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Abstract— This paper presents an ensemble control system for
precise online manipulation of micro- and nanoscale objects.
Existing wireless external actuation approaches exhibit global and
coupled influences, hindering robust and simultaneous control
of multiple particles. The proposed system incorporates the
rotational dynamics of nanowires in fluid suspension and offers
two control methods: a two-stage open-loop ensemble control
law and a model-predictive ensemble control strategy. Simulation
results demonstrate that both methods surpass the theoretical
limits of simultaneous particle control. The model-predictive
ensemble control method can control more nanowires, does not
require pre-generated trajectories, and has a simpler validation
process for control performance.

I. INTRODUCTION

Efficient manipulation of microscopic objects is essential
for numerous research applications. However, traditional tools
such as tip-based or optical tweezers lack the ability to
simultaneously steer multiple objects effectively. Field-based
actuation, such as magnetic or electric fields, has shown
promise in remote control for various applications, including
medical procedures and micro-, nano-, and bio-manipulations.
Despite the introduction of several micro- and nanomanip-
ulation techniques, field-based manipulation methods suffer
from the global and coupled influences of the wireless external
actuation in the workspace, limiting the capability to robustly
control multiple micro- and nanoparticles independently and
simultaneously [1]. Various approaches have been proposed to
achieve automated transport of micro- and nanoagents under
a global input, including electrostatic anchoring [2], local
field decoupling [3], non-uniformity of the robots [4], and
heterogeneity of the agents [5]. However, there has been no
systematic investigation of the maximum number of agents
that can be simultaneously and independently controlled with
global field inputs.

Ensemble control theory aims to control a group of dynamic
systems with different parameters using the same control
signal [6]. This approach has applications in quantum systems
and involves maintaining a set of all possible configurations
of the system and choosing the same input at each step
to steer the entire system to a neighborhood of the target
configuration [7]. The controllability of an ensemble system
can be studied by looking at the algebra of polynomials defined
by the noncommuting vector fields that govern the system
dynamics [8]. The Lie algebra rank condition can be used to
prove nonlinear ensemble controllability.
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At low Reynolds numbers, the translation motion of
nanowires can be modeled in the form of q̇(t, ε) =
ε
∑n
i=1 gi(q(t, ε))ui(t), where q is the system states, ε is the

varying parameter in the system dynamics, and is unique for
each elements, n is the number of the elements, gi represents
the vector fields from the system dynamics, and ui is the
input to the system. In [8], it is noted that the system is not
ensemble-controllable if the Lie algebra generated by gi is
nipotent. This is due to the inability to generate a desired
higher order power of ε from the Lie algebra using the
translation motion model of the nanowires. However, in [7], a
fictitious collection of unicycles with similar system dynamics
was steered as an ensemble under a bounding unknown model
perturbation. A reduced subsystem was derived by utilizing
repeated bracketing and polynomial approximation to build
arbitrary vector flows, making it ensemble-controllable.

This paper proposes an ensemble control scheme us-
ing a shared, global electric field to control multiple one-
dimensional nanowires simultaneously and independently, in-
spired by [7]. The research aims to enable scalable nanoman-
ufacturing of functional micro- and nanodevices [9]. The
main contributions of the work are: (1) The paper validates
the rotational model for a nanowire experiencing an external
electric field in fluid suspension through experimental results
and develops a new ensemble control problem by introduc-
ing the rotation motion of the nanowires. (2) Two control
methods, two-stage open-loop ensemble control and model
predictive ensemble control, are presented for controlling mul-
tiple nanowires to their independent targets. (3) The proposed
control schemes break the limit on the maximum achievable
number of nanowires that can be controlled with global field
inputs, and their performance is verified through extensive
simulation results. The proposed research methodologies are
not limited to electric field actuation and can be generalized
to other field-based applications where the actuation among a
group of agents is coupled or intertwined.

