
Stiffness-Aware Genetic Algorithm for Robotic
Path Finding Optimization

Alex Pasquali, Miriam Massini Alunni, Davide Chiaravalli and Gianluca Palli

Abstract—This work presents a genetic algorithm to evaluate a
suitable path for robotic manipulation of elastic objects. The goal
is to find a path, given an initial and final position, that accounts
for the distance covered by the robot while minimising the forces
perceived. These forces are generated by flexible objects that are
difficult to model analytically. The proposed model-free approach
considers these elastic forces in the fitness functions, making
the genetic algorithm stiffness-aware. Furthermore, a dynamic
exploration strategy allows for the convergence to effective
solutions in a finite number of iterations. A simulated analysis of
the suitable parameter configuration is performed for the robotic
platform employed in the experiments. These parameters are
then used in the validation of the method, demonstrating positive
outcomes of the proposed approach in terms of convergence and
effectiveness.

Index Terms—Genetic Algorithms, Robotic Path Finding, Op-
timization, Trajectory Planning, Three-dimensional Paths, Indus-
trial Robotics, Flexible Materials, Genetic Operators, Evolution-
ary Optimization

I. INTRODUCTION

Genetic algorithms (GAs) represent a class of optimization
methods inspired by the principles of natural selection and
genetics [1]. They stem from the imitation of evolutionary
mechanisms [2] found in biology, applying concepts of se-
lection, crossover, and mutation to generate and progressively
improve solutions suitable for the given problems [3]. The
process of a genetic algorithm begins with a population of
randomly generated solutions, often referred to as individuals,
and are evaluated based on their fitness, that is a measure of
how well they solve the problem.

In recent decades, GAs have attracted growing interest in
the scientific community for their ability to tackle non-convex
and nonlinear optimization problems [4]. Indeed, with their
focus on mimicking genetic processes, GAs have proven to
be effective in solving multi-objective [5], constrained [6], and
adaptive optimization problems [7]. However, it is important
to note that several aspects need to be carefully designed in
order to obtain truly effective GAs, such as a solution domain
representation consistent with the evolutionary optimization
paradigm, and a proper selection of crossover and mutation
operators [8].

Among the many applications of genetic algorithms, one
of the relevant fields is trajectory and path optimization [6],

Alex Pasquali, Miriam Massini Alunni, Davide Chiaravalli and Gianluca
Palli are with DEI - Department of Electrical, Electronic and Information
Engineering, University of Bologna, Viale Risorgimento 2, 40136 Bologna,
Italy.

This work was supported by the Horizon Europe project IntelliMan - AI-
Powered Manipulation Systems for Advanced Robotic Serivice, Manufacturing
and Prosthetics [grant number 101070136].

[9], which finds applications in various contexts, such as
robotics, logistics, transportation design, and route planning
[10]. Particularly, the search for optimal paths in three-
dimensional environments holds fundamental importance in
numerous sectors, as the ability to find effective solutions to
navigation and movement problems is crucial for the success
of many practical applications [11].

In the context of robotic path finding, several computational
approaches have been proposed and studied in the literature.
Methods based on traditional algorithms, such as heuristic
search algorithms [12] and local optimization methods [13],
have provided partial solutions often limited in terms of
efficiency.

In this paper, we present a novel stiffness-aware genetic
algorithm to perform an efficient evaluation of suitable paths
for robotic manipulation of elastic objects. In particular, this
approach tackles a dual-objective optimization: the minimiza-
tion of forces perceived by the robot, and the minimization
of the distance covered. The proposed approach exploits a
decreasing exploration ratio to properly generate mutated paths
at each task cycle and obtain new populations improving the
solution. By exploiting force measurements on each path key
point in real-time during the execution of each task, the system
can produce an effective solution within a finite number of
iterations.

Moreover, since the fitness function is solely based on
sensor measurement, the whole evaluation is performed in a
model-free manner. Indeed, the lack of an analytical model
of flexible objects allows for increased flexibility and gener-
alizability due to the known complexity associated with their
modelling and parameter estimation [14], [15].

The case study proposed demonstrates the effectiveness of
the algorithm in terms of space exploration to find the proper
path by decreasing the forces involved. This is done by a
previous analysis of the possible parameters configuration by
performing simulated experiments. Once the best parameter
configuration is selected we employ them to perform different
experiments in the real robotic setup.

