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Abstract—This paper investigates causes of center detection
errors in laser straightness measurements for precision position-
ing applications and proposes the calibration of these errors by
utilizing the reversal method after reducing the center detection
uncertainty. The uncertainty arising from unknown imaging
errors, such as spatially varying pixel sensitivity and sensor
pollution, is diminished by saturating the imaging sensor. The
results demonstrate that the uncertainty can be reduced by a
factor of 4.8, from 2.19 µm to 0.45 µm. This reduction justifies
the application of the reversal method to calibrate the remaining
center detection error, attributed to the shape of the laser beam
cross-section in the image. Consequently, this enables straightness
measurements with a repeatability of 0.34 µm.

Index Terms—machine calibration, straightness measurement,
spot center detection

I. INTRODUCTION

Straightness measurement is commonly used for calibration
of high-precision positioning machines which are built from
several stacked linear actuators, e.g., coordinate measurement
machines and CNC machines [1]–[3]. The deviations of the
actuator trajectories from a straight line are quantified and the
straightness and flatness profiles are defined, as depicted in
Fig. 1.

Various measurement methods have been documented and
discussed in literature [4], [5]. Interferometric measurements
using a Wollaston prism yield results with sub-micrometer
accuracy for measurement ranges of several meters [6], [7].
The method is rather expensive and the profile can only be
determined in one direction (straightness or flatness). The
straightness of linear stages is often evaluated by using a
displacement probe and a solid, straight edge for reference
[8]–[10]. This method cannot perform for actuators that are
integrated in machines, as the reference is bulky and limited
in portability. The taut wire method compares the straightness
of the actuator against a metal wire [11]–[13]. The setting
up of this method is time consuming. Laser straightness
measurement is often used due to its simplicity and low ex-
penses [14]–[16]. The target ,e.g., the mover of a linear stage,
moves parallel to a collimated laser beam, which provides
the straightness reference. The relative perpendicular motion
between target and laser beam reveals the straightness profile
of the actuator. The relative position of the laser beam is
determined by a position sensitive device (PSD) which is
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Fig. 1: Linear actuators are intended to perform linear motions. Deviations
from these straight trajectories are known as straightness errors. In order to
distinguish the profile of movement in x-y-plane from that in x-z-plane, the
terms straightness and flatness are introduced.

mounted to the target and the trajectory of the laser beam
on the PSD during the linear motion is recorded. Usually,
the usage of analog PSDs (e.g., tetra-lateral PSDs, Quadrant
Photo Diodes) is preferred due to their higher bandwidth [14],
[17]. The performance of the straightness measurement is
limited by the accuracy of the beam position detection. For
analog PSDs, the beam shape cannot be monitored and the
procedure of detecting the beam position cannot be modified,
hence, errors can neither be recognized nor compensated [16].
CMOS imaging sensors, however, allow to capture the cross-
section of the laser beam for potential error detection. The
position of the laser beam is represented by the center of the
laser spot in the captured image, which is determined by a
center detection algorithm. In order to increase the accuracy
of the measurement, calibration using the reversal method was
proposed [15], [18]. However, the unknown error arising from
imaging errors such as varying pixel sensitivity and sensor
pollution can not be considered by this approach.

The contribution of this paper is a novel approach for en-
hancing the precision of spot center detection via the deliberate
saturation of imaging sensors. In the saturated regions, the
impact of uncertainties induced by imaging errors can be
suppressed at the expense of the systematic center detection
error linked to the beam shape. This trade-off opens up
opportunities for effective calibration to address and minimize
the systematic error, thereby improving the overall accuracy
of spot center detection in laser straightness measurements.

II. PROBLEM DESCRIPTION

As outlined in Fig. 2, the linear actuator under test is aligned
with the laser beam. The cross-section of the laser beam is
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Fig. 2: Laser straightness measurement utilizes a fiber-coupled laser that is
aligned with the direction of motion of the linear actuator. For straightness
errors, the imaging sensor on the mover is displaced in orthogonal direction
relative to the laser beam, what is visible in the position of the laser spot in
the captured image.

