
  

  

Abstract—The complexity of deformable objects poses a 
challenge when attempting to replicate real-world behavior in 
simulation, which impedes the use of simulation as a testing 
environment for empirical applications. This study aims to 
create a data-driven model for seamlessly translating real-world 
deformable objects into simulation environments. Compressed 
soft balls are studied as an example of this strategy. Using 
machine learning, the model refines simulation parameters 
based on experimental data, such as forces and contours, 
allowing for highly realistic simulations and applications in 
areas such as manipulator manipulation interactions and 
reinforcement learning for task strategies. 

I. INTRODUCTION 

Having high-fidelity simulations for empirical systems is 
essential for factory automation. Using simulation as a tool 
can significantly reduce initial setup and optimization efforts 
during the process, and it can even incorporate real-time 
control of the empirical system for better performance. Along 
with the prevalence of artificial intelligence, such as machine 
learning, the importance of simulation has increased 
significantly. It provides an alternative environment for 
(virtual) testing and data generation, and this learning-based 
iteration process is critical to improving factory automation’s 
intelligence. 

A physics–data hybrid model can combine the advantages 
of physics-based and data-driven models. The physics-based 
model can capture the primary behavior of the empirical 
system governed by physics laws, and the data-driven model 
can capture other unmodeled behaviors of the practical 
systems. Numerous related research efforts and practical 
applications are experiencing significant growth in this field. 
Among these, tasks involving the operation of robotic arms 
have substantial potential. For example, reinforcement 
learning has been implemented on empirical manipulators [1]. 
However, when dealing with deformable objects as the target 
of manipulation, the complexity of manipulation tasks 
escalates. Deformable objects are unpredictable and variable, 
and learning strategies in such scenarios are time-consuming 
and uncertain. Consequently, there is a pronounced need to 
create task environments for deformable objects within 
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simulation engines. This necessitates the development of 
task-specific strategies, mitigating safety concerns associated 
with empirical systems while saving time and adhering to 
economic considerations.   

In the research field that combines reinforcement learning 
with robotic manipulators, reinforcement learning in 
simulations has seen significant growth with the development 
of the OpenAI Gym framework [2], an open-source package 
that provides training environments. A study demonstrated the 
feasibility of utilizing this simulation software for 
reinforcement learning by implementing reinforcement 
learning for robotic arms to perform goal-oriented tasks in the 
PyBullet environment [3]. Several other research later 
expanded the scope of reinforcement learning strategies to 
interactive tasks involving rigid objects and deformable ones, 
such as soft wires and fabrics [4][5].  

The complexity of the task has increased from essential 
displacement or shape arrangement to research that can 
achieve the goal of threading soft wires into holes [6]. 
Furthermore, pursuing non-rigid target strategy learning has 
led to specialized research on optimizing strategy 
reinforcement learning outcomes through various algorithms 
[7], with findings that demonstrate the developmental 
potential and feasibility of strategy learning for deformable 
objects. However, these studies focus on only 
one-dimensional strings or two-dimensional woven fabrics as 
deformable objects. More complex targets include bags, 
which are still treated as 2D tasks, similar to fabrics [8]. 
Previous studies have predominantly addressed only a few key 
points, with crucial point positions serving as task objectives 
and criteria for assessing achievement. The methods for 
collecting and analyzing data from 3D deformable objects 
have precedents in the field of physical deformable objects. 
Besides point-based approaches, techniques such as [9], where 
feedback from forces applied by a gripper is utilized as a 
control basis between the manipulator and deformable objects, 
and [10], which leverages RGB-D vision to process 
three-dimensional deformation data, demonstrate that there 
are viable approaches to handling 3D deformable objects in 
the simulation domain. 

Reinforcement learning for three-dimensional deformable 
objects is a relatively unexplored area of research. The 
challenges become more complex when the learning 
objectives are extended to three dimensions. Predicting the 
behavior of deformable objects becomes inherently more 
complicated, and the accuracy of simulations tends to decrease 
due to disparities between mathematical representations and 
real-world phenomena. One significant challenge arises from 
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Fig.1 The soft body contact performance scenarios in Pybullet: (a) 
assembling the flexible wire into the slot and (b) a wheel on the soft 
ground. 

the mathematical model simulation engines used to compute 
the behavior of deformable objects. These models often 
involve parameters that are not directly transferable to 
real-world scenarios. Consequently, accurately selecting 
parameters for deformable objects in simulations becomes 
daunting. 