The remainder of the paper is organized as follows: Sec. II
introduces the mathematical formulation of the proposed ge-
netic algorithm, explains the description, the definition of
the fitness function and finally the analysis and selection of
the algorithm parameters; Sec. III illustrates the experimental
setup and discusses the results of our experiments and analyses
performed; Sec. IV provides the concluding remarks.

2024 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
July 15-19, 2024. Boston, MA, USA

979-8-3503-9154-1/24/$31.00 ©2024 IEEE 942

𝛀1
Final Individual

𝛀𝐺

𝚯2,𝐺

𝚯𝑁,𝐺

𝚯0 ഥ𝑀(𝚯0)

𝚯1,1

𝚯2,1

𝚯𝑁,1

𝛀2

𝚯1,2

𝚯2,2

𝚯𝑁,2

𝜴𝑤
1

𝚯𝑤
1,1

𝚯𝑤
𝐶𝑤𝑁,1 𝐶𝑟(𝚯𝑤

𝑘,1, 𝚯𝑤
𝑙,1)

𝑀(𝚯𝑤
𝑘,1)

𝜴𝑐𝑟
1

𝜴𝑚
1

𝚯𝑚
𝐶𝑚𝑁,1

𝚯𝑚
1,1

𝚯𝑐𝑟
𝐶𝑐𝑟𝑁,1

𝚯𝑐𝑟
1,1

∪

𝚯𝐺𝚯1,𝐺

𝐴

𝐵

𝐶

𝝁1
0

𝝁𝑀
0

𝝁2
0

𝐶
𝐴

𝐵

𝝁1
𝐺

𝝁𝑀
𝐺

𝝁2
𝐺

Mutation operator

Crossover operator

First

Individual

Initial

Mutation

Operator

Sorted by 𝑆𝑘,1 Sorted by 𝑆𝑘,𝐺Sorted by 𝑆𝑘,2

Fig. 1: Scheme of the genetic algorithm where Θ represents the individuals and Ω represents the generations.

II. METHODOLOGY

This section introduces the proposed GA for the path finding
optimization problem in robotic systems with external elastic
forces applied. Each individuals are represented by mean
position (µ) and standard deviations (σ), organized into pop-
ulations across generations (Ω). The algorithm incorporates
mutations, crossovers, initialization, and a parameter selection
process that involves exploring combinations to optimize algo-
rithm performances Fig. 1. Simulated experiments with various
springs and constants contribute valuable insights for informed
decision-making on parameter choices.

A. Individuals, Population and Generations

The genetic representation utilized within our optimization
framework comprises two key elements: the mean workspace
position (µ) and the standard deviation (σ), which guide
the exploration-exploitation trade-off during the evolutionary
search. The population structure (Ω) organizes these genetic
parameters across generations. The genetic representation of
an individual Θ is structured as follows:

Θk,i = {µk,i, σk,i}, k = 1, . . . , N.

In this equation, Θk,i denotes the genetic parameters for in-
dividual k in generation i. It comprises the mean position µk,i

in solution space and the standard deviation σk,i, which guides
the exploration-exploitation trade-off during the evolutionary
search. A population Ω is represented as follows:

Ωi = {Θ1,i, . . . ,ΘN,i} i = 1, . . . , G.

Ωi represents the set of all individuals in the i-th generation.
The µk,i represents the mean position vector of individual k in
generation i. Each row corresponds to a point in the solution
space (x, y, z), with M dimensions.

µk,i =

x
k,i
1 yk,i1 zk,i1
...

...
...

xk,i
T yk,iT zk,iT

 , x, y, z ∈ R.

The parameters N , G, and T represent the population size,
the number of generations, and the dimension of the solution
space, respectively.

N,G, T ∈ N∗.

The σk,i denotes the standard deviation (exploration ratio)
associated with individual k in generation i, ensuring non-
negativity as a requirement for variance.

σk,i ∈ R, σk,i ≥ 0.

B. Fitness Function Definition

The algorithm needs a properly defined fitness function that
quantifies the quality of the solutions along with the selection
of appropriate genetic operators. For these reasons our fitness
function Sk,i takes into account spatial distribution Φk,i and
force Ψk,i factor.

