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Abstract— This paper presents a novel approach to
automated drifting with a standard passenger vehicle, which
involves a Nonlinear Model Predictive Control to stabilise and
maintain the vehicle at high sideslip angle conditions. The
proposed controller architecture is split into three components.
The first part consists of the offline computed equilibrium
maps, which provide the equilibrium points for each vehicle
state given the desired sideslip angle and radius of the path.
The second is the predictive controller minimising the errors
between the equilibrium and actual vehicle states. The third
is a path-following controller, which reduces the path error,
altering the equilibrium curvature path. In a high-fidelity
simulation environment, we validate the controller architecture
capacity to stabilise the vehicle in automated drifting along
a desired path, with a maximal lateral path deviation of 1
m. In the experiments with a standard passenger vehicle, we
demonstrate that the proposed approach is capable of bringing
and maintaining the vehicle at the desired 30 deg sideslip
angle in both high and low friction conditions.

I. INTRODUCTION

The ability to control the vehicle beyond the friction
limit or at a high sideslip angle extends the number of
controllable vehicle states and possible trajectories. Thus,
it improves vehicle safety for the collision avoidance
manoeuvres in which a conventionally driven vehicle would
have reached its handling limit [1]–[3]. However, driving
along a desired path while sustaining a large sideslip angle
is particularly challenging because it requires exploiting
the coupled nonlinearities in the tyre force response [4].
Furthermore, it is necessary to keep the rear tyres saturated
[5]. Thus, in this paper, we focus on designing a nonlinear
model predictive control (NMPC), which can stabilise a
vehicle in a drifting motion while remaining on a desired
path. Furthermore, we aim to implement and evaluate the
proposed controller in a real-world experiment on a standard
passenger vehicle without hardware modification (Fig. 1).

Different control techniques for automated drifting have
recently been proposed in the literature. A possible solution
is applying a linear quadratic regulator (LQR) controller
based on the single-track model combined with a Fiala
tyre model [6]. The control inputs are the steering angle
and rear wheel speed, computing from the required rear
longitudinal force component. The internal model has also
been upgraded with a double-track vehicle model based on
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Fig. 1: BMW M3 Competition in automated drifting.

a Pacejka tyre model, to reduce the model mismatches [1].
However, all the proposed LQR controllers only stabilise
the vehicle in the drifting equilibrium while an external
path-tracking controller executes the path following control.

Thus, other approaches are proposed that simultaneously
ensure the path-following properties and control the vehicle
into a desired equilibrium drifting state [7], [8]. These
controllers use the lateral error with respect to a reference
path to control the vehicle along the desired trajectory. At
the same time, the sideslip error with respect to a reference
sideslip angle brings the vehicle into a state of drifting. The
steering angle and rear drive torque are treated as control in-
puts, and they are determined through a function of imposed
error dynamics, a nonlinear model inversion followed by a
wheel speed control. The imposed error dynamics convert
the lateral and sideslip errors into a desired yaw rate and
yaw acceleration. A numerical approach of nonlinear model
inversion is applied to determine the desired steering and
throttle angles. The steering angle is directly applied to the
system, while the throttle angle is mapped to a desired wheel
speed. Experimental verification of these controllers has
shown that the approach can successfully track a reference
path and sideslip with good performance. However, the
vehicle powertrain layout includes independent electric en-
gines simulating the behaviour of a fully locked differential,
which is uncommon for standard passenger vehicles.

Several solutions based on Model Predictive Control
(MPC) are proposed in the literature [9]–[11]. For instance,
a simplified linear vehicle can be implemented as an MPC
prediction model [11]. The MPC modifies a human driver
input such that a vehicle is stabilised on the handling limits.
As modified linear vehicle and tyre models are used, the opti-
misation becomes convex, reducing the computational effort
and increasing real-time feasibility. However, the controller is
not designed to bring a vehicle into a steady-state drift fully.
Thus, another solution is linearising the nonlinear single-
track vehicle with a Fiala tyre model around defined state and
input variables [9]. As a steady-state drift requires a reference
equilibrium state, the system will change according to the
values of equilibria through equilibrium-varying simulation.
The approach shows that the prediction model states can be
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chosen arbitrarily, as the sideslip angle is not chosen as a
state, but tracking the reference drifting state is still possible.
However, the approach still suffers from a computational
point of view, making the controller not real-time feasible.
Thus, in this paper, we develop a real-time NMPC based on
a nonlinear single-track vehicle with a simplified Pacejka
tyre model, using the sideslip angle as a vehicle state.
The proposed controller aims to bring the vehicle to a
high sideslip angle and stabilise the vehicle in this unstable
equilibrium, considering high and low friction conditions.