Laser Power, ExposureTime

Fig. 3: For increasing laser power or exposure time, the image of the laser
beam exhibits saturation in the center area of the spot (encircled in red). The
diameter of the spot increases.

captured by the imaging sensor on the mover and the spot
center, representing the position of the spot in the image,
needs to be determined. Monitoring the motion of the laser
spot during linear movement reveals the straightness profile in
straightness and flatness direction.

In order to measure the straightness of linear actuators with
long travel range, the laser needs to exhibit sufficiently low
divergence, requiring the beam diameter to be much bigger
than the pixel size of the imaging sensor. Both, the laser power
and the exposure time of the imaging sensor affect the image
of the laser beam similarly. Figure 3 shows how the increase of
the laser power or exposure time introduces local saturation of
pixels that are in the center of the laser spot while increasing
the diameter of the spot. Usually, saturation is avoided as it
introduces non-linearities, which can impair the accuracy of
the measurement [19], [20].

Several algorithms are applicable to find the center of
the laser spot in the image. The evaluation of the center
of gravity (CoG) gives the mean of the pixel coordinates
weighted with the pixel intensity values [21]. Filter correlation
(FC) determines the center of the spot by finding the location
of the maximum in the cross-correlation function of the
captured image and a Gaussian filter [22], that represents a
model of the ideal cross-section of the laser beam. These
two approaches for center detection yield different results,
indicating the presents of center detection errors for at least
one of the center detection algorithms. Figure 4 shows the
results of a motivating experiment in which the deviations
between the detected spot centers of both approaches are
recorded while the laser spot is shifted by single micrometer in
straightness or flatness direction, respectively. It is remarkable
that the deviation is smaller with saturated images than with
unsaturated images. This leads to the question, if the detected
spot centers reliably represent the position of the laser spot
in the captured image and if these centers can be actually
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Fig. 4: The imaging sensor is displaced relative to the laser beam by the
thermal expansion of the sensor mount. The perceived movements of the
laser beam on the imaging sensor in straightness direction (upper plot) and
flatness direction (lower plot) are detected by the center detection algorithms
- Filter Correlation (FC) and Center of Gravity (CoG). However, the results
differ from each other, indicating the presents of center detection errors.
For increased laser power, the imaging sensor saturates and the results from
different center detection algorithms show higher congruence.

taken as a straight reference. Further on, it is to investigate
whether saturation can actually contribute to the reduction
of the absolute center detection error without impairing the
sensitivity of the measurement.

III. METHOD

The center detection error eCD mainly depends on two
circumstances, the position (u, v) of the laser beam on the
imaging sensor and the distance d between collimator and
sensor. In order to minimize the resulting measurement error,
the aim is to reduce the unknown parts of the center detection
error by introducing sensor saturation and cancel the known
parts via calibration using the reversal method.

A. Spot Center Detection Error

Center detection errors limit the accuracy of straightness
measurements. Two major contributors to this error can be
determined. First, the shape of the laser beam itself is dis-
torted due to interference, pollution of the collimator, static
aberrations and divergence, introducing a component ēCD to
the center detection error which is dependent on the distance
d between the collimator and the imaging sensor, hence,
ēCD = ēCD(d). Second, the characteristics of the imaging
sensor such as pixel shape, varying pixel sensitivity and dead
pixels as well as pollution of the imaging sensor distort the
image of the laser beam cross-section, adding a component
ẽCD to the center detection error. This component depends on
the position (u, v) of the laser spot in the captured image as
well as on the shape and intensity of the spot, which is again
dependent on the distance d between collimator and sensor.
Hence, ẽCD = ẽCD(d, u, v). While varying pixel sensitivity
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Fig. 5: The center detection error eCD is composed of ēCD(d) due to the
laser beam deformation and a measurement uncertainty uCDE(d), arising
from the unknown contribution of ẽCD(d, u, v) due to the imaging sensor.
Both, the error eCD as well as its uncertainty uCDE(d), are expected to be
dependent on the distance between collimator and sensor. The depicted plot
shows an exemplary profile of the error eCD for the purpose of visualization
of the introduced variables.

is a bigger problem for smaller spots, sensor pollution has
a major impact on the center detection of bigger spots, as
the laser beam is partially shadowed or refracted by dust and
streaks.