This study aims to address the sources of errors commonly 
encountered in simulations. It seeks to leverage data-driven 
approaches to train a model capable of mitigating various 
sources of error and aligning simulated behavior with 
real-world performance. Such an alignment will ensure that 
real-world deformable objects can be accurately represented 
in the simulation environment, leading to improved fidelity in 
reinforcement learning and training outcomes. Additionally, 
the study introduces potential indicators for controlling and 
evaluating the accuracy of three-dimensional deformable 
objects in simulations. Ultimately, the goal is to expand the 
application of deformable objects in operational tasks and 
reinforcement learning strategies to encompass the more 
intricate realm of three-dimensional deformable objects.  

The remainder of this paper is organized as follows. 
Section II describes the selected simulation engine and its 
mathematical modeling for deformable objects. It analyzes 
and consolidates the influence of the parameters on the 
performance of deformable objects. Section III outlines the 
task specifics for data collection and the configuration of the 
virtual and real task environments. The physical behavior of 
the target object is examined, and how to organize the data for 
training is discussed. The latter part of the section focuses on 
data-driven model training, covering the processing of training 
data for the target object’s static and dynamic behaviors and 
the training of the fitting model. We further scrutinize the 
prediction of parameters and their feedback into the results, 
propose possible sources of errors, and suggest directions for 
correction. Section IV presents the results of the experimental 
data and how this fitting method can be integrated with 
reinforcement learning tasks involving robotic arms. Potential 
areas for further expansion are also explored. 

II. SIMULATION SOFTWARE 

The simulation engine chosen for the study presented in 
this paper is PyBullet [11], a Python module for physics 
simulation for games, robotics, and machine learning. Pybullet 
is a physics engine that simulates collision detection and soft 
and rigid body dynamics. Pybullet is a suitable choice among 
the various commercial simulation software. Compared to 
others that can deal with either kinematics or rigid body 
dynamics, Pybullet is among the few that can manage soft 
body contact. Soft body support includes cloth, rope, and 
deformable objects. 

The reason for using Pybullet as the simulation engine is 
that in addition to implementing deformable objects, another 
reason is that it can be combined with the OpenAI Gym to 
perform reinforcement learning, conducting strategy training 
for deformable object tasks in simulation scenes. The task of 
assembling the flexible wire into the slot is shown in Figure 

1(a), and the scene of wheels moving on soft ground is shown 
in Figure 1(b). After the task environment is established and 
the parameters of each object are properly set in the above 
scenarios, reinforcement learning can be executed directly in 
Pybullet. This is a safer, time-saving, and resource-saving 
method compared to training in the real world. 

A. Mathematical Model of Soft Bodies 
In PyBullet, the mathematical model used to describe the 

soft body primarily relies on the neo-Hookean model [12], a 
hyperelastic material model similar to Hooke’s law. The 
neo-Hookean model derives its foundation from the principles 
of statistical thermodynamics, which govern the intricate 
behavior of cross-linked polymer chains. This robust and 
versatile model finds its ideal application in materials sharing 
traits akin to plastics and rubber, thus extending its relevance 
to a diverse spectrum of deformable substances.  

The PyBullet function responsible for generating soft 
bodies configures three key parameters: the first Lamé 
parameter λ, the second Lamé parameter μ, and a damping 
parameter that influences only the dynamic behavior of the 
soft body. In continuum mechanics, Lamé parameters are two 
material-dependent quantities that arise in strain–stress 
relationships [13]. Equation (1) is the strain–stress definition 
of Hooke’s law in 3D in homogeneous and isotropic materials. 

σ = 2με + λ tr(ε) I (1) 

where σ is the stress tensor, ε is the strain tensor, I is the 
identity matrix, and tr is the trace function. The derivation of 
the neo-Hookean model starts with the strain energy density 
function as Equation (2) in 2D of a compressible neo-Hookean 
material: 

W = C1(I1 – 3 – 2lnJ) + D1(J – 1)2 (2) 

where C1 and D1 are material constants, I1 is the first invariant, 
and J is the Jacobian matrix of the deformation gradient. For 
consistency with linear elasticity, applying an alternative 
formulation and alternative definitions of parameters, μ = 2 C1 
and λ = 2 D1 [13], the strain energy density function turns into 
Equation (3): 
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Fig. 3 The contour of the soft ball simulated in PyBullet. Blue: (λ, μ) = 
(1600, 100), diameter = 100.5988; Orange: (λ, μ) = (800, 1600), diameter 
= 89.1987.  

