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Abstract— A key aspect of robotic systems include the ability
to recover from an error and re-planning motion accordingly.
The widespread acceptance of robotics in various sectors of
society is inhibited by the degree of expertise required to
program even the simplest error recovery strategies. Previous
studies have addressed the complexity of robotics programming
through user-interfaces, though they were not intended for
novices or did not address error handling. This study discusses
a framework developed that acts as an Interactive Robot
Monitor and Control System (IRMCS), that allows non-expert
users to interface, understand and recover from errors in a
robotic process. The framework takes the form of a system
that is geared towards informing a user of a robotic process
through the means of an activity diagram that allows for visual
and intuitive human-robot interaction to support incremental
learning and error handling of simple pick and place tasks.
To evaluate the effectiveness of this approach, we conducted a
control experiment with four novice users. The results revealed
that by using the developed system, novices were able to recover
from errors and were unsuccessful in the control condition.
Furthermore, their subjective evaluation showed that these
non-expert users are highly receptive to understanding and
successfully implementing error recovery strategies in robotics.

I. BACKGROUND
Acceptance of robotics in society relies on a multitude of

factors such as error handling, usability, efficiency, technical
advantage and many more. This acceptance is further en-
hanced when robots can seamlessly perform tasks, provide
meaningful assistance, and interact in a manner that feels
natural and comfortable to users. The objective of robot pro-
gramming is not only to generate predetermined behavior, but
also to anticipate and recover from errors that occur during
such behavior. Ultimately, robot programming is therefore
an activity that is limited to domain experts rather than
novices. Therefore we have identified a need in defining a
system that enables users to understand robotic processes and
interact simply. Related works have elaborately tackled both
error handling as well as improving human-robot interactions
(HRI).

A. Error Handling

Error handling has a tendency of taking up a majority of
robotics design, especially in an HRI context as user input or
actions are often unpredictable. In [1] it is demonstrated that
having a set solution pool available upon anomaly detection,

1Johann Darboven is a graduate student with the Faculty of
Precision Engineering, The University of Tokyo, Tokyo, Japan
darboven@g.ecc.u-tokyo.ac.jp

2Ryota Takamido and Jun Ota are with the Research into Arti-
facts Center for Engineering (RACE), School of Engineering, The Uni-
versity of Tokyo, Japan takamido@race.t.u-tokyo.ac.jp,
ota@race.t.u-tokyo.ac.jp

a scheduler can allow for transitions between error recoveries
in real-time (during execution). The effectiveness of such
an approach alleviates a designer’s workload significantly as
different modalities can be chosen to deal with anomalies
without the necessity of diagnostics at an initial stage.
Research that clearly divides robotic actions into stratified
robotic movements called ”primitives” [2] has shown promis-
ing results in breaking down error handling such that error
recovery strategies can be tailored to each primitive. Primi-
tives include movements such as ”approach”, ”lift”, ”grasp”
or ”home” (referring to returning to a calibrated position in
the robotic workplace). These primitives were also visualized
in a flowchart to improve readability and despite the goal
of finding improved error recovery strategies, [2] implicitly
paves the way to explainable robotics by breaking down
complicated background processes and applying tailored
error recovery solutions to high-level motions.

A holistic approach is presented by [3], as multiple error
states are treated with the same error recovery strategy as
these may overlap even when the source of error differs. The
benefit of reducing error recovery strategies lies in simplicity
of practical application such that new error modes are not
necessarily causing the system to derail. In [4], technicians
interact with high-level programming interfaces to attempt
simple error recovery strategies though some expertise with
the robots is required. A culmination of literature has both
proven that handling of errors in a simplistic way improves
usability and also that high-level abstraction of tasks is
beneficial to both experts and novices.

B. Process Modelling

Process modelling is the visual or graphical represen-
tation of workflows that has attempted to make robotics
more attractive and digestible to the general public. Process
modelling can be a powerful tool with respect to error
handling as it can be leveraged to pinpoint error states or
even causes in order to facilitate recovery and handling
of robotics. Common examples include unified modelling
languages (UML) or unified modelling languages suitable
for programming (UML/P) [4], [5], task-graphs [1], [6],
Petri-nets [7] and flowcharts [3]. Generally these graphing
tools are used for two purposes; informing/visualizing a
process and allowing some interface to bypass hard coding.
Whilst [4] and [5] have taken a modular interactive user
interface approach to their modelling process, certain degrees
of expertise are required to not only understand levels of
abstraction but also sequencing actions. In [1], [6], sequenc-
ing of actions and expertise in terms of generating such
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is largely simplified for non-experts however, task-graphs
display degrees of information such as decision states, nodes
and parallel actions that may be better suited for well-versed
robotics/software engineers only. Petri-nets similarly prove to
be a useful tool for designing parallel processes in robotics
and allow for easy implementation of modular sequences
as in [7], though more complicated actions tend to require
deeper understanding of Petri-net models.