II. MOTION MODEL OF NANOWIRES IN FLUID
SUSPENSION UNDER ELECTRIC FIELDS

A. Translational Model Formulation

As shown in Fig. 1(a), we consider n nanowires immersed
in a viscous fluid under an external DC electric field. Denote
the position of the ith nanowire as ri(t) = [xi(t) yi(t)]

ᵀ, i =
1, · · · , n and the position vectors of all nanowires as q(t) =
[rᵀ1 (t) · · · rᵀn(t)]ᵀ ∈ R2n. The equation of motion is given as
follows [10]–[13]:

q̇(t) = ZB(q(t))u(t), (1)
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Fig. 1. (a) Top-view of the schematic of the microfluidic device with N ×
N independently actuated electrodes on the bottom substrate. The array of
circular electrodes with diameter L/2 is fabricated with equal distances L
between the electrode centers as measured along the x and y axes. Each
electrode is independently actuated with a DC voltage. (b) A nanowire is
suspended in a fluid that is subjected to an external electric field E.

where Z = diag[ζ1x, ζ1y · · · ζnx, ζny] ∈ R2n×2n,
[
ζix ζiy

]
is

the zeta potential of the ith suspended nanowire in x- and y-
axis directions, respectively. B ∈ R2n×N2

is the motion gain
matrix:

B = C

E1(r1(t)) · · · EN2(r1(t))
...

. . .
...

E1(rn(t)) · · · EN2(rn(t))

 , (2)

where Ej(ri(t)) = [Exj
(ri(t)) Eyj (ri(t))]

ᵀ, i = 1, · · · , n,
j = 1, · · · , N2, is the DC electric field vector under unit
voltage at ri(t) by the jth electrode. C = ε/µ, µ is the
dynamic viscosity of the fluid, and ε is its electric permittivity.
u = {uj} ∈ RN2

is the corresponding controlled voltage that
is applied to the N × N electrode array. Every two rows in
Eq. (1) represent one nanowire’s translational motion.

Given the desired target T , we want to obtain u that
subjected to ‖u‖∞ < ubound to steer multiple particles to reach
their targets, where ubound is maximum bound of the applied
voltages. From the above discussion, this control problem is
not ensemble-controllable.

We added quadruple electrodes outside the bottom electrode
array as shown in Fig. 2, where four phase-shifted AC voltages
are applied with a sequential phase shift of 90◦ [14]. The
rotational model of the nanowires in fluid suspension under
external electric fields is formulated, where the nanowire
rotation is achieved by applying AC fields to the quadruple
electrodes. The frequency and magnitude of the AC field and
nanowire’s properties affect the rotational speed.

B. Rotational Model Formulation

The rotational rate of suspended nanowires under an external
electric field is formulated as follows. Consider a conducting
polarizable spheroid in an electrolyte that is subjected to a
vertical electric field E, as shown in Fig. 1(b). When the
electric field E is applied, the nanowire rotates to align with
the electric field’s direction. Define a coordinate system such
that the major axis of the spheroid, whose direction is given by
a unit vector p, lies in the plane, and without loss of generality,
it can be assumed that both vectors E and p lie in the same

Fig. 2. Top-view of the schematic of the microfluidic device with N × N
DC electrodes and quadruple AC electrodes.

plane. The angle formed by the electric field and the wire’s
major axis is φ, so E ·p = Ecosφ. Let 2c and 2a be the lengths
of the major and minor axes of the spheroid, respectively.
Denote the particle aspect ratio by γ = c/a and its inverse by
α. The rotation rate of the wire is influenced by two factors:
slip velocity on particle surfaces and electro-rotational torque
from the dipole moment [15]. From the slender-body theory
in [15], the angular velocity induced by the normal component
of the slip velocity on the particle surface can be expressed
as Ωs = ε

µp × Ẽ(p · E), where Ẽ is the circumferentially
averaged and linearized electric field along the particle, and
the detailed derivation can be found in [15]. In addition to
the slip velocity induced angular velocity, Ωs, rotation also
occurs due to the interaction between the electric field and
the dipole moment of the nanowire, which produces a torque
through electro-rotation, and the resulting angular velocity is
Ωe = εlog2γ

µγ2 Ẽ × E. As a result, the angular velocity of the
nanowire Ω = Ωs + Ωe.

