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Abstract— The control of variable stiffness actuators (VSAs) is
challenging because they exhibit highly nonlinear characteristics
and are difficult to model accurately. In this study, we propose
a machine learning-based tracking control approach combining
Gaussian process (GP) learning and low-gain feedback control
for VSAs subjected to unknown dynamics, where the GP model
learns the inverse dynamics of agonistic-antagonistic (AA)-VSAs
to feedforward control and provides the model fidelity by the
predicted variance for the online adjustment of feedback control
gains. It is shown that the tracking error is uniformly ultimately
bounded and exponentially converges to a small ball under a
given probability. Experiments on an AA-VSA named qbmove
Advanced have validated the superiority of the proposed method
with respect to tracking accuracy and generalization.

I. INTRODUCTION

Variable stiffness actuators (VSAs) are complicated mecha-
tronic devices whose position and stiffness can be controlled
by two motors separately or jointly [1]. They are popular in
applications to human-robot interaction and scenes that require
adjusting natural dynamics. Controlling VSAs is challenging
mainly due to their strong nonlinearities and difficulties in accu-
rate modeling [2]. Model-based feedback control approaches
for VSAs but have two major drawbacks: 1) They require
exact VSA models that are rarely available in practice; 2) they
achieve good control accuracy at the cost of stiffening the
physical dynamics, which violates the purpose of introducing
compliant actuators [3]. Iterative learning control (ILC) can
achieve high-accuracy control without exact VSA models and
high feedback gains [4], but their task generalization is limited
due to the nature of ILC [5].

Machine learning-based control can improve task general-
ization while maintaining the advantages of ILC to some extent
and attracted some attention for VSAs in recent years, e.g., see
[6]–[10]. Guo et al. [6] proposed an adaptive neural network
(NN) control method based on feedback linearization for a
serial VSA.This method considers system uncertainties and
variable loads but requires the higher-order time derivatives
of system states that are difficult to obtain in practice. Tran et
al. [7] and Liu et al. [8] proposed adaptive NN backstepping
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controllers for an electrohydraulic elastic robot with variable
stiffness and a pneumatic artificial muscle-driven robot with
variable stiffness, respectively. Mitrovic et al. [9] introduced
locally weighted projection regression (LWPR) to learn the
dynamic model and the stochastic properties of an agonistic-
antagonistic (AA)-VSA for optimal impedance control. How-
ever, this method has controllability problems due to hardware
bandwidth and the difficulty of scaling to multiple degrees of
freedom (DoFs) due to computational challenges. Knezevic
et al. [10] applied NN and LWPR to design two feedforward
controllers for an AA-VSA named qbmove.

Gaussian process (GP) regression is a supervised learning
technique broadly applied to robotics due to universal approxi-
mation ability and generalization under small training data [11].
This paper applies GP to develop a stable tracking controller
consisting of GP feedforward and low-gain feedback actions
for AA-VSAs subjected to unknown dynamics, where the GP
model is applied to learn the inverse dynamics of AA-VSAs
for feedforward control, and the feedback control gains are
adapted according to the predicted variance so as to enhance
performance. It is shown that the tracking error is uniformly
ultimately bounded (UUB) and exponentially converges to a
ball under a given probability. The proposed GP controller is
compared experimentally with a pure feedback controller and
an ILC on an AA-VSA named qbmove Advanced [12].

Notations: R, R+, Rn, and Rm×n denote the spaces of real
numbers, positive real numbers, real n-vectors, and realm×n-
matrices, respectively, In is a n× n identity matrix, N (µ,K)
is a multivariate Gaussian distribution with a mean vector µ ∈
Rm and a covariance matrix K ∈ Rm×m, GP(µ, k(x,x′))
is a GP with a mean µ ∈ R and a kernel function k : Rn ×
Rn 7→ R, ∥x∥ is the Euclidean norm of x ∈ Rn, max{·} is the
maximum operator, and the probability of a probabilistic event
Π is written as P{Π}, where n and m are positive integers.
Note that t denotes the continuous time and an epoch for the
continuous-time and discrete-time cases, respectively.