C. Learning from Demonstration

Learning from Demonstration (LfD) is a practice by which
a human operator demonstrates an ideal motion for a robot
to follow, not too uncommonly in the case of errors as
well. Although LfD can take many shapes or forms, most
commonly, verbal and physical cues are implemented. The
merit of LfD and even Programming by Demonstration
(PbD) has widely been documented [1], [6], [8], [9], [10].
Studies like [9] and [10], sufficiently support their claims
to the merit of LfD. Most explicitly these studies discuss
the benefits of kinesthetic teaching, the ability to physically
instruct a robot by either demonstrating a task or guiding a
robot into positions by explicitly moving joints or hands. In
the case of [10]’s case, human demonstration was even used
as the ”golden standard” to teach a robot with a sampling-
based approach to imitate human motion.

In error recovery scenarios however, sometimes it suffices
for a singular way-point to be demonstrated, instead of an
entire trajectory such that a motion planner invoked can solve
the remaining path in avoiding collisions or obstacles.

D. Usability

Finally, usability is a key concept in any HRI. It en-
compasses the ease of use, intuitiveness, accessibility, and
efficiency of interactions between humans and robots. Ac-
cording to [11] usability is positively correlated with HRI-
trust and in turn increases an individuals’ willingness to use a
robot. In lieu of these findings, [12] concludes that although
usability can tackle technological limitations, standardized
benchmarks are pertinent to identifying bottlenecks of us-
ability and acceptance. The study conducted in [13] outlines
a robot mimicking actions through the use of wearable sensor
gloves. In line with the previous studies, it is unclear whether
this approach is preferable to novice users or is mostly aimed
at simplifying a robotics engineers’ responsibilities.

II. SYSTEM FRAMEWORK

The purpose of this system framework is to allow robotics
to be more easily accessible to novice users, especially when
it comes to error handling. A problem that previous literature
touch on is the complexity of imitating human motion and
the incorporated processes which poses the question whether
HRI should be geared towards improved human imitation or
adaptation. Adaptation focuses on tailoring a robot systems’
capacities to a humans capabilities rather than the inverse. We
propose an interactive robot monitoring and control system
(IRMCS). The IRMCS error handling and improved usability
to a robot system that is adapted to a novices’ capabilities

Fig. 1: IRMCS Framework with user-interface, data-flows
between monitoring and control processes and visualization.
An activity diagram, error messages and robot states are
updated in real-time

rather than managing a users interaction with a robot in
accordance to its limitations.

Figure 1 shows the overview of the proposed framework
IRMCS. The IRMCS incorporates error handling and motion
planning abstracted to a high-level overview that permits
novices to interact with a robotic system in a novel way.
The activity diagram shows the robot primitives in real-time
and updates based on user input. Furthermore the IRMCS
tracks ROS planning and sensor messages to update the user-
interface and post visual clues in the simulation space (Rviz).
Finally, all actions conducted by the user are tracked and
posted to the user-interface such that all abstracted low-level
actions are posted as simple actions such as a ”Reset” or a
”Collision object added to the scene”.

The system was designed with usability in mind. We
consider usability based off of four categories:

• Ease of Use - the ability to interact with the system and
robot effectively,

• Prior Knowledge - whether using the robot or system
requires any domain expertise,

• Understanding - comprehension of displayed informa-
tion and actions carried,

• Time - Total elapsed time required to complete a task.
The IRMCS was built using a Franka Emika Panda 7-DOF

(Degrees of Freedom) arm in the Robot Operating System
(ROS) and leverages the standard simulation and visualiza-
tion tool Rviz. The MoveIt motion planning framework was
used and the system was developed in pythonic code. The
system is meant to be applicable in environments that do not
have rigidly defined scenes and are more prone to errors.