C. Model Validation by Experiments

The translation model has been validated in our previous
work [16]–[19]. Experimental validation of the rotational
model was performed by comparing the angles of nanowires
captured by a high-resolution microscope camera to the nu-
merically integrated angles from the derived model. Figs. 3(a)
and 3(b) show the results of experiments with nanowires
suspended in light and high viscosity mineral oil, respectively,
with the electric field direction changing at a variable rate.
The plots demonstrate that the nanowire continuously rotates
to align with the field direction, and the angle results from the
rotation model are consistent with the experimental data.
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Fig. 3. Experimental plots for silicon nanowires’ orientations under a
switching external electric field. (a) The nanowire rotates in light viscosity
mineral oil. (b) The nanowire rotates in heavy viscosity mineral oil.
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III. ENSEMBLE CONTROL SCHEMES

In this section, the microfluidic setup is rebuilt to create an
ensemble-controllable system. As shown in Fig. 2, an N ×N
electrode array is fabricated on the substrate, and a set of
quadruple electrodes is added outside the bottom electrode
array. DC voltages are applied to each circular electrode
independently to manipulate the nanowires’ horizontal mo-
tion, while four phase-shifted AC voltages are simultaneously
applied to the peripheral electrodes, which contribute to the
rotation of the nanowires. The new system dynamics for the
ith nanowire are given byẋiẏi

θ̇i

 =

ζixB2i-1
ζiyB2i

0

u +

0
0
1

Ωi, (3)

where xi, yi, θi, and Ωi are the x-, y- positions, orientation,
and angular velocity of the ith nanowire, respectively, without
considering the disturbance. According to [14], applying an
AC field with a fixed amplitude and frequency to the designed
set of electrodes yields a constant angular velocity that varies
for each individual nanowire. In the following section, we will
demonstrate that this dynamic system is ensemble-controllable.

A. Ensemble Controllability by Polynomial Approximation

This section proves the ensemble-controllability of the re-
vised microfluidic setup with certain constraints, similar to the
proof for the subsystem in [7]. The system dynamics are shown
in Eq. (3), where u is the voltage input vector to the electrodes,
and Bu is the electric field vector at the nanowires’ positions.
The electric field can be expressed as E0[cos(θE) sin(θE)]ᵀ,
where E0 is the magnitude of the electric field and θE is the
angle of the electric field. The input field constraint is that the
electric field direction must align with the rotating angle of the
nanowires, i.e., θE = θi, to create an ensemble-controllable
system. Therefore, the equation of motion for the individual
nanowire can be expressed asẋiẏi

θ̇i

 =

cos(θi)
sin(θi)

0

 ζipE0 +

0
0
1

Ωi, (4)

where ζip is the zeta potential for the nanowire along its
longitudinal body direction, which is a unique constant for
each nanowire.

Because the rotational rate of each nanowire is constant but
varies due to its different geometric shapes, we can introduce
an auxiliary state γi for the proof, where θi(t) = θi(0)+εγi(t),
and θ̇i(t) = εγ̇i(t). ε is the distribution parameter for each
nanowire. Then the evolution of the system is governed byẋiẏi

γ̇i

 =

cos(θi(0) + εγi)
sin(θi(0) + εγi)

0

 ζipE0 +

0
0
1

 γ̇i. (5)

Denote the configuration of the system as pi = [xi yi γi]
ᵀ,

h1 = [cos(θi(0)+ εγi) sin(θi(0)+ εγi) 0]ᵀ and h2 = [0 0 1]ᵀ,
the system can be expressed as ṗi = ζiph1u1+h2u2 with u1 =
E0 and u2 = γ̇i. Now we prove the ensemble controllability
by using repeated bracketing to get higher order powers of ε

and by using polynomial approximation to construct arbitrary
vector flows. Taking Lie brackets, we have:

[ζiph1, h2] = ζip(
∂h2
∂p

h1 −
∂h1
∂p

h2)