Sk,i = Sk,i(Φk,i,Ψk,i) =

T∑
j=1

Sk,i
j =

=

T∑
j=1

((Φk,i
j)2 ·Ψk,i

j) · (1 + |Φk,i
j −Ψk,i

j |).

The term (Φk,i
j)2 · Ψk,i

j combines the spatial distribution and
force exchange for point j, while (1+|Φk,i

j −Ψk,i
j |) modulates

this contribution based on the absolute difference between
spatial distribution and force score.
Ψk,i accounts for the forces acting on the robot along the path.
It calculates the magnitude of the applied forces relative to a
maximum allowable force Fmax. This factor aims to minimize
the impact of external forces on the path.

Ψk,i
j = Ψk,i

j (µk,i
j) = 1 +

√
F 2
x + F 2

y + F 2
z

Fmax
, Fmax > 0.

To obtain the spatial distribution factor Φk,i we can define the
points A and B which represent the start and end points of
the path, respectively, in three-dimensional space.

A = [xA, yA, zA], B = [xB , yB , zB].

Let’s now consider the matrix P k,i collecting the sequence
of points that constitute the path for the individual Θk,i. The

943

function d(P k,i
j) calculates the Euclidean distance between

two generic consecutive points of a path.

P k,i =

 A
µk,i

B

 , d(P k,i
j) = |P k,i

j − P k,i
j+1|.

Φk,i evaluates the spatial distribution of points along the path.
It measures the deviation of the distances between consecutive
points from an ideal spacing D. This factor penalizes devia-
tions from the ideal spacing.

D =
|A−B|
M + 1

,

Φk,i
j =

(
1 +

1

2
|d(P k,i

j)−D|+ 1

2
|d(P k,i

j+1)−D|
)2

.

C. Mutations, Crossovers and Initialization

Regarding the concept of mutation, it is possible to define
the function M(Θk,i) that represents the mutation operator.
It generates a new individual Θn,i+1 based on the current
individual Θk,i. The operations needed to perform a mutation
are the following:

Θn,i+1 = M(Θk,i) = {µn,i+1, σn,i+1},

ζk,i = [ζk,i1 , . . . , ζk,iM], ζk,it =
Sk,i
t

Sk,i
,

m = argmax
t

(ζk,it · U(0, 1)t), t = 1, . . . , T,{
µn,i+1

t = µk,i
t if t ̸= m

µn,i+1
t = µk,i

t +U(−1, 1)1×3 · σk,i if t = m,

t = 1, . . . , T,

σn,i+1 = δ · σk,i, δ ∈ (0, 1].

Once the mutation probabilities ζk,i are computed, represent-
ing the probability of each point µk,i

t being mutated, the
selection of the point µk,i

m is performed through an index
m. The mutation of µk,i

m is done by adding a random vector
U(−1, 1)1×3 ·σk,i. Finally, also the standard deviation σn,i+1

of the new individual is updated by a scaling factor δ.
Regarding the concept of crossover, it is possible to define

the function Cr(Θk,i,Θl,i) that represents the crossover oper-
ator. It generates a new individual Θc,i+1 based on two current
individuals Θk,i,Θl,i. The operations needed to perform a
crossover are:

Θk,i = {µk,i, σk,i}, Θl,i = {µl,i, σl,i},

Θc,i+1 = Cr(Θk,i,Θl,i) = {µc,i+1, σc,i+1},{
µc,i+1

t = µk,i
t if ζk,it · U(0, 1) ≤ ζl,it · U(0, 1)

µc,i+1
t = µl,i

t otherwise

t = 1, . . . , T,

σc,i+1 = δ · σk,i = δ · σl,i, δ ∈ (0, 1].

The crossover operator selects points from either µk,i or µl,i

based on the comparison of their respective mutation proba-
bilities ζk,it and ζl,it with random values U(0, 1). Additionally,
the standard deviation σc,i+1 of the new individual is updated
by a scaling factor δ.
The initialization of the algorithm is as follows:

Ω1 = {Θ1,1, . . . ,ΘN,1},

Θ0 = {µ0, σ0}.

The initial individual is represented as Θ0, characterized of
the initial mean vector µ0 and the initial standard deviation
σ0. The initial mean vector µ0 is computed using a linear
interpolation function LI(. . .) based on the starting point A
and the ending point B of the path to be performed, and T .
The initial standard deviation σ0 is chosen as the distance
between two consecutive points of the linear path µ0:

µ0 = LI(A,B, T), σ0 =
|A−B|
M + 1

.