The main contribution is the experimental validation of
the proposed NMPC for automated drifting with a standard
passenger vehicle, contrary to previous works in the literature
that are limited to simulations [12], [13] or experimental
demonstrators with heavy hardware modifications [7], [8].

II. VEHICLE MODEL

Subsection II-A describes the nonlinear single-track
model, and subsection II-B explains the tyre model.

A. Single-Track Vehicle Model

The single-track vehicle model simplifies the dynamics of
a four-wheel vehicle model by lumping the tyres on the left
and right sides together in the centre axis of the vehicle
and ignoring the lateral load transfer. The kinematics of
the single-track vehicle model is described using the Frenet
reference system as follows:

ψ̇ = r−K V cos(ψ+β )
1−eyK

ėy =V sin(ψ +β )

ṡx = V cos(ψ+β )
1−eyK

(1)

where ψ is the heading angle, sx is the travelled distance with
respect to the desired path, and ey is the normal distance from
the desired path. The relation between the absolute vehicle
velocity V , path curvature K and yaw rate r describes the
desired trajectory.

The dynamics of the nonlinear single-track vehicle model
are defined in Eq.2, where the vehicle states are the sideslip
angle β , the yaw rate, and the absolute vehicle velocity.
The absolute velocity describes the actual velocity of the
vehicle in space, combining both the lateral and longitudinal
velocity components with respect to the vehicle frame. The
sideslip angle is the angle between the vehicle’s longitudinal
axis and the absolute velocity, which is, therefore, the
main indication for a vehicle being in a drift at large
sideslip angles [14]–[16]. Using the absolute velocity, a
path following property is established, as path curvature can
be expressed as a function of absolute velocity divided by
the yaw rate. The suspension dynamics are not modelled to
reduce the computational effort, so the longitudinal weight

transfer is considered in a quasi-static way.

V̇ =
1
m

(
FxF cos(δ −β )−FyF sin(δ −β )+

+FxR cosβ +FyR sinβ
)

β̇ =
1

mV

(
FyF cos(δ −β )−FxF sin(δ −β )+

−FxR sinβ +FyR cosβ
)
− r

ṙ =
a
(
FxF sinδ +FyF cosδ

)
−bFyR

Iz

(2)

B. Tyre Model

The vehicle and road surface interaction is essential for
the drifting motion. The transition between conventional
driving and drifting requires a large rear lateral force to
establish a state of drift. Similarly, a high optimal lateral
force must be maintained to remain in a steady-state drift.
This implies that the knowledge of the tyres should be as
accurate as possible, capturing most characteristics with the
lowest complexity. This work combines the standard Magic
Formula (5.2) and its simplified version. Results on com-
putational capacity and tracking performance show that the
simplified Magic Formula can be applied at the front wheels.
In contrast, the standard formula is desired to better capture
rear tyre characteristics. The simplified model can capture
those characteristics as front wheels are considered within
the tyre friction limits during a drift. Regarding rear tyres,
they work beyond the friction limit, so tyre characteristics
should be captured as well as possible.

III. EQUILIBRIUM ANALYSIS

Subsection III-A describes how the locations of the desired
steady-state drift equilibria are computed, and subsection III-
B shows the experimental validation of the drifting equilibria.

A. Steady-State Equilibrium Locations

The steady-state drifting equilibria are computed,
imposing the derivative of the nonlinear single-track vehicle
model states to zero. Based on this condition, the differential
equations are solved using nonlinear least-squares, allowing
the incorporation of constraints on respective states. An
initial guess allows the solver to converge to a desired
equilibrium, e.g. a high sideslip drifting equilibrium.
Furthermore, constraints on desired velocities, wheel
speeds, and wheel slip make finding equilibria significantly
faster. Nevertheless, as can be mathematically derived, the
proposed model contains more variables than equations,
which means that specific equilibrium values must be user-
defined, considering a value that describes a drifting motion.
Thus, the system of equations is solved using a set of desired
sideslip angles β eq with a set of experimentally confirmed
feasible path radii Req for drifting motion. The optimisation
variables are described by xeq (Eq.3), which allows the
computation of all the respective tyre force components.

xeq = [V eq
β

eq req
ω

eq
F ω

eq
R δ

eq T eq
i ]T (3)
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Fig. 2: Steady-state drifting equilibria maps.