= 0− ζip

 0 0 −ε sin(θi(0) + εγi)
0 0 ε cos(θi(0) + εγi)
0 0 0

0
0
1


= ζipε

 sin(θi(0) + εγi)
− cos(θi(0) + εγi)

0


Denote h3 = [− sin(θi(0) + εγi), cos(θi(0) + εγi)]

ᵀ, we can
get [ζiph1, h2] = −ζipεh3. As a result,

[[ζiph1, h2], h2] = −ζipε(
∂h2
∂p

h3 −
∂h3
∂p

h2)

= 0 + ζipε

 0 0 −ε cos(θi(0) + εγi)
0 0 −ε sin(θi(0) + εγi)
0 0 0

0
0
1


= −ζipε2

cos(θi(0) + εγi)
sin(θi(0) + εγi)

0

 = −ζipε2h1.

We can raise the dispersion parameters cos(γi) and sin(γi)
to higher powers, thereby achieving robustness with dispersion
to ε by generating appropriate Lie brackets. This proves that
the new system is ensemble-controllable under the constraint.

B. Two-stage Open-Loop Ensemble Control

In this section, a two-stage open-loop ensemble control law
is derived by separating the control process into two stages
under the assumption that the zeta potentials of each nanowire
are known parameters. In the first stage, a k-step control law
is developed to determine the desired sequence of k control
inputs for the magnitude of the electric fields to reach the
goal state. In the second stage, the voltage input is solved
to obtain the desired electric field strength at the nanowires’
configurations, assuming that the electric field aligns with the
nanowire’s orientation during its motion.

1) First Stage: We express the system dynamics as a
discrete-time model in Eq. (6) with k as the time step, x and
y as the nanowire positions in the x- and y-directions, θi(k)
as the nanowire’s orientation angle at the kth step, and dt as
the time interval per step:[

xi(k + 1)
yi(k + 1)

]
=

[
xi(k)
yi(k)

]
+ ζip

[
cos(θi(k))
sin(θi(k))

]
E0(k)dt. (6)

At each time step, we need to determine the magnitude of the
electric field, denoted by E0(k). We assume that by applying
a specific AC field with a fixed frequency, the rotating rate
of each nanowire is constant. Therefore, we can compute the
heading angles of the ith nanowire θi(k) = θi(0)+εikφ, which
includes a constant parameter φ and an independent variable εi
that scales the nanowire’s rotating speed. Thereby, the discrete-
time system dynamics can be expressed in a simplified form:[
xi(k + 1)
yi(k + 1)

]
=

[
xi(k)
yi(k)

]
+ ζip

[
cos(θi(0) + εikφ)
sin(θi(0) + εikφ)

]
E0(k)dt.

(7)
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Fig. 4. Manipulation results for three nanowires using the two-stage control strategy. (a) Trajectory plot with k = 800. (b) Trajectory plot with k = 2500.
The “*” and “o” markers indicate the nanowires’ initial and target positions, respectively. “- -” is the actual trajectory, and “-” is the desired trajectory from the
first stage. (c) Position errors plot with k = 800. (d) Position errors plot with k = 2500. “-4-” is the position error for nanowire No. 1. “-?-” is the position
error for nanowire No. 2. “-�-” is the position error for nanowire No. 3. “-” is the error in the x direction, and “- -” is the error in the y direction.
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Fig. 5. Manipulation results for four and five nanowires using the two-stage control strategy. (a) Trajectory plot for the four nanowires. (b) Trajectory plot
for the five nanowires. The markers “*” and “o” indicate initial and target positions, respectively. The dashed line (“- -”) represents the actual trajectory, while
the solid line (“-”) represents the desired trajectory from the first stage. (c) Position error plot for the four nanowires. The errors along the x direction for all
nanowires are close to zero. The errors in the y direction for nanowires 1 and 2 reach up to 4 µm during motion. (d) Position error plot for the five nanowires.
The symbols “-4-”, “-?-”, “-�-”, “-o-”, and “-�-” represent position errors for nanowires 1, 2, 3, 4, and 5, respectively. The solid line (“-”) represents the
error in the x direction, and the dashed line (“- -”) represents the error in the y direction.