As consequence, the center detection error eCD can be
modeled as the sum of both contributors

eCD(d, u, v) = ēCD(d) + ẽCD(d, u, v). (1)

The second term due to the impact of the imaging sensor is
intricate and remains unknown. It is classified as unknown
systematic error and manifests in a measurement uncertainty
uCDE(d) to eCD(d). The error ēCD(d), however, can be
determined by investigating the deformation of the beam
profile and how this impacts the center detection. As a result,
the center detection error can be described by ēCD(d) with a
remaining uncertainty via

eCD(d) = ēCD(d)± uCDE(d)︸ ︷︷ ︸
due to

unknown ẽCD

. (2)

Figure 5 sketches an example of the center detection error
eCD(d) as a function of the distance d between collimator
and sensor as well as the measurement uncertainty due to
the unknown influence of the imaging sensor. For decreasing
impact of the imaging sensor, the measurement uncertainty
decreases until only ēCD(d) (plotted in blue) remains. For
increasing distance d, the laser beam has a larger diameter
due to the divergence, covering more of the imaging sensor
area, increasing the sensors impact, hence, increasing the
measurement uncertainty [23], [24]. In absence of other errors,
ēCD(d) can be calibrated using the reversal method [15],
making it a known systematic error.

B. Reversal Method

The reversal method is a commonly known calibration
concept to determine repeatable measurement errors by con-
ducting several measurements of the same sample so that
the error impacts different measurement runs with different
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Fig. 6: For the reversal method, two measurements with different orientations
of the collimator are conducted. The impact of the beam shape affects both
measurements with opposite signs, allowing for its cancellation by calculating
the mean over both measurement results.

sign. In the case of straightness measurements, this method
is applicable by rotating the collimator by 180◦ around it’s
optical axis between two measurement runs, such that the
laser beam cross-section appears rotated on the imaging sensor
(Fig. 6). As a result to this, the error ēCD(d), which arises
from the beam deformation, impacts the measurement results
y(d) of both runs with opposite sign. In absence of other
errors, the measurement results can be written as

y0◦(d) = s(d) + eCD(d) (3)
y180◦(d) = s(d)− eCD(d), (4)

with the straightness profile s(d), arising from the straightness
error of the linear actuator, the center detection error eCD(d)
and the measurement results y0◦(d) and y180◦(d) for different
orientations of the collimator. Due to alignment issues, the
beam position on the imaging sensor differs for both measure-
ment runs, hence, the error ẽCD(d, u, v) is different for both
runs, indicated by uCDE,1(d) and uCDE,2(d). Considering
these center detection uncertainties, the measurement results
are composed of

y0◦(d) = s(d) + ēCD(d)± uCDE,1(d) (5)
y180◦(d) = s(d)− ēCD(d)± uCDE,2(d). (6)

From these measurements, the straightness profile s(d) and
the center detection error ēCD(d) can be determined via

s(d) =
y0◦(d) + y180◦(d)± uCDE,1(d)± uCDE,2(d)

2
(7)

ēCD(d) =
y0◦(d)− y180◦(d)± uCDE,1(d)± uCDE,2(d)

2
. (8)

The uncertainties uCDE,1(d) and uCDE,2(d) are directly
impacting the calibration and measurement result. Hence, it is
important to reduce them as good as possible. This is achieved
by reducing the impact of the imaging sensor characteristics
and pollution by saturating the sensor pixels.

C. Uncertainty Reduction Strategy

The uncertainty in the center detection due to ẽCD is
reduced by increasing the laser power and intentionally satu-
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rating the imaging sensor. The following discussion aims to
establish a foundation for the principles of the uncertainty re-
duction for the spot center calculation using the CoG approach.
For CoG, the center is determined via

∆CoGu =

∑
u∈U

∑
v∈V

uIuv∑
u∈U

∑
v∈V

Iuv
(9)

∆CoGv =

∑
u∈U

∑
v∈V

vIuv∑
u∈U

∑
v∈V

Iuv
, (10)

with the intensity Iuv of the laser beam cross-section in the
position (u, v) in the sensor frame. Further on, the summation
over all sensor pixel coordinates u ∈ U and v ∈ V is
succinctly denoted using the symbol

∑
. Even for a flawless

imaging sensor, this calculation may give a result that differs
from the laser beam axis, e.g., due to asymmetry of the laser
beam in combination with the sensor’s gamma value [23].
Hence, it is already subject to a center detection error ēCD.