The results of the equilibrium points are considered non-
unique, as a drifting equilibrium is controlled through a bal-
ancing relation between the front and rear force magnitudes.
Thus, the variations in rear-drive torques and their resultant
slip coefficient may vary, as the front axle is subject to vary-
ing poses and forces. Fig. 2 shows the equilibria maps, which
have the locations of the peak drive torques in •, rear lateral
peak forces in • and the front lateral peak forces in •. For
the velocity state equilibrium, see Fig. 2f, which increases
with the desired path radius at a constant sideslip angle. In
contrast, a constant radius causes a decrease in sideslip angle
due to the force balance required between the front and rear
axles. As a result, the vehicle’s yaw rate increases with the
path radius. Fig. 2a and 2b show that the lateral tyre forces
are at their highest at relatively small sideslip angles. Thus,
towards these peaks, the vehicle is considered in conventional
driving with the tyre working in the linear range. This can
also be deducted by the similar wheel speeds (Fig. 2c) and
positive steering angles (Fig. 2e). Fig. 2c shows that the
front and rear wheel speeds start to deviate in magnitude
at higher sideslip angles, and the steering angle approaches
zero, indicating that the vehicle is entering a drifting mode.
However, the rear longitudinal force has not reached its peak
force (Fig. 2b). This means that the applied rear torque
results in a reasonable amount of slip such that the rear tyres
become saturated in the lateral direction with a reasonable
sideslip angle. However, since the peak friction force in the
longitudinal direction is not reached, we consider the state
towards this point a transient equilibrium, i.e., a slight drift.
Thus, tyres are not fully saturated, nor is countersteering tak-

ing place. Once the peak in the longitudinal slip is reached,
the difference in wheel speeds becomes more significant
than the rear axle longitudinal velocity. Thus, the tyres are
saturated in both lateral and longitudinal directions, and a
direct change in steering angle is required (Fig. 2e) to balance
the front and rear forces. Thus, larger sideslip angles describe
fully drifting equilibria where the proportional behaviour in
the steering angle and the deviation in the wheel speeds (Fig.
2c) result from a more significant required rear slip and a
decline in front wheel speed due to a lower yaw rate.

B. Experimental Validation

The steady-state drifting equilibria are experimentally val-
idated in a proving ground. Fig. 3 shows a comparison of the
computed and measured vehicle state equilibria. The results
show the complexity of a human driver remaining at an
actual equilibrium point due to many disturbances on the
vehicle, e.g., road surface. Real road surfaces are considered
non-homogeneous, where a ∼5 % variation in the friction
coefficient is measured for the respective proving ground,
which a driver needs to compensate for by changing the
steering angle or throttle commands. Thus, the measured
steering angle and drive torque are never constant. The
vehicle’s slightly tilted position due to the surface’s conical
shape is also unmodelled in the single-track vehicle, causing
variations in the vertical axle loads. In addition, the driver
has to stabilise the desired drifting state while stabilising
on a desired path. Thus, the experimental data are not in
equilibrium for all time instants. However, the comparison
does show reasonable similarities in the order of magnitude.
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Fig. 3: Comparison of the computed and measured vehicle
states in equilibrium.

Fig. 4: Architecture of the proposed controller.

The comparison between computed and measured drifting
states shows that many variations of drifting equilibria exist
around an actual drift equilibria.

IV. PROPOSED CONTROLLER ARCHITECTURE

The proposed controller architecture is shown in Fig. 4,
designed to stabilise the vehicle into a high sideslip angle
and follow a desired path. The NMPC is used to compute the
optimal control inputs to reach any feasible vehicle reference
state. Thus, the NMPC is deployed to stabilise the vehicle
in a high sideslip state and for conventional driving. Thus,
it can bring the vehicle from conventional driving towards a
drifting motion. The NMPC is based on the following online
optimisation:

min
u∈U,x∈X

N

∑
k=0

J(xk,uk) (4a)

s.t. x0 = xinit (4b)
xk+1 = f (xk,uk), k = 0, . . . ,N −1 (4c)

where J is the objective, which includes the quadratic errors
between the defined equilibria and the vehicle sideslip angle
and yaw rate states; furthermore, it includes a penalty on
the steering rate δ̇ . The latter is possible by introducing δ

as an extra vehicle state correspondent to the integration of
the δ̇ . Thus, two benefits are counted: first, it is possible
to add a constraint on δ̇ , modelling the physical limitation
of the steering actuator, and second, the control input

δ becomes smoother. The f (xk,uk) corresponds to the
nonlinear single-track vehicle model. The optimisation
problem in Eq.4 is solved using the ACADO toolkit [17]
with the Sequential Quadratic Programming solver at 50 Hz
with a prediction horizon N = 25.