A. Simplified Activity Diagram

Though classic activity diagrams can be highly informative
to the designer, confusion may arise in real-time scenarios
when a novice interfaces with a robotic system. To mitigate
information loss and clarify when action is required of the
user, the activity diagram in Fig. 1 has been designed for
the purpose of an experiment. Here, the GUI has been
abstracted to include only user-relevant information. Green,
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yellow and red colours indicate that a task is completed, is
in progress or has failed, respectively. The success of the
activity diagram is defined by a users’ ability to understand
a process and extrapolate a possible source of error as
highlighted by motion primitives. The GUI, or IRMCS,
streams information about error statuses and processes in
real-time. For simplicity, the Activity Diagram includes a
total of six, task abstractions. Users can follow along in real-
time as a robot goes to a home location, opens its hand,
approaches an object, moves to a grasp location, grabs the
object and places an object. The tasks are abstracted by
setting a set of constraints including a known home location,
virtual gripper limits and attachment checks (object attached
check in ROS), as well as displacement checks. A separate
thread in the system continuously iterates to confirm whether
a threshold of these constraints has been crossed to update
the Activity Diagram.

B. Error Classification and Recovery

In ROS and typical robotics applications some common
errors or error sources include:

• Motion Planning Errors,
• Collisions with Obstacles,
• Environmental changes
Although there are various methods to deal with such dy-

namic circumstances and errors, most commonly a designer
will adapt by inspecting the system log (ROS log text),
updating trajectories and goal states, updating the motion
planner and planning scenes, defining joint configurations,
adding intermediate goals for testing and many more similar
approaches. In a defined processing thread, the IRMCS,
leverages opencv and tesseract, open-source libraries that
help process visual inspections of a query state that the
simulation in Rviz provides. The joints display is captured,
converted to binarized gray-scale images and converted to
strings to read a joint degree value that is stored and passed
to the robot manager to either create an obstacle or new
trajectories.

Motion planning errors are commonly posted as nodes
that can be inspected (”subscribed to”) and are visible in the
command log of the initialization of the ROS planning scene.
Common error logs as published by ROS are posted in Fig
2. A separate thread in the system iterates through this log to
identify these common error messages and suggest a number
of solutions. To alert a user of collisions or failed grasps,
sensor messages from the robots’ description are passed as
messages to the IRMCS, which a user can either respond to
by avoiding obstacles, retrying motions or defining restricted
movement zones.

Similarly to the ROS log, these messages can be sub-
scribed to and passed to the IRMCS. The system uses a
naive string matching algorithm that searches for keywords
such as ”goal tree”, ”insufficient” and matches these to a
limited database of experimentally determined words indi-
cating sources of error. The algorithm organizes the sought
out strings by severity and passes error-level messages to
the user and then based on the warn- and info-level message

[ERROR] [1693914500.522907380]
panda arm/panda arm: Unable to
sample any valid states for goal
tree [INFO] [1693914500.522998174]
panda arm/panda arm: Created
1 states (1 start + 0 goal)
[ERROR] [1707138963.881788661]
panda arm/panda arm: Insufficient
states in sampleable goal region
[WARN] [1707138963.88196226]
ParallelPlan::solve(): Unable to
find solution by any threads [INFO]
[1707138963.906282313] ABORTED:
TIMED OUT

Fig. 2: ROS log example lines indicating either self-
collisions, obstacles collisions or planning time outs.

makes an appropriate action suggestion which in turn most
commonly suggests a reset and new configuration of goal
joint trajectories for the sake of simplicity. In the case of no
matches, a persisting error triggers the robot to return to a
safe position.

Finally, environmental changes may cause errors, unseen
error states, or require an updated definition of actions.
A separate thread enables a user-defined collision object
(obstacle) to be added to the planning scene through the
IRMCS with the simulation space. The reasoning is that these
error handling methods not only generalize the indefinite
error sources that a designer usually is faced with but
also abstract the expertise to improve understanding of a
task. The strategies to deal with errors are not designed
to imitate human motions rather than adapt to what a user
and especially a novice to robotics is capable of intuitively.
Instead of exactly locating an error source a novice is more
likely to understand an error recovery strategy if the solution
proposed is simplified to primitive actions.

III. EXPERIMENTAL PROCEDURE

To verify the effectiveness of our proposed framework
(IRMCS), four volunteers, two male and two female par-
ticipants in the age range 24-32 years were selected. The
subjects have no programming or robotics experience. This
experiment consisted of comparing the outlined system to
a control experiment in a standard pick and place task.
Participants (P1-P4) were required to observe a task and fix
one or more errors as described in Section II-B.