Similar as [20], we show the first stage of the system is
uniformly k-step controllable by defining the controllability
matrix Ck. For the time step from 1 to k, the ith nanowire’s
position is updated as follows:[
xi(1)
yi(1)

]
=

[
xi(0)
yi(0)

]
+ ζip

[
cos(θi(0))
sin(θi(0))

]
E0(0)dt,[

xi(2)
yi(2)

]
=

[
xi(1)
yi(1)

]
+ ζip

[
cos(θi(0) + εiφ)
sin(θi(0) + εiφ)

]
E0(1)dt,

...[
xi(k + 1)
yi(k + 1)

]
=

[
xi(k)
yi(k)

]
+ ζip

[
cos(θi(0) + εikφ)
sin(θi(0) + εikφ)

]
E0(k)dt.

(8)
From above, define the matrix B̂i(k) = ζip[cos(θi(0) +
εikφ) sin(θi(0) + εikφ)]ᵀ for each nanowire, and put them
together for n nanowires at kth step, it has B̂(k) =
[B̂1(k)ᵀ, B̂2(k)ᵀ, · · · , B̂n(k)ᵀ]ᵀ. The controllability matrix Ck
is defined by B̂(k) shown as: Ck = [B̂(0), B̂(1), . . . , B̂(k −
1)]. The control problem then becomes, for any starting
state p0 and desired final state pk, solve for the control se-
quence [E0(0), E0(1), . . . , E0(k−1)] subject to the constraint
Ck[E0(0), E0(1), . . . , E0(k − 1)] = (pk − p0). To make sure
the Ck is not ill-conditioned, which would lead to very large
control commands, we desire to pick a k at least k > 4n, where
n is the number of the nanowires to be controlled. As a result,
the matrix Ck is full rank, and because k > 2n, the system

is underdetermined, with an infinite number of solutions. By
using the Moore-Penrose pseudoinverse to solve the problem,
it results in better numerical accuracy than the solution with
minimal control effort [21].

2) Second Stage: After obtaining the electric field strength
required to manipulate multiple nanowires to their targets
in the first stage, a desired trajectory, pf , is generated by
substituting the input to the system dynamics. In the second
stage, we solve for the voltages necessary to follow the
generated trajectory using the original system dynamics while
satisfying the electric field constraints. To account for both
the magnitude and direction of the electric fields and voltage
bounds, we define the following optimal control problem to
solve for the demand voltages:

min

k−1∑
j=1

‖p(j)− pf (j)‖2

subject to p(j + 1) = p(j) + ZB(p(j))u(j)dt,

j = 0, 1, . . . , k − 1

‖u‖∞ < ubound

∠(B(p(i))u) = θi, i = 1, 2, . . . , n

(9)

3) Simulation Results: The maximum number of nanowires
that can be independently manipulated by an N ×N electrode
array is limited to N2/2 [22]. To overcome this limitation,
the ensemble control strategy is crucial. In the simulation, we
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used a 2×3 electrode array with a center-to-center distance of
300 µm as the actuators. The maximum number of nanowires
that can be controlled for this setup is 3 [22]. To achieve
precise and agile motion of the nanowires, it is suggested
to put two nanowires in two different cells separately [23].
The two-stage open-loop ensemble control strategy expands
the control limit to larger numbers. In the first stage, the
number of nanowires that can be controlled is not limited due
to the subsystem ensemble controllability. However, the orig-
inal system dynamics and the constraints of the microfluidic
system’s physical properties limit the number of nanowires
that the system can manipulate in the second stage. We
explored the maximum limitation through simulation results.
Fig. 4 shows the manipulation of three nanowires to their
independent targets and the position errors between the actual
and desired trajectories with input voltage bounded to 500 V.
The maximum final position error is 16.7 µm in Fig. 4(c), and
2.81 µm in Fig. 4(d), where the control step k is 800 and
2500, respectively. The control step k significantly affects the
control result. Insufficiently large k results in extremely large
electric magnitude commands in the first stage, which cannot
be generated by the limited control input from the second
stage, leading to a final position error outside the target region.