The desired equilibria are provided to the NMPC through
dynamic referencing, which is implemented to influence
the vehicle’s direction. The offline computed equilibria are
selected dynamically using sx to alter the path curvature
such that the lateral error ey of a desired path is decreased.
This is established by altering the desired path curvature
in relation to the lateral error through a path-following
controller that determines a compensating factor on the
path curvature. The altered path curvature functions as an
input for a lookup table that contains a complete set of
equilibria, which, therefore, picks the optimal equilibrium
that functions as a reference for the controller.

V. SIMULATION RESULTS

Subsection V-A describes how the proposed controller is
evaluated in a high-fidelity environment, and subsection V-B
shows the proposed controller validation.

A. Simulation Setup

The proposed controller is first evaluated in a simulation
environment. The vehicle plant is a high-fidelity model of a
BMW M3 Competition. It is a rear-wheel drive vehicle with
a limited-slip differential (LSD), allowing for the locking rate
modification. The vehicle plant is based on a 17 degrees of
freedom model, experimentally parameterised and validated
by BMW. Magic Formula 5.2 is used to model the tyre dy-
namics. An alternating drifting manoeuvre on a high-friction
surface is defined as a testing scenario. The manoeuvre is
initialised with a high yaw rate state within friction limits,
i.e. conventionally turning. Furthermore, measurement
noises and friction coefficient variations are included in the
simulation. Friction coefficient variation is based on surface
measurements at the BMW proving grounds of Aschheim,
showing that seemingly homogeneous surfaces tend to have
friction coefficient fluctuation of approximately 0.05. The
amplitude and frequency of simulated measurement noises
are based on experimental vehicle measurements.

B. Alternating Drifting Manoeuvre

The simulated vehicle states in the alternating drifting
manoeuvre are shown in Fig. 5. Once the drifting reference
is initialised, the proposed controller can successfully track
the initial left-hand drifting manoeuvre and perform a
nearly instant transition into a right-hand drift with optimal
tracking performance. In this case, the response of a 30 %
LSD is reached as the left and right wheel speeds become
similar, implying a locked differential state. Furthermore,
the results highlight that the nonlinear single-track model
captures the drifting vehicle dynamics, as the desired
equilibrium is based upon that description. The control
inputs are shown in Fig. 6. Despite the same NMPC tuning
for the complete simulation showing some erratic behaviour
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Fig. 5: Vehicle states in the alternating drifting manoeuvre
on a high friction surface.
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Fig. 6: Control inputs in the alternating drifting manoeuvre
on a high friction surface.

in the linear driving range, the solver remained stable. The
results highlight that the steering angle remains smooth, as
the δ̇ is constrained in the optimisation. The simulator’s
response shows powertrain dynamics and systematic delays,
as the single-track model calculation of the left and right
wheel drive torque is not of equal peak magnitude. This
implies that the rapid increase of desired drive torque is
tracked slowly. However, the drifting states are reached as
the solver computes the equilibrium drive torque.

VI. EXPERIMENTAL RESULTS

Subsection VI-A describes how the proposed controller
is evaluated in the proving ground, and subsection VI-B
shows the experimental validation of the proposed NMPC
for automated drifting.

A. Experimental Setup

The experimental validation is conducted with a BMW
M3 Competition vehicle. The auto-generated real-time
ACADO c-code is implemented on a dSPACE Autobox
DS1007 platform, which also acts as an interface for desired
Flexray and CAN bus communication protocols to send and
receive information from the vehicle and desired external
devices, e.g. GNNS or IMU. Measured and estimated state
signals at 10 ms are found on the vehicle Flexray. Regarding
the control actuators, the human driver inputs provided to

Fig. 7: Desired and applied control inputs during automated
drifting experiment.

the driving assistance systems interface are replaced by the
NMPC-optimised control inputs. However, the automated
lane keeping, commonly available in a passenger vehicle, is
not designed to be active in fully automated mode, so applied
steering torque and angle through the driving assistance
systems interface are greatly limited by safety features.