W =μ (J-2/3 I1 – 3)/2 + (μ/12 – λ/8) (J2 + 1/J2 – 2) (3) 

The first Lamé parameter λ has no direct physical definition 
but relates to the material’s compressibility. It can be 
calculated using Young’s modulus (E) and Poisson’s ratio (ν). 
The second Lamé parameter μ is known as the shear modulus 
(G) in the context of elasticity. Given that the neo-Hookean 
model is one of the stress-strain relationships, these two 
parameters are derived from the strain energy density function 
of neo-Hookean. Their impact on the physical properties of 
deformable objects primarily pertains to static performance 
aspects. The physical representation addressed in this paper 
also focuses on data related to the performance of static states. 

B. Simulation Performance of Soft Bodies Under Variable 
Parameters 
The influence of soft body parameters on performance was 

simulated and studied through simulations with multiple 
parameter combinations. This approach served as the 
foundation for Section III (Experiment) in this paper, where 
ML-generated fitting models are used to estimate the effects of 
parameters. 

The primary observational metrics for evaluating the 
performance of soft bodies consist of body contours and 
applied forces. A homogeneous soft ball with a diameter of 90 
units was employed as the test object. A downward force of 30 
units was applied to the soft ball until it reached a steady state. 
This procedure was repeated to collect data under various 
combinations of μ and λ. Due to the computational constraints 
of the simulation engine, minimal parameter values may result 
in the collapse of the ball or anomalous shrinkage upon 
compression. The lower bounds for both parameters are 
approximately in the range of over one hundred. 

Figure 2(a) reveals that parameters λ and μ significantly 
impact force values, showing a positive correlation. The 
relationship with contour variation differed. The length of the 
cross-section diameter after deformation was used as an 
indicator of contour change. As depicted in Figure 2(b), λ 
exhibited a positive correlation, while larger values for the 
shear modulus μ, resulted in reduced deformation effects. 
Moreover, the scale of influence of μ was significantly smaller 
than the force, with extreme parameter combinations resulting 
in differences of approximately ten units in length, less than 

11.8% of the average cross-section diameter after deformation, 
as shown in Figure 3. 

In Pybullet, NeoHookeanDamping is a parameter relevant 
to the dynamic properties of soft bodies. This parameter is not 
mentioned in the neo-Hookean model and appears to be a 
custom parameter within the physics engine used to determine 
the dynamic behavior of soft bodies. To assess whether this 
custom parameter also affects static performance, the two 
Lamé parameters λ and μ that determine the static behavior 
constant were maintained while adjusting the value of 
NeoHookeanDamping to determine its impact on the dynamic 
behavior of soft bodies as compressing homogeneous soft 
balls until equilibrium.  

Regardless of the value of NeoHookeanDamping, the soft 
ball’s force exhibited maximum instantaneous force at the 
moment of compression. The soft ball then tended to reach a 
steady state according to its respective damping performance, 
corresponding to the behavior of a serially connecting damper. 
In the case of (λ, μ) = (200, 200), the comparison result 
indicates that, in general, NeoHookeanDamping only affected 
the force variations during the approach to equilibrium, and 
the final force, upon reaching equilibrium, remained 
unchanged at 27.8N. At more extreme values of 
NeoHookeanDamping , such as 0.003, the simulation visually 
exhibited under-damped oscillatory behavior, resembling a 
water balloon. Regarding force performance, the soft ball in its 
equilibrium state reduced the force by 4.9% compared to when 
NeoHookeanDamping are set to 0.03 and 0.3. 

 
Fig. 2 The soft ball compression experiment simulated in PyBullet. (a) The steady-state forces and (b) the cross-section diameter of soft balls under 
compression of 30 units in length using different combinations of λ and μ.  
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Fig. 4 The setup of the soft ball in compression: (a) in experiments and (b) 
in PyBullet simulation. 

 

 
Fig. 5 The experiments of the compressed two physical soft balls under 
compression of 30 mm: (a) The time sequence of the balls. (b) The 
contour at of the balls. 

III. EXPERIMENTS 

The objective of the experiment was to train a fitting 
model that could predict the μ and λ parameters of real-world 
deformable objects, allowing their performance in the 
simulation to match their real-world behavior closely. This 
alignment will ensure that subsequent behaviors or training 
outcomes in the simulation closely mirror real-world 
performance.  

The physical target objects for this experiment consisted of 
two polyurethane foam balls, both with a diameter of 90 mm. 
One of these balls exhibited a relatively higher bounce than 
the other, but the specific elastic-related parameters were 
unknown. Data about contour and force information necessary 
for machine learning were collected separately within task 
scenarios designed to resemble real-world and simulation 
environments. 

