous ex-
ploration tasks in uneven environments require the assistance
of multiple modules. In addition to the design of exploration
strategies, SLAM and motion planning are also indispensable
parts. A-LOAM [13] is a classic 3D SLAM algorithm that
can be used to construct 3D grid maps. PUTN [14] can
achieve robot motion planning in uneven terrains due to its
stability and safety.

III. EXPERIMENTS AND RESULTS

In this section, we conduct experiments to validate the
superiority of the proposed exploration strategy. The scout
2.0 is used as the ground vehicle platform for the simulations.
To ensure the smooth operation of the vehicle on uneven
terrain, the maximum speed is set to 0.5m/s. The simulations
are conducted on an Intel Core i9-13900 HX CPU and 16
GB RAM.

A. Simulation Experiments

Multi-RRT [5] is a classic 2D exploration method, and
we use it as a comparative method for exploration on a
2D traversability grid map. This can verify the following
two points: (1) to what extent the global subspace division
improves exploration efficiency, (2) whether the selection of
frontiers combined with terrain features ensures safety.

We have created three types of environments. Fig. 5(a)
resembles a valley, Fig. 5(b) resembles an uneven outdoor
environment, and Fig. 5(c) incorporates a cliff on top of Fig.
5(b) to test the safety of our algorithm.

By comparing our method with the comparative method,
we evaluate the exploration capability of our method. Each
method is run to obtain results from 10 complete explo-
rations, with the stopping criteria being either the vehicle
almost coming to a stop or reaching the time limit. The time
limit is set to 10 minutes.

Exploration Rate: Table I presents the statistical data of
the two methods in the simulation experiments. All indicators
are the average values of 10 experiments. ε1 represents the
average explored volume divided by the average time, while
ε2 represents the average explored volume divided by the
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(a) The uneven scene 1 (b) The uneven scene 2 (c) The uneven scene 3

Fig. 5. The simulation scenes and the trajectories generated by the two methods in them.The blue circle represents the starting point, and the red circle
represents the endpoint.

(a) Scene 1 (Fig. 5(a)) (b) Scene 2 (Fig. 5(b)) (c) Scene 3 (Fig. 5(c))

Fig. 6. Comparison of exploration progress of the two methods in the three environments depicted in Fig. 5. The mean and standard deviation of successful
exploration for 10 tests are shown.

TABLE I
RESULTS OF SIMULATIONS IN THREE ENVIRONMENTS

scene
size(m) method

exploration
time (s)

traveling
distance (m) ε1 ε2

avg std avg std avg avg
Scene1
30×30

Multi-RRT 431.66 74.63 156.99 26.87 1.88 5.16
Proposed 298.51 27.43 107.05 11.03 2.71 7.57

Scene2
20×20

Multi-RRT 220.57 17.31 84.07 8.66 2.05 5.41
Proposed 158.95 12.72 55.75 3.84 2.89 8.24

Scene3
25×25

Multi-RRT 334.72 49.37 126.11 17.51 1.68 4.44
Proposed 262.54 13.51 88.67 6.34 2.15 6.38

average traveling distance. For a more intuitive display of the
superiority of our method, Fig. 6 illustrates the exploration
progress curves of the two methods in the three scenes. From
Table I, it can be observed that our method significantly
outperforms the comparative method in exploration speed.
In all three scenes, our exploration time is reduced by
approximately 27%, the distance traveled is decreased by
around 32%, and ε1 and ε2 are improved by about 37% and
47%, respectively.

By considering path length, the extent of unknown areas
within subspaces, and path consistency simultaneously, our
method systematically visits each subspace to ensure com-
pletion of exploration before moving to the next, thereby
avoiding backtracking caused by leftover unexplored spaces.
In contrast, the comparative method only considers the size
of unknown areas near frontiers and the distance traveled,

leading to greedy selection of frontiers and resulting in
wastage of time and path. Each scene depicted in Fig. 5
displays the trajectories of the two methods. Our method
is able to systematically complete exploration of unknown
environments without generating a large number of chaotic
and disorderly paths.

Fig. 7. The robot falls off a cliff in scene 3 using Multi-RRT.

From Fig. 6, it can be observed that the volume we
explored is slightly higher than that of the comparative
method, and our exploration rate is also slightly higher. It is
worth noting that in scene 3, the early exploration rate of the
comparative method is higher than ours, which is due to the
fact that the comparative method does not consider the height
of frontiers and may initially ascend higher slopes, exploring
more unknown spaces. However, this may also lead to the
robot entering hazardous areas.
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(a) The outdoor uneven scene 1

(b) The outdoor uneven scene 2

Fig. 8. Results of real world experiments.

Exploration Safety: In scene 1 and scene 2, our method
and the comparative method complete exploration in the first
10 test runs. However, during testing in scene 3, we find
that the comparative method does not consistently achieve
successful exploration, with only 5 out of 10 test runs being
successful. As shown in Fig. 7, due to the presence of
frontiers at the cliff, the robot is guided into hazardous areas,
thus leading to the exploration failure. After conducting 23
experiments, we obtain 10 instances of successful outcomes
for the comparative method, as depicted in Fig. 6(c). Since
our method prioritizes selecting frontiers with lower heights,
it guides the robot to explore the unknown areas from the safe
side of the cliff, enabling it to discover the terrain features
of the cliff and then transform the unknown grid cells in the
traversability grid map into non-traversable ones. With this
strategy, the existence of frontiers at the cliff is effectively
avoided. Our method completes exploration in the first 10
test runs, validating the safety of the proposed method.

B. Real-World Experiments

A Scout 2.0 is used as an exploration platform, and it is
equipped with an NUC (NUC11PH, with an Intel Core i7-
1165G7 CPU and 32 GB RAM) and a Livox MID360. The
robot exploration range of the two experiments is limited
to 18 ×17 m2 and 6×26 m2 respectively. As shown in
Fig. 8, the starting point is marked with a blue circle, and
the white line represents the trajectory of the robot. The
experimental results show that the proposed method can
safely and efficiently complete the exploration of uneven
terrains, verifying the feasibility of the proposed method.

IV. CONCLUSION

In this paper, a hierarchical exploration framework for
uneven environments is proposed. Firstly, terrain features are
obtained through the terrain analysis of the fitted plane, and a
2D traversability grid map is constructed to explore frontiers.
Then, the global subspace is divided, and a global exploration
route is obtained through SSA. Finally, by combining the
terrain features such as height and slope to select frontiers,
they are used to guide robots into unknown spaces. Extensive
simulations in multiple scenes validate the effectiveness and
safety of our method in exploring uneven terrain. All tests
show a reduction of 27% in exploration time and 32% in
traveling distance compared to the comparative method.
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