The scaling factor δ is computed as:

δ =
G

√
σG

σ0
, 0 ≤ σG ≤ σ0,

where σG is the desired final value of the standard deviation.
Each individual Θk,1 in the population is initialized using the
initial mutation operator M̄ applied to Θ0 (Fig. 1).

Θk,1 = M̄(Θ0) = {µk,1, σk,1}, k = 1. . . . , N.

All the components of the mean vector µk,1 are updated by
adding to µ0

t a random value from a uniform distribution
multiplied by the initial standard deviation σ0.

µk,1
t = µ0

t + U(−1, 1) · σ0, t = 1, . . . , T.

Finally, the standard deviation σk,1 of each individual is
updated by the scaling factor δ:

σk,1 = δ · σ0.

D. Algorithm Parameters: Description

This part describes how the population is partitioned and
manipulated during different generations of the genetic algo-
rithm. The coefficients Cw, Cm, and Ccr represent proportions
within the population allocated as selected, mutated, and
crossed individuals.

Cw, Cm, Ccr ∈ [0, 1], Cw + Cm + Ccr = 1.

These coefficients are multiplied by N to determine the
number of individuals assigned to each operation category:

Cw ·N,Cm ·N,Ccr ·N ∈ N Cw ≥ max(Cm, Ccr).

Ωi = {Θ1,i, . . . ,ΘN,i} with S1,i ≤ · · · ≤ SN,i,

the population Ωi in generation i-th is sorted based on its
fitness scores. Thereafter, the population is divided into three

944

TABLE I: Parameter configuration that include the number
of individuals (N), selection rate (Cw), mutation rate (Cm),
crossover rate (Ccr), total generations (G), and unique exper-
iment names.

N Cw Cm Ccr G Exp. Name

8

50.00% 50.00% 0.00% 124 Exp-01
50.00% 25.00% 25.00% 124 Exp-02
75.00% 25.00% 0.00% 247 Exp-03
75.00% 12.50% 12.50% 247 Exp-04

16

50.00% 50.00% 0.00% 62 Exp-05
50.00% 37.50% 12.50% 62 Exp-06
75.00% 12.50% 12.50% 122 Exp-07
75.00% 18.75% 6.25% 122 Exp-08

32

75.00% 12.50% 12.50% 59 Exp-09
75.00% 18.75% 6.25% 59 Exp-10
87.50% 6.25% 6.25% 118 Exp-11
87.50% 9.37% 3.12% 118 Exp-12

64

87.50% 6.25% 6.25% 55 Exp-13
87.50% 9.37% 3.12% 55 Exp-14
93.75% 3.12% 3.12% 110 Exp-15
93.75% 4.68% 1.56% 110 Exp-16

subgroups Ωi
w, Ωi

m, and Ωi
cr, representing selected, mutated

and crossed individuals respectively (Fig. 1).

Ωi
w = {Θ1,i

w , . . . ,ΘCw·N,i
w },

Θk,i
w = Θk,i, k = 1, . . . , Cw ·N,

where individuals Θk,i
w in Ωi

w remain unchanged as they are
directly selected for the next generation.

Ωi
m = {Θ1,i

m , . . . ,ΘCm·N,i
m },

Θk,i
m = M(Θk,i

w), k = 1, . . . , Cm ·N,

where the Ωi
m comprises the mutated individuals from the

selected ones.

Ωi
cr = {Θ1,i

cr , . . . ,Θ
Ccr·N,i
cr },

Θk,i
cr = Cr(Θk,i

w ,Θl,i
w), k = 1, . . . , Ccr ·N,

l ∈ [1, Cw ·N] random choice with l ̸= k,

in which Ωi
cr represents the crossed individuals Θk,i

cr . The
new component is selected by the crossover between two
individuals selected from the selected subgroups.

Finally, the next generation population Ωi+1 is formed by
merging the individuals from all three subgroups:

Ωi+1 = {Θ1,i+1, . . . ,ΘN,i+1} = Ωi
w ∪Ωi

m ∪Ωi
cr.

The process is repeated until the latest generation ΩG, where
the final individual ΘG = Θ1,G represents the final solution
for the algorithm (Fig. 1):

ΩG = {Θ1,G, . . . ,ΘN,G} with S1,G ≤ · · · ≤ SN,G.