Simulation results for controlling four and five nanowires are
shown in Fig. 5. The control step for four nanowires is 800, and
the maximum position error is 4.27 µm. For five nanowires,
a larger control step of 3000 was used, but the manipulation
was unsuccessful. Although the proposed two-stage open-loop
method can break the control limits for six electrodes, it has
several disadvantages, such as assuming known zeta potentials,
requiring the determination of a suitable control step, and the
possibility of instability due to the open-loop control.

C. Model Predictive Ensemble Control

In this section, we propose a closed-loop model predictive
ensemble control method for manipulating multiple nanowires,
using the same system dynamics as in Eq. (7). The model
predictive ensemble control is formulated as:

min

Nh−1∑
i=1

‖p(i)− pk‖Q

subject to p(j + 1) = p(j) + ZB(p(j))u(j)dt

j = 0, 1, . . . , k − 1

‖u‖∞ < ubound

∠(B(p(i))u) = θi, i = 1, 2, . . . , n

(10)

The optimal control problem is solved for control inputs at
each step. Unlike the open-loop ensemble control approach,
this method does not require a desired trajectory to be gener-
ated for the control law to track. Instead, an optimal control
problem with horizon length Nh is formulated to find the best
solution for controlling the nanowires to different targets. To
ensure ensemble controllability, we impose a constraint that
the electric field direction at each nanowire’s position must
be aligned with the nanowire’s orientation. This condition
theoretically allows the control of up to N2 nanowires using
N2 electrodes, as there is only one direction constraint for

controlling each individual nanowire. The motion gain matrix
B can have at most N2 rows to avoid an overdetermined
system that has no solution for the inputs. This breaks the
limit of N2/2 discussed previously. Assumptions for the two-
stage open-loop ensemble control law are used, including
known zeta potentials and fixed rotational rates. A 2 × 3
electrode array with an input voltage bound of 200 V is
used in the simulations. Results in Figs. 6–8 show successful
control of the nanowires to their target areas independently
and simultaneously, breaking the maximum number of con-
trolled nanowires. The controller takes 236, 1052, and 13700
steps to manipulate four, five, and six nanowires, respectively.
However, it takes more steps to manipulate a larger number of
nanowires independently. The electric field plots at different
time steps show the generated electric field directions are
aligned with the nanowires’ orientations, as assumed in the
model predictive ensemble control.

IV. CONCLUSION

In this work, a new microfluidic device setup is developed
for ensemble control of nanowires. A rotational model for
nanowires in fluid is derived and validated experimentally.
The ensemble controllability is proved by generating a higher
power of the distribution parameter using Lie brackets. Two
control methods, the two-stage open loop ensemble control
and the model predictive ensemble control, are proposed and
demonstrated to break the limit on the maximum number
of nanowires that can be simultaneously and independently
controlled. The model predictive ensemble control method
is able to manipulate up to six nanowires simultaneously to
their independent targets. Future work involves fabricating
the microfluidic device, developing an estimation method for
unknown parameters in the control process, and conducting
experiments to further validate the proposed control strategies.
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Fig. 6. (a) Manipulation results for four nanowires using the MPC ensemble control strategy. The “*” and “o” markers indicate the nanowire’s initial and
target positions, respectively. (b) The electric field at the 4th step of the control process. (c) The electric field at the 230th step of the control process.
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Fig. 7. (a) Manipulation results for five nanowires using the MPC ensemble control strategy. The “*” and “o” markers indicate the nanowire’s initial and
target positions, respectively. (b) The electric field at the 4th step of the control process. (c) The electric field at the 1050th step of the control process.
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Fig. 8. (a) Manipulation results for six nanowires using the MPC ensemble control strategy. The “*” and “o” markers indicate the nanowire’s initial and target
positions, respectively. (b) The electric field at the 4th step of the control process. (c) The electric field at the 13700th step of the control process.
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