II. PROBLEM FORMULATION

Consider an AA-VSA mechanism with a link moving in the
vertical plane, where its dynamic model is given by [4]

Mq̈ +Dq̇ + g(q) =
∂E(q,θ)T

∂q
+ τun, (1)

J θ̈ +Bθ̇ − ∂E(q,θ)T

∂θ
= τm (2)

in which q(t) ∈ R is the joint angular position, θ(t) ∈ R2 is
the motor angular position, M ∈ R+ is the inertia of the shaft,
J ∈ R2×2 is the inertia of the motors, B ∈ R2×2 is the viscous
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Fig. 1. A block diagram of the proposed GP controller for AA-VSAs.

friction at the motor side, D ∈ R+ is the viscous friction at
the link side, g(q) ∈ R is the gravity term, τun ∈ R collects
model uncertainties, such as nonlinear friction and coupling
dynamics, E(q,θ) ∈ R is the elastic potential of the system,
and τm ∈ R2 is the input torque from the motors.

To simplify the model, we introduce two assumptions [4].
First, the motor dynamics (2) is ignored such that the motor
position θ can be used as an effective control input. Second,
there exists a nonlinear function T : R × R 7→ R satisfying
∂E(q,θ)T

∂q = T (q−r, d) to model the elastic joint torque, where
θ = [r + d, r − d]T is a coordinate transformation, r ∈ R is a
motor reference position, and d ∈ R is a parameter for stiffness
adjustment. For AA-VSAs, d is the joint co-contraction level,
which is treated to be quasi-static here. Let τ := T (q − r, d).
Then, one gets a simplified AA-VSA model

Mq̈ +Dq̇ + g(q) = τ + τun (3)

where r can be regarded as a new control input. A control
scheme shown in Fig. 1 will be designed for (3) in Sec. III.

Define a position tracking error e(t) := q(t)− qd(t), where
qd(t) ∈ R is a joint reference position. We aim to design a
suitable control input r for the system (3) such that e is as
small as possible under a quasi-static d. Also, r should not
change the inherent physical stiffness of (3) beyond a specific
limit. That is, given a constant ζ ∈ R+, denoting the maximum
stiffness variation, the closed-loop stiffness ∂T (q−r,d)

∂q should
be within a neighborhood of the radius ζ of the open-loop
stiffness expressed by [3]∣∣∣∣∂T (q − r, d)

∂q

∣∣∣
q≡r

− ∂T (q − ψ(q), d)

∂q

∣∣∣
q≡q∗

∣∣∣∣ ≤ ζ (4)

where ψ(q) ∈ R is the feedback control part, ∂T (q−ψ(q),d)
∂q is

the open-loop stiffness of the system (3), and q∗ ∈ R is such a
value that satisfies ψ(q∗) = q∗.

Remark 1. The above two assumptions have been used in
the ILC method of AA-VSAs in [4]. The function T (q − r, d)
contains the compliance information of AA-VSAs, and the
closed-loop stiffness ∂T (q−r,d)

∂q can be adjusted by designing
the control input r and setting the adjustment parameter d.

III. GAUSSIAN PROCESS CONTROL DESIGN

A. Gaussian Process Modeling

Consider a training data set D = {X,y} generated by yi =
f(xi)+η with f : Rn → R, whereX := [x1, x2, · · · , xN ]T ∈
RN×n, y := [y1, y2, . . ., yN ]T ∈ RN , η ∼ N (0, σ2

n ) is a noisy
signal with the standard deviation σn ∈ R+, N is the number
of data, and n is an input dimension. Let GP(µ, k(x,x′)) be an
approximation of f , denoted by f ∼ GP(µ, k(x,x′)). Given
a test input x∗ ∈ Rn, the prediction of f is determined by the
mean µ ∈ R and variance σ ∈ R+ as follows:

µ(f |x∗,D) = KT
x∗X(KXX + Iσn

2)−1y, (5)

σ(f |x∗,D) = Kx∗x∗ −KT
x∗X(KXX + Iσn

2)−1Kx∗X (6)

with KXX := K(X,X) ∈ RN×N , Kx∗x∗ := K(x∗,x∗) ∈
R, and Kx∗X := K(x∗, X) ∈ R1×N , in which K(X,X) is a
covariance matrix given by

K(X,X) :=

k(x1,x1) · · · k(x1,xN )
...

