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Abstract

This work['l shows around 90% improvement in the positioning precision for local, repeated and high-
speed hole-cleaning task executed by lightweight robots with series elastic actuators (SEAs), through
iterative learning control(ILC), in which the inputs are updated based on the tracking error and a
nonparametric local MIMO model obtained via complex kernel Gaussian process regression (GPR).

—

Experimental platform info

> HEBI X5-4 SEAs are used at each joint

> A flexible brush with bristle diameter 1.25 inch was attached at
the end effector

> MATLAB interface with HEBI libraries were used for
communication and control

> The sampling rate is 100 hz for both inputs and outputs.

Fig.1, Schematic drawing (left) and top view (right) of the
experimental SEA robot. The cleaning task for a specific pilot
hole consists of letting the brush achieve a periodic forward-
and-backward motion with stroke length d, which should be
perpendicular to the plate, i.e., the end-effector orientation
0 = m/2 rad. The controlled outputs are the local joint angles
61,65, 065.

Inversion-based ILC

Given a linear time-invariant system (LTI) with transfer function S(w), an inversion-based ILC is proposed to
find the input I;(w) that yields exact tracking of the desired output 0,(w). And the iterative update law is
Iis1(@) = k(@) + $1 () p(0) (04(w) — Ok (w))
where subscripts denote the iteration number and $f(w) is the input-weighted pseudo-inverse of the
estimated model S(w). And the diagonal iteration gain matrix p(w) are designed to guarantee the
convergence of the tracking error according to the model estimation error
§(w) = S(w) — S(w)
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Fig.4, Comparison of desired output 0, (dashed line) and achieved output 0
Iteration Step k (solid line) with and without ILC for three cases: (left) slower trajectories with
time period T = 5s without ILC; (middle) faster trajectories with time period
T = 0.5s without ILC; and (right) faster trajectories with time period T = 0.5s
with ILC.

Fig.3, Reduction of joint error E;, with iteration step k:
Eq (square), E, i (diamond) and Es (circle).

Ej,k = mt?inEj,k(f)l =max [0j,a(t) — 0j ()]
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