0 50 100 150 200 250

Generation

7.25

7.50

7.75

8.00

8.25

8.50

8.75

9.00

S
c
o
re

Population of 8 Individuals

(a)

0 25 50 75 100 125

Generation

7.25

7.50

7.75

8.00

8.25

8.50

8.75

9.00

S
c
o
re

Population of 16 Individuals

(b)

0 25 50 75 100

Generation

7.25

7.50

7.75

8.00

8.25

8.50

8.75

S
c
o
re

Population of 32 Individuals

(c)

0 20 40 60 80 100

Generation

7.25

7.50

7.75

8.00

8.25

8.50

8.75

S
c
o
re

Population of 64 Individuals

(d)

Fig. 2: Shows the score means and standard deviations of
experiments with different numbers of individuals (N) and
factors (Cw, Cm, Ccr) to achieve the minimum fitness function
score. Each experiment is conducted for three different spring
constants: K = 6, K = 8, K = 10 from bottom to top in
each image.

E. Algorithm Parameters: Analysis and Selection

Finally, our goal is to identify parameter configurations that
optimize both the convergence speed and solution quality of
the algorithm. To achieve this, we need to carefully select
parameters such as the population size (N), crossover rate
(Ccr), mutation rate (Cm), and selection rate (Cw).

Higher values of the crossover rate Ccr and mutation rate
Cm encourage exploration of the solution space, leading to
a more diverse population and increasing the likelihood of
discovering novel solutions. Conversely, lower values of these
rates promote exploitation, focusing the search on refining
promising solutions. The selection rate Cw determines the
number of individuals that directly have access to the next
generation, higher values of that rate favouring the selection
of fitter individuals and potentially accelerating convergence.

Once we have defined the parameters for our algorithm,
the next crucial step is to select the most appropriate ones.
Tab. I outlines our parameter selection process, where various
combinations are explored to evaluate their impact on the
algorithm’s performance. In our approach, we set a maximum
limit of 500 paths to explore, guiding us in determining the
parameter choices.

945

TABLE II: Parameter configuration of Exp-12, that include the
number of individuals (N), selection rate (Cw), mutation rate
(Cm), crossover rate (Ccr), total generations (G).

N Cw Cm Ccr G Exp. Name

32 87.50% 9.37% 3.12% 117 Exp-12

Additionally, we conduct a simulated experiment (Fig. 2)
involving various springs fixed at a specific point in space
(C = [0.6, 0, 0]) with initial and final point of the path (A =
[0, 0, 0], B = [0.6, 0.6, 0.6]), with different spring constants
(K = 6, 8, 10), maximum force Fmax = 30N and the final
exploration ratio σG = 0.01. Each experiment is repeated 200
times (for each configuration from Exp-01 to Exp-16). These
experiments provide valuable insights into how the algorithm
behaves under different parameter settings, aiding us in making
decision regarding their selection.

The graphs in Fig. 2, compare various parameter combi-
nations, focusing on achieving the minimum fitness function
score. Each experiment was conducted with different numbers
of individuals (N) and factor scores (Cw, Cm, Ccr). We
observe that, overall, the experiment Exp-12 with N = 32 in-
dividuals demonstrates better convergence and solution quality
compared to others. This is observable in terms of conver-
gence speed and consistency in reducing the fitness function
score. The choice of the suitable parameters was guided by
a comprehensive assessment of performance, with a specific
focus on the trade-off between exploration and exploitation.
In particular, this parameter configuration effectively balanced
the exploration of the fitness space while maintaining stable
convergence towards high-quality solutions.

III. EXPERIMENTS

This section describes the experimental setups and the
various tests conducted. To assess the proposed algorithm, a
robotic framework has been developed that can emulate elastic
behaviour by using a collaborative robot and an elastic cords.
Particularly we replicate the Exp-12 parameters condition as
shown in Tab. II, in addition the final value of the exploration
ratio is selected as σG = 0.01.