A. Pick and Place Task

For a simple standard pick and place task, four different
scenarios were developed. An example of such is depicted
in Fig. 3. In an Rviz simulation setup, two counters and a
box are used to define the start and end goals of the object
of manipulation respectively. A video of the ideal scenario
is shown for explanation such that users understand what the
objective of the task is. The four scenarios are as follows:

1) Simple pick and place task with defined start and end
goals
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Fig. 3: Franka Panda arm in Rviz. Left: Start position of box
placement, Right: Goal position of box placement on top of
a user-created collision object.

2) Pick and place task with an added obstacle unknown
to the motion planner

3) Pick and place task and a definition of an obstacle
4) Pick and place task with a definition of an obstacle

and an undefined goal position

Given that industrial work environments already require a
high degree of error handling to be implemented, it is
hypothesized that a less defined work environment is worth
studying as both non-expert users and variable conditions
typically lead to more error states.

B. User Requirements

Assuming that the most effective and highest scoring
usability will be accredited to systems that require the least
amount of time of completion of a task and amount of
supplementary knowledge, the users’ role was defined with
simplicity in mind. Imperative to completion of a task is
reading and following instructions such as ”Push ’Start’” or
”Drag the robot hand using the mouse to a desired loca-
tion”. Since the experiment was conducted in the standard
ROS compatible Rviz simulation environment, the closest
LfD method that resembles kinesthetic teaching is manual
manipulation of the robot by moving either individual joints
or moving an end-effector to a target location using a mouse.
In each of the experiments a starting motion is demonstrated
after which either a motion planning error, a collision or an
environmental change error is detected. The IRMCS then
suggests to either solve the error by dragging the robot
arm to a safe position, defining a restricted area, resetting
the robot and moving to a different goal position or by
creating an obstacle by moving the robots’ end-effector to
three different positions in the simulation space to define its’
limits. The activity diagram updates in real-time between
yellow, green, red or transparent box colors to inform the
user of an ongoing, completed, failed or not started process
respectively (see Fig 1). The GUI includes two separate
message boxes for instructions and process updates. Using
the IRMCS, novices are empowered to add obstacles to the
planning scene, define off-limit zones, edit goal positions
and correct a multitude of errors that may arise for different
reasons.

TABLE I: METRICS SUMMARY
Metric Description

Attempts Number of times the user attempted a motion
before succeeding

Path Length(rad)
Effort in euclidean distance, a measure of rotation

added up amongst all joints in the kinematic
chain of the robotic arm

Execution
Time(s)

Amount of time elapsed between the start of an
experiment until the object is placed or a user has

given up

Usability

A measure defined by a points system in which
the participants evaluate the experiment based on
ease of use (10 points), knowledge required (10

points, more points indicate less knowledge
required), understanding of the robotic process

(10 points) and total elapsed time (5 points)

C. Control Experiment

To compare the usability of the IRMCS to manual coding,
a control experiment was conducted. The control experiment
(i.e. the status quo), ROS and python coding is briefly
explained to the participants as well as the relationships
between ROS, the simulation (Rviz) and the code. Users
were given full access to online resources, including google,
chatgpt, stackoverflow and rosanswers. Requirements are to
equally complete the four tasks and errors that show up
on either simulation space, ROS log or command line that
indicates the error modes outlined in Section II. The users
were given as much time as they needed and the option to
give up whenever they reached an impasse.

D. Metrics

In order to evaluate the success of the system in this
experiment, metrics were derived and adapted from [14],
which uses a bench-marking test with a block robotics pick
and place task. Table I shows a summary of the metrics.
Usability is scored out of 35 points and determined from
the user survey. Time elapsed is weighed less, given the
difficulties of comparison between a control experiment and
the system.

In the Results & Discussion section, path lengths of each
user are compared to the ”ideal” outcome, in which the
designer completed the task as intended by coding and fixing
errors with the traditional approach.

IV. RESULTS AND DISCUSSION

The success rate of the control experiment was 0%
amongst all four candidates whilst in our system it was 94%
(15/16 successful conditions). From the feedback gathered
in our survey, participants noted that usability was high and
understandable. The control condition revealed that planning
motion, re-programming and teaching a robot is too compli-
cated for novice users as expected. Being able to search for
answers is also an intrinsic skill that robotic programmers
develop with experience and domain expertise. The IRMCS
results on the other hand, demonstrate that novices can
interact with a robotic system on a higher level and are able
to perform basic motion planning and error handling tasks.
The experimental results are derived from the simulation data
and the user survey collected after completion of all tasks.
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Fig. 4: Total Path length plotted that each participant created
for the robotic tasks compared to an ”Ideal” professionally
planned program.

