

MOTION & CONTROL

NSK

Development of Bar-shape Nonlinear Series Elastic Actuator

Motohiro Hirao, Alireza Ghanbarpour, Masayoshi Tomizuka

INTRODUCTION

Series elastic actuators (SEAs) have gained attention as a human assist device.

Nonlinear SEAs have possibility to overcome the limit of conventional SEAs, but existing actuators have some restrictions in design.

Bar-shape nonlinear SEA

- High torque accuracy with kinematic model
- Less design restrictions

STATIC EXPERIMENT

<u>Purpose</u>

Verifying the torque accuracy of the actuator with the kinematic model

<u>Result</u>

- The stiffness was changed as designed
- RMS error of torque was 0.3 Nm
- The error is attributed to spring pretension, unexpected deformation of components.
 - Motor with encoder

when attached to human body joints

KINEMATIC MODEL

The spring unit consists of two bars which are coaxial rotating around point O, and springs. The stiffness is increases with deflection angle θ .

The length of springs *l* changes based on cosine law as:

FUTURE WORKS

$$l(\theta) = \sqrt{r^2 + R^2 - 2rR\cos\theta} \qquad (1)$$

The output torque of bars τ can be calculated by:

$$\tau(\theta) = nrRk \frac{l(\theta) - l_o}{l(\theta)} \sin\theta$$
(2)

n : Number of springs

k: Stiffness of springs l_o : Rest length of springs We are designing below actuator.

Application

Posture control assist device for people at high risk of slips and trips, falls; active elders and workers, etc.