A. Experiment Setup

The robot used for the task is a collaborative 7DoF Panda
Robot from Franka Emika. It is equipped with an external
force/torque sensor from Nordbo, which is securely attached
to the robot’s end-effector, allowing it to measure the forces
exerted on the robot during the motion path. Additionally, the
sensor is provided with a metallic element designed to hold the
elastic cord, while the other end is attached to a fixed frame.
Throughout the experiment, the robot moves from different
initial points A to different final points B, with the path
dividing into 5 points T , and during the motion, the robot
is affected by the external force applied by the elastic cords.
Our goal is to validate the proposed genetic algorithm to find
a suitable path able to minimize the imposed fitness function.

(a) Vertical (b) Horizontal (c) Two elastic cords

Fig. 3: Shows the three different experiment setups: the
vertical, the horizontal and the two elastic cords path finding.
The figure highlights the initial, the final points and the elastic
cords.

TABLE III: Fitness function values and improvements of the
first (S1,1) and the final (S1,G) generation about the three
different experiments set up.

Experiment S1,1 S1,G Improvement (%)

Vertical 9.944 8.399 15.53%

Horizontal 9.606 7.722 19.61%

Two elastic cords 11.153 9.711 12.93%

For this purpose, we performed three different experiments
that imply several setups (Fig. 3), the Tab. III shows how the
fitness function values change for each experiment.

Vertical path finding: In this experiment, the elastic cord is
affixed to the metallic element secured to the robot, while its
other end is tethered to a vertically fixed frame. The robot fol-
lows a trajectory from an initial point (A = [0.63, 0.11, 0.13])
to a final point (B = [0.56, 0.15, 0.50]), and the imposed
maximum force is Fmax = 12N .

Horizontal path finding: In this second test, the end of
the elastic cord not connected to the robot is constrained
to a fixed horizontal frame (A = [0.5,−0.25, 0.35], B =
[0.5, 0.25, 0.35], Fmax = 12N).

Two elastic cords path finding: This final experiment is
a combination of the previous tests. There are two elastic
cords: one is attached to the vertically frame and the other
is fixed to the horizontal one (A = [0.45, 0.20, 0.13], B =
[0.46, 0.34, 0.43], Fmax = 18N).

B. Paths Improvement

After conducting a series of experiments, we can now
proceed to analyze and discuss the results obtained by the
algorithm concerning the final path and the forces exchanged
with the elastic cords. In the experiment focused on vertical
path finding (as shown in Fig. 4a), it is observable that the
path tends to orient itself towards the attachment point of
the elastic cord while still staying relatively close to the
path that would directly connect the starting and ending
points. This observation can also be made regarding the forces
exchanged between the robot and the elastic cord, which show

946

B

A

0 2 4 6
Path Points

4

5

6

7

8

9

N
o
rm

 o
f

th
e
 F

o
rc

e
s
 E

x
c
h
a
n
g
e
 [

N
]

20

40

60

80

100

G
e
n
e
ra

ti
o
n
s

(a) Vertical path finding

B

A

0 2 4 6
Path Points

2

3

4

5

6

7

8

9

N
o
rm

 o
f

th
e
 F

o
rc

e
s
 E

x
c
h
a
n
g
e
 [

N
]

20

40

60

80

100

G
e
n
e
ra

ti
o
n
s

(b) Horizontal path finding

B

A

0 2 4 6
Path Points

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

N
o
rm

 o
f

th
e
 F

o
rc

e
s
 E

x
c
h
a
n
g
e
 [

N
]

20

40

60

80

100

G
e
n
e
ra

ti
o
n
s

(c) Two elastic cords path finding

Fig. 4: Shows the evolution, during generations, of the paths
(on the left side) and the forces exchange between the robot
and the elastic cords (on the right side), for each experiment.

a noticeable decrease in their values during the path between
points A and B.

The same observation can also be drawn for the Horizontal
path finding experiment, as shown in Fig. 4b. The graphs
in Fig. 4c represent the scenario with two elastic cords, in
this case, the path has to compensate for two external forces.
Finally, the solution obtained from these experiments performs
well concerning the fitness function and is congruent with
expectations.

Regarding the improvement of the fitness function, we
obtain the minimum value in the experiment focused on two
elastic cords path finding, which results in a 12.93% improve-
ment. It is plausible that the situation occurred due to the
difficulty of mediating two elastic forces which are generated
from different points. In such cases, adopting a trade-off path
may be the correct solution to compensate for both. The
experiment focused on horizontal path finding, instead, has the
maximum value, resulting in a 19.61% improvement. These
values are presented in Tab. III.