A practical imaging sensor, however, experiences imaging
errors that modify the perceived intensity Iuv with an addi-
tional term Euv . The resulting error in the spot center detection
for the sensor’s u-axis is given by

∆CoGu = ẽCD =

∑
uIuv∑
Iuv︸ ︷︷ ︸

CoGu
for flawless sensor

−
∑

u(Iuv − Euv)∑
(Iuv − Euv)︸ ︷︷ ︸

CoGu
after imaging errors

. (11)

The error Euv is caused by different pixel sensitivities and
shading due to sensor pollution. The first part is described
by a mean-free random distribution across the entire sensor
area. The last part reduces the intensity locally such that all
contributions to the error have a positive sign. Due to this,
the expected value of Euv for any pixel can be assumed
to be positive. Considering a sensor coordinate frame, who’s
origin coincides with the CoG before imaging errors, the term∑

uIuv evaluates to zero. Hence, the error can be described
by

∆CoGu = ẽCD =

∑
uEuv∑

(Iuv − Euv)
. (12)

Considering an axially symmetric beam, the CoG before
imaging errors does not change due to saturation. First of
all, for increasing laser power, the term

∑
Iuv increases,

hence, the error ẽCD decreases. Second, the imaging error Euv

in the saturated regions is suppressed to zero, what reduces
the expected value for Euv , therefore

∑
Euv and eventually

ẽCD. Due to the expected symmetry of the saturated area and
the chosen coordinate frame such that CoGu = 0, the term∑

uEuv will not be affected noteworthy. In conclusion, both,
the increase of laser power as well as the saturation reduce
the error ẽCD, thereby diminishing the associated uncertainty
uCDE .

In other words, in the saturated regions, the pixel charac-
teristics do not contribute to the spot center detection error.
All pixel values are maximum and dust is not visible. Only

the comparably small edge of the laser spot contributes to
ẽCD. Hence, the sensitivity of the center detection error to the
position of the laser beam on the imaging sensor decreases,
what equates to a reduction of the uncertainty of eCD, enabling
the utilization of the reversal method.

IV. SETUP

The experimental setup consists of a laser with a wavelength
of 635 nm which is coupled into a single-mode fiber with
a collimator having a specified waist diameter of 0.8mm.
The laser beam cross-section is captured by a CMOS imaging
sensor with a pixel size of 1.85 µm × 1.85 µm. The imaging
sensor is mounted to the mover of a linear stage with a travel
range of 500mm. The repeatability of the linear stage is
specified to be 1.5 µm. The distance between collimator and
zero-position of the linear stage is 260mm. An interferometer
is used for displacement reference in straightness direction.
Table I lists the components used in the setup.

TABLE I: Components used in the setup.

Component Manufacturer Model
Actuator Zaber LRT0500HL-BAE53CT10A

Imaging Sensor The Imaging Source DMM 37UX226-ML
Collimator Thorlabs F230FC-B

Fiber Thorlabs P1-630A-FC-1
Laser Thorlabs PL252

Interferometer Attocube IDS3010

V. EXPERIMENTS AND RESULTS

In a first step, the uncertainty of the spot center detection
is evaluated for different levels of saturation. The imaging
sensor is displaced laterally and the spot center is detected via
FC and CoG. For reference measurements, the displacement
is monitored by an interferometer. The comparison of the
position of the detected spot centers and the interferometer
data yields ẽCD(d, u, v). From this, the uncertainty of the
center detection can be determinted by calculating the standard
deviation. The range of lateral displacement is 2mm and 1000
equally spaced positions were recorded. Figure 7 shows the
standard deviation of the center detection error for multiple
saturation levels at a collimator-sensor distance of 720mm,
where the beam divergence is already well-noticeable. For
increasing levels of saturation, the center detection improves
and the uncertainty decreases until it reaches sub-pixel scale.
The gain in precision is explained by the suppression of
the impact of the sensor characteristics and pollution in the
saturated areas. The CoG center detection algorithm shows
better precision than the FC center detection algorithm, what
may indicate that the chosen filter (Gaussian filter) does not
represent the laser beam cross-section sufficiently good. The
uncertainty can be reduced from 2.19 µm to 0.45 µm. For
further experiments, the CoG algorithm is used.