A. The Experimental Environment 
In the empirical experiments, a six-axis manipulator 

(TM-14, Techman Robot Inc.) was utilized to manipulate the 
soft balls. A six-axis force/torque sensor (Axia80-M8, ATI) 
was mounted on the arm’s end effector to collect contact force 
information between the arm and the target objects during 
motion, as shown in Figure 4(a). The contour data of the balls 
were obtained using a camcorder (RX100 VII, SONY), with 
image processing conducted using OpenCV to extract contour 
information and convert it into point data. 

B. The Simulation Environment 
 The simulation experiment was implemented in the 

Pybullet environment mentioned in Section II. The target 
objects were scaled representations of physical balls imported 
as soft balls using the method described in Section II. In the 
simulation, a simple robot with a revolute-prismatic structure 
interacted with the target objects, allowing for the direct 
retrieval of force information at the contact point. PyBullet 
facilitated the direct extraction of mesh files from the soft 
balls. The points were projected through a vertical 
cross-section at the center to yield the contours of the balls. 

C. Training and Testing Data Collection 
Compression force was applied along the radial direction 

of the soft balls, varying the compression displacement from 0 
to 30 mm in 5 mm increments. The steady-state force values 
and the contour deformation at the great circle were recorded 
and compared. The simulation explored a broader set of 
parameter combinations of λ and μ to gather force information. 
The same operations were performed on balls with unknown λ 
and μ values for the physical balls. Similar to the simulation 
data, steady-state force values and lateral contour deformation 
width were obtained. The critical distinction is that the 
physical balls lack the λ and μ parameters, the sought-after 
objectives for the testing data. The results from all simulations 
were combined to form a training dataset for machine learning. 
λ and μ parameters become the target variables for the testing 
data. 

D. The Performance of the Physical Balls 
Before applying the fitting model to the physical balls, we 

initially observed differences in their force and contour data, 
as shown in Figure 5. At the same compression distance, the 
more elastic ball consistently exhibited forces approximately 
5.5 times greater than the less elastic ball. However, regardless 
of the compression distance, their contour changes aligned 
perfectly. Upon examining the force-time curves as they 
approached a steady state, when the forces were 
proportionally scaled to match each other, the slopes of the 
force curves also appeared to align closely. This observation 
suggests that the damping values of the two balls were similar. 

E. The Prediction of Static Parameters 
The fitting model was trained using the above data, 

employing a neural network architecture within a machine 
learning framework. After attempts to change the architecture, 
we utilized two hidden layers with [32, 8] neurons and a 
Sigmoid activation function in each layer. The number of 
epochs is 5×103 for each learning. During the 
conceptualization phase, we assumed that there would be a 
continuous relationship between the two parameters and the 
performance of force and contour metrics, indicating that the 
neural network should have the potential for successful 
learning. However, two main challenges emerged during the 
training process. First, it was unexpected that the physical 
balls with such disparate elastic properties would exhibit 
perfect contour alignment, making it difficult to discern 
which parameter adjustments would enhance contour 
prediction intuitively. Second, the cases with lower force 
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Fig. 6 The contours of the physical and simulated soft balls in PyBullet. 

 

 
Fig. 7 The physical and simulated force’s performances of the more 
elastic ball at steady states in different compression levels.                   
sim-1: (λ, μ) = (709.42, 611.32), sim-2: (λ, μ) = (815.43, 675.97) 

 

 
Fig. 8 The F-t diagram of the soft balls in compression. The orange line is 
the experimental data; the others are simulated data in different values of 
NeoHookeanDamping.  

values encountered boundary issues in the simulation, 
resulting in data scarcity and making it challenging for the 
model to learn effectively. Consequently, the predictions for 
the less elastic ball were less accurate, while the more elastic 
ball yielded better results. 

The optimal prediction for the Lamé parameters, obtained 
from the model trained using machine learning, yielded λ = 
709.42 and μ = 611.32 for the more elastic ball. This 
parameter set was subsequently integrated into the Pybullet 
simulation environment to instantiate a virtual replica of the 
physical ball to conduct the experimental procedures and data 
collection mentioned in Part B. When subjected to a 
compression of 30 mm, the cross-sectional diameter value in 
the simulation was 94.807, 1.67% larger than the physical 
value, measuring 93.246 mm, as shown in Figure 6. 

In terms of force, during the simulation's steady-state phase, 
the force was 4.75% lower than the physical value when the 
compression distance was 30 mm, measuring 113.428 N. A 
graphical representation of the relationship between 
steady-state force and compression level is shown as the 
orange line in Figure 7. 