IV. CONCLUSION

In conclusion, our study proposes a GA based approach that
optimizes the path finding of robotic systems when dealing
with elastic stiffness. Our experiments and analyses show that
the approach can efficiently navigate solution spaces while
minimizing forces exchanged between the robot and elastic
cords in various experimental scenarios. The parameter selec-
tion process also identifies proper configuration that maximize
convergence and solution quality.

Moreover, this method has several advantages. It is model-
free, requires a finite number of iterations, and is suitable for
manipulating deformable objects in repetitive operation tasks.

REFERENCES

[1] A. Lambora, K. Gupta, and K. Chopra, “Genetic algorithm-a literature
review,” in 2019 international conference on machine learning, big data,
cloud and parallel computing (COMITCon). IEEE, 2019, pp. 380–384.

[2] P. A. Vikhar, “Evolutionary algorithms: A critical review and its future
prospects,” in 2016 International conference on global trends in signal
processing, information computing and communication (ICGTSPICC).
IEEE, 2016, pp. 261–265.

[3] R. Leardi, “Genetic algorithms in chemistry,” Journal of
Chromatography A, vol. 1158, no. 1, pp. 226–233,
2007, data Analysis in Chromatography. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0021967307007054

[4] K. Gallagher and M. Sambridge, “Genetic algorithms: a powerful
tool for large-scale nonlinear optimization problems,” Computers &
Geosciences, vol. 20, no. 7-8, pp. 1229–1236, 1994.

[5] A. Konak, D. W. Coit, and A. E. Smith, “Multi-objective optimization
using genetic algorithms: A tutorial,” Reliability Engineering
System Safety, vol. 91, no. 9, pp. 992–1007, 2006, special
Issue - Genetic Algorithms and Reliability. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0951832005002012

[6] A. Pasquali, K. Galassi, and G. Palli, “A fast score-based method for
robotic task-free point-to-point path learning,” in 2023 IEEE/ASME
International Conference on Advanced Intelligent Mechatronics (AIM).
IEEE, 2023, pp. 1159–1164.

[7] M. Srinivas and L. M. Patnaik, “Adaptive probabilities of crossover and
mutation in genetic algorithms,” IEEE Transactions on Systems, Man,
and Cybernetics, vol. 24, no. 4, pp. 656–667, 1994.

[8] I. Boussaı̈d, J. Lepagnot, and P. Siarry, “A survey on optimization
metaheuristics,” Information sciences, vol. 237, pp. 82–117, 2013.

[9] V. Roberge, M. Tarbouchi, and G. Labonte, “Comparison of parallel
genetic algorithm and particle swarm optimization for real-time uav path
planning,” IEEE Transactions on Industrial Informatics, vol. 9, no. 1,
pp. 132–141, 2013.

[10] K. Galassi and G. Palli, “Robotic wires manipulation for switchgear
cabling and wiring harness manufacturing,” in 2021 4th IEEE Interna-
tional Conference on Industrial Cyber-Physical Systems (ICPS). IEEE,
2021, pp. 531–536.

[11] R. Chelouah and P. Siarry, “A continuous genetic algorithm designed for
the global optimization of multimodal functions,” Journal of Heuristics,
vol. 6, pp. 191–213, 2000.

[12] T. T. Mac, C. Copot, D. T. Tran, and R. De Keyser, “Heuristic approaches
in robot path planning: A survey,” Robotics and Autonomous Systems,
vol. 86, pp. 13–28, 2016.

[13] J. Y. Hwang, J. S. Kim, S. S. Lim, and K. H. Park, “A fast path planning
by path graph optimization,” IEEE Transactions on Systems, Man, and
Cybernetics - Part A: Systems and Humans, vol. 33, no. 1, pp. 121–129,
2003.

[14] A. Caporali, P. Kicki, K. Galassi, R. Zanella, K. Walas, and G. Palli,
“Deformable linear objects manipulation with online model parameters
estimation,” IEEE Robotics and Automation Letters, pp. 1–8, 2024.

[15] K. Galassi, A. Caporali, and G. Palli, “Cable detection and manipulation
for dlo-in-hole assembly tasks,” in 2022 IEEE 5th International Con-
ference on Industrial Cyber-Physical Systems (ICPS). IEEE, 2022, pp.
01–06.

947