When the proposed controller is validated, ignoring these
limitations, it can only successfully bring the vehicle to a
high sideslip angle condition but not stabilise it. Fig. 7 shows
a deviation between the desired and measured steering angle
for all performed tests reaching a high sideslip angle, where
the front axle aligns with the direction of travel rather than
compensates for the vehicle state. A possible explanation is
the lack of applicable torque from the standard electric power
steering motor that should be able to apply sufficient torque
to overcome the self-aligning moment occurring at the front
tyres. The e-motor can provide a maximum of ∼30 Nm of
torque and is designed to function for several low-torque
ADAS systems, such as automatic lane change. Thus, the
steering angle cannot be decreased as the NMPC desires and,
as a result, the actual steering angle remains on its limit,
which causes the vehicle to spin, as the front axle is not
performing the desired compensation for the deviations in
absolute velocity and vehicle sideslip angle.

Regarding these limitations, only software/hardware mod-
ifications or a steering robot can solve the steering angle
limitation. Therefore, the proposed controller is validated
with a semi-automated drifting manoeuvre. The proposed
NMPC computes the optimal control inputs, but only the
desired drive torque is provided to the vehicle while a human
driver assists in the steering. In this experiment, we can
validate the NMPC drive torque and compare the actual
and desired steering input of the NMPC. The experiment
is performed on a dry surface and a watered skid pad,
respectively, with high and low friction conditions.

B. Semi-Automated Drifting Manoeuvre

The vehicle states in a semi-automated drifting manoeuvre
are shown in Fig. 8. The vehicle successfully enters the
desired drifting mode, and the high sideslip angle is stabilised
for multiple rounds at 30 deg. Thus, the NMPC driving
torque is sufficient and solved optimally to bring the vehicle
into drifting mode and maintain its steady-state drifting
position. However, it is visible that the tracking performance

288



45 50 55 60 65 70
10

12

14

V
 [
m

/s
]

45 50 55 60 65 70

0
0.2
0.4
0.6

 [
°]

45 50 55 60 65 70
-1

-0.5

r 
[r

a
d
/s

]

45 50 55 60 65 70

30
35
40

F
 [

ra
d
/s

]

45 50 55 60 65 70

time [s]

30
40
50

R
 [
ra

d
/s

]

NMPC

Reference

Meas. Left Wheel

Meas. Right Wheel

Fig. 8: Vehicle states in semi-automated drifting manoeuvre.
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Fig. 9: Actuated and optimised control inputs in a semi-
automated drifting manoeuvre.

of the velocity and front wheel speed is less accurate than
the sideslip angle, yaw rate, and rear wheel speed. A possible
explanation is that the controller tuning is optimised to bring
the vehicle into a high sideslip angle, established with a high
yaw rate and accurate rear wheel speed tracking. On the
contrary, the front axle aligns with the direction of travel,
and the front wheel speed and the absolute velocity are
proportional under constant path curvature.

Fig. 7 shows the optimised and actuated control inputs.
The comparison between steering angles demonstrates that
the steering angle provided by the human driver is very
similar to the desired steering angle optimised by the NMPC
solver. The maximum variation in magnitude is ∼5 deg,
demonstrating the NMPC capacity to stabilise the vehicle
in drifting mode with appropriate actuators.

VII. CONCLUSIONS

This paper presented a novel approach to automated
drifting with a standard passenger vehicle, focused on a
Nonlinear Model Predictive Control to stabilise and maintain
the vehicle at high sideslip angle conditions. In this work,
we experimentally verified the correspondence of the vehicle
state equilibria computed with a nonlinear single-track model
with the one measured in a proving ground. The experimental
verification of the controller showed that using a standard
production vehicle without significant hardware and software

modifications is not possible due to the limited steering
torque provided by the standard interface of electric power
steering. However, a semi-automated drifting manoeuvre
demonstrated the controller’s capacity to bring a real vehicle
into drifting mode and stabilise it at a high vehicle sideslip
angle of 30 deg. Future works involve performing the ex-
perimental validation of the proposed controller in a fully
automated mode, using a steering robot as an actuator.
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