This experiment gives evidence that the precision of the
center detection can be increased by saturating the imaging
sensor. The uncertainty uCDE of the center detection due to
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Fig. 7: Relative in-plane motion between the imaging sensor and the laser
beam can be determined by evaluating the position of the spot center in the
image. The comparison to an external interferometric reference reveals the
precision of the center detection. The barplot shows the standard deviation
(i.e., the uncertainty) of the center detection error for in-plane motion in a
range of 2mm for collimator-sensor distances of 720mm.

the impact of the position of the laser beam on the imaging
sensor is reduced significantly.

In the second step, the center detection error eCD(d) is
determined using the reversal method. This gives the accuracy
of the center detection. For this, the straightness measurement
of the linear stage under test is performed several times with
and without saturation on the imaging sensor and different
collimator orientations of 0◦ and 180◦. The center detection
error ēCD(d) is obtained by (8). Figure 8 shows the determined
center detection error eCD(d) for the saturated and the non-
saturated case with uncertainty bands estimated from the pre-
vious experiment. The center detection error for the saturated
case shows higher magnitudes, caused by the higher impact
of the beam shape due to higher intensity values in the image
and the increased spot size. Nevertheless, the significance is
much higher due to the reduced uncertainty in eCD(d). The
magnitude for the non-saturated case is hardly bigger than the
uncertainty, such that the usage of the reversal method is not
justified.

The knowledge about the center detection error eCD(d)
enables system calibration by correcting measurement results
for this error. As shown in (7) and (8), the uncertainty of the
center detection error impacts the results for the calibrated
straightness measurement in the same way as it impacts the
result for the center detection error. Finally, Fig. 9 depicts the
straightness and flatness profile of the linear stage under test
together with the resulting ±3σ-uncertainty. For this actuator,
the magnitude of the profiles is approximately 40 µm for
straightness direction and 60 µm for flatness direction. The
period of the ripple is 5mm, what corresponds to the pitch of
the driving spindle. The uncertainty for the non-saturated case
is clearly visible, while the uncertainty for the saturated case
is smaller by a factor of five. The standard deviation of the
measurement repeatability for different calibration runs with
saturation is 0.34 µm, what agrees well with the determined
uncertainty of 0.45 µm from the first experiment.

In summary, the experiments prove that the introduction
of sensor saturation reduces the uncertainty of the center
detection error, which arises from the unknown impact of
the imaging sensor. This enables the accurate use of the
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Fig. 8: The center detection error eCD(d) = ēCD(d)±uCDE(d) depending
on the collimator-sensor distance d is determined using the reversal method,
making it a known systematic error. While the magnitude of this error is
larger for the saturated case, its significance is heightened due to the lower
associated uncertainty.
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Fig. 9: The linear stage under test shows straightness errors with the magnitude
of up to 60 µm. The uncertainty of the result without saturation is by a factor
five bigger than for the saturated case.
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reversal method (cf. [15]) to determine the center detection
error as a function of the collimator-sensor distance d with
sub-micrometer precision.

VI. CONCLUSION

System calibration using the reversal method enables to cor-
rect the straightness measurement results for center detection
errors, yielding more accurate results. In order to justify the
use of the reversal method, it is important that the center
detection uncertainty due to the impact of the position of
the laser beam on the imaging sensor is small. It has been
shown, that the introduction of sensor saturation reduces the
uncertainty from 2.19 µm to 0.45 µm. Due to the saturation
and expansion of the spot in the image, the magnitude of the
center detection error increases. However, calibration allows to
correct for this known systematic error, yielding straightness
measurements with sub-micrometer precision.
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