F. The Prediction Incorporating Dynamic Performance 
Correction to Static Parameters 

To achieve a more comprehensive alignment between the 
simulated counterpart and the physical prototype in terms of 
performance, we addressed the previously fixed parameter 
NeoHookeanDamping, which has been maintained at its 
default value of 0.03. Setting the λ and μ results obtained 
from Section III.E as constants, the continuous force data for 
soft spheres subjected to compression under various 
NeoHookeanDamping values were collected.  

The F-t diagram of Figure 8 presents the results. Given that 
NeoHookeanDamping affects the dynamic performance of 
objects, we compiled continuous force data into training data. 
We attempted to train the fitting model directly using the 
force at each time point as a machine-learning feature. 
However, as shown in Figure 8, numerical differences exist 
between the physical and simulated balls with all parameters. 
Still, the numerical change trend is similar to several of the 
groups. So, we divided each stroke force data by the 
steady-state value to standardize and differentiate. We 
processed the data into the change amplitude of the force at 
each time and used it as a machine learning feature to train the 
fitting model. The resulting predicted value is 0.0194. 
Compared with the initial default value of 0.03, the simulated 
ball behaves closer to a compressible but less elastic 
clay-based material in the simulation. The simulated soft ball 
under this condition shows performance closer to that of a 
foam ball, including free fall—the rebound height and 
frequency and the performance of oblique throws. 

Then, after changing the fixed value of 
NeoHookeanDamping to 0.0194, we re-performed the same 
steps in Section III.E to use machine learning to generate a 

parameter prediction model. The best prediction of the Lamé 
parameter obtained is λ = 815.43 and μ = 675.97. the 
relationship between steady-state force and compression level 
is shown as the gray line in Figure 7. After correcting the 
dynamic performance, the minimum error dropped to 2.58% 
when the compression distance was 30 mm, measuring 
116.359 N. The force values are also closer to the physical 
ball at other compression levels than the first prediction. 

The whole process of parameters’ prediction is shown in 
Figure 9. These attempts confirmed that dynamic behavior in 
Pybullet is closely related to damping and force trends. With 
more precise dynamic parameter settings, the prediction of 
static parameters can be more accurate. However, revising 
predictions back and forth in three steps is somewhat 
time-consuming. In the future, efforts will be made to mix 
static and dynamic data for training and find a model that can 
capture the connection between 3 parameters simultaneously. 
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Fig. 9 The flow diagram of the parameters’ prediction process. 

 

 
Fig. 10 The software inserting process (from top to bottom rows). The left 
column represents the simulation snapshots, and the left column plots a 
cross-section view of the wire in the middle section, where the 
deformation of the wire shape can be clearly seen. 

IV.  APPLICATION SCENARIO 
By employing the method proposed in this study, a precise 

selection of parameters for the deformable object in the 
simulation leads to enhanced accuracy in simulating the 
deformable object, and the task environment of the simulation 
can be entirely established in the simulation engine. This 
section will take the situation where a soft wire is assembled 
into a slot as an example to demonstrate the functions related 
to deformable objects that Pybullet can support. 

The parameters of the soft body in Pybullet, except 
neo-Hookean, are the same as those of the general rigid body. 
The mass and friction coefficient can be set. In addition to the 
current object's center of mass position, the state data of the 
soft body during motion can also be viewed in real-time, the 
contour point cloud data of the specified section as shown in 
Figure 10, and the force vector information of all contact 
points with other objects can be collected. 

Based on the above functions, the changes of deformable 
objects when they move in the environment or interact with 
other objects can be fully observed in the simulation engine. It 
can also be extended to the reinforcement learning mentioned 
in section II for training on tasks related to deformable objects. 
In this way, the research field of manipulating deformable 
objects can be developed more efficiently and safely in a 
more complex and diverse direction. 

V. CONCLUSION AND FUTURE WORK 
This work describes a methodology for investigating the 

parameters in the simulation of deformable objects and 
bridging the behavioral differences between simulations and 
empirical systems using a data-driven model. We used the 
best-predicted parameters of the model to demonstrate the 
simulation of a static deformable soft ball that exhibited a 
contour deviation of 1.67% compared to the real soft ball, 
with a forced error of 2.58% during steady-state conditions. 

This framework can be extended to more actions involving 
higher complexity and multidirectional forces, as well as 
deformable objects with different materials and more intricate 
shapes, to validate the model’s versatility and elasticity.  
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