However, since participants were unable to successfully plan
motion or recover from error states in the control condition,
we excluded the data and compare the IRMCS experimental
results with an ideally programmed result by a robotics
expert.

A. Simulation Results

In Fig. 4, Experiment 1-4 refers to the scenarios outlined in
Section III-A. The path length refers to the added path length
the robot arm covered over each consecutive primitive/move.
Users were able to finish Experiment 1 in 1 attempt with
5-6 moves, Experiment 2 in 3 attempts with 5-6 moves and
Experiments 3 and 4 in 2 attempts with 5 moves. The ideally
programmed path takes 4 moves for each experiment. In
Experiments 1-4, each and every participant was successful
in creating new robotic movements, interacting with the
simulation environment in a meaningful way and understand
the high-level processes. In Experiments 1-3 participants had
to make sure the block would be placed on the opposite
diagonal of the counter. Experiment 1 shows that all partici-
pants completed the task in 5 or 6 moves within 4 minutes,
all participants were also able to complete this task within
one try. In the second and third experiment the path was
blocked and all users with the exception of one were able
to avoid the obstacle by adding intermediary goals or add
collision objects to the planning scene to automatically do
so. In the last experiment, depicted by Fig. 3 three out of
four participants were successful in defining an obstacle and
placing the block on top of said obstacle. In the third and
fourth experiment however, two participants required 3 and
4 trials until completion. The experimental evaluation shows
that at the slight cost of increased path length/effort, a novice
was able to understand a robotic process at a high-level as
well as interact with the IRMCS to fix errors. Furthermore,

TABLE II: TIME AND PATH LENGTH DIFFERENCE
Experiment Path Length Diff. Execution time(s)

1 48% 224
2 36% 189
3 52% 327
4 69% 446

TABLE III: USABILITY SURVEY RESULTS
Variable IRMCS Control

Ease of Use 7.75/10 1.25/10
Prior Knowledge 5.25/10 1.25/10

Understanding 8.25/10 2.50/10
Time 2.75/5 1.00/5
Total 24/35 6/35

the fact that participants 1-4 were able to add at least 1 way-
point in each task on the way to the desired location suggests
that users knew what to expect when moving a robot though
clear trajectories were not defined.

Table II, shows the increase in path length between the
average participants’ created paths compared to an ideally
programmed path. The execution time is also an average of
the time from start to completion of a scenario including
the user-end developed error handling methods. Given that
the novices participants demonstrated an ability to re-plan
motion and recover from an error, the moderate percentage
increase in path length to an ”ideal” scenario, which is based
off of a motion planners ability to connect one point to
another, is commendable. Most novices chose to plan their
motions to move the robot somewhere between the start
and end goal and even when outside of a given threshold
tolerance this contributed to a trajectory that had the purpose
of achieving the goal. Comparing to the status quo, where
all participants gave up after 11 minutes of no successful
motion plans, execution time is also a noteworthy marker
that the IRMCS was able to perform well at.

B. User Survey

Users evaluated the usability of the system and the usabil-
ity of the control experiment. In Table III, usability scores
amongst the four categories defined in Section I-D were
averaged for both the IRMCS experiment and the control
experiment amongst all four participants. The IRMCS scored
particularly high in the ”ease of use” and ”understanding”
category which implies that the system was intuitive enough
for interaction but prior knowledge such as explanations
of ROS and simulation spaces were necessary to a degree.
Further data of the control experiments was not usable given
that all participants gave up after roughly 11 minutes and had
achieved no significant results even with online resources.

V. CONCLUSION

In conclusion, our proposed framework, the IRMCS, can
significantly increase error handling success rate up to 94%
and likely positively influences adoption through improved
usability. The results suggest that promising progress can
be made by enhancing user understanding and empowering
novices to undertake formerly inaccessible robotic tasks. The
results and questionnaire indicate that the most significant
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contribution in guiding novices was illustrating a clear rela-
tionship between user input and system output, a relationship
that is shrouded at best, when it comes to programming a
robot. Though promising efforts were made, further testing
with a larger number of participants and scenarios is required
as well as a practical implementation with a physical robot.
Simulation results were especially promising given that with
little effort, otherwise highly involved error handling strate-
gies were simplified such that with the IRMCS novices were
able to fix an error. Not having to understand an error source
but being able to pinpoint the primitive in which an error
occurred greatly helped the users’ understanding of the error
recovery process. The experiment was somewhat limited to
the amount of errors that the system can search through
though more of these instances can be added to the search
space.

Future work will focus on including more complicated
error cases as well as testing out practical application in
dynamic workplaces.
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