. . .
...

k(xN ,x1) · · · k(xN ,xN )

 . (7)

The kernel function k, which represents the correlation be-
tween two points, is frequently chosen as a Gaussian type

k(x,x′) = ϕ2exp[−(x− x′)Λ(x− x′)/2]

with x,x′ ∈ Rn, where Λ ∈ Rn×n and ϕ ∈ R+ are hyper-
parameters that can be obtained by optimizing the likelihood
function during training. The Gaussian kernel function has the
advantages of powerful modeling, good numerical stability,
and simple hyperparameters selection, but the disadvantages
of weak interpretability and slow calculation speed [13].

Consider the dynamic model (3) with M , D, and g(q) being
uncertain. A prior estimation of (3) is given by

τ̂ = M̂ q̈ + D̂q̇ + ĝ(q) (8)

where M̂ ∈ R+, D̂ ∈ R+, and ĝ(q) ∈ R are estimates of M ,
D, and g(q), respectively, which satisfy the following property.

Property 1. There exist constants m1, m2, cd ∈ R+ that
satisfy m1 ≤ M̂ ≤ m2 and D̂ ≤ cd.

When there is no the prior knowledge of (3), set M̂ = cm,
D̂ = 0, and ĝ = 0, in which cm ∈ R+ is a constant. Then, a GP
model is trained offline with the data set D = {pi, τ̃i}Ni=1 with
pi := [q, q̇]T ∈ R2 to learn the unknown part of (3), where
τ̃i ∈ R is obtained by subtracting (8) from (3) as follows:

τ̃i = M̃ q̈ + D̃q̇ + g̃(q)− τun (9)

with M̃ := M − M̂ , D̃ := D − D̂, and g̃ := g − ĝ. The GP
model only uses q and q̇ as inputs, whereas the acceleration
q̈ is inferred from q and q̇ to avoid the immeasurable q̈ [14].
Note that pi and τ̃i denote the ith data in D, generated by a
real AA-VSA described by (3) with a special control input r,
and the subscript i is omitted below. Next, we give the bound
of a modeling error ∆ := µ(τ̃ |p,D)− τ̃ ∈ R.
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Fig. 2. A qbmove Advanced actuator equipped with a link load fixed on the
base for experiments, where the link load can move in the vertical plane.

Lemma 1 [15, Th. 6]. For the uncertainty τ̃ given by (9) with
the bounded reproducing kernel Hilbert space norm ∥τ̃∥k <∞
on any compact set Ω ⊂ R2, ∆ is bounded by

P
{∣∣µ(τ̃ |p,D)− τ̃

∣∣ ≤ βσ
1
2 (τ̃ |p,D)

}
≥ δ

with p ∈ Ω, where δ ∈ (0, 1) is a probability value, and

β =

√
2∥τ̃∥2k + 300γln3

(
N + 1

1− δ

)
∈ R+,

γ = max
p1,...,pN∈Ω

1

2
log|IN + σn

−2KXX | ∈ R

with X = [p1, . . . ,pN ]T ∈ RN×2.
Remark 2. This study assumes that the function T (q − r, d)

can be known a priori. Then, the control torque τ in (3) can be
obtained by the substitution of the real control input r. When
using a GP model to predict the elastic torque τ̃ , r needs to be
obtained by solving τ = T (q − r, d), which can be calculated
offline to reduce the computational burden during control. The
above assumption facilitates the GP control design, and model
uncertainties resulting from the inaccuracy of T (q − r, d) can
be included in the lumped uncertainty τun and learned by the
GP model. Hence, the inaccuracy of T (q−r, d) does not affect
the learning of the unknown part in (3).

B. Gaussian Process Tracking Control

Compared with NN learning, GP possesses two distinctive
features [16]: 1) It is more convenient to achieve knowledge
acquisition without the stringent condition termed persistent
excitation, where its learning capacity depends on the number
of stored data; 2) it provides a fidelity measure of the learned
model via the predicted variance, which can be utilized to
improve control robustness. Analogously to (6), let σp(q) :=
σ(τ̃ |q,D) ∈ R+ and σd(q̇, q) := σ(τ̃ |q̇, q,D) ∈ R+. Define
variable feedback gains Kp(σp) := σp(q) + Kpc ∈ R+ and
Kd(σd) := σd(q̇, q) +Kdc ∈ R+ with Kpc, Kdc ∈ R+ being
constants. Then, three assumptions are given as follows.

Assumption 1. The desired trajectory qd and velocity q̇d are
bounded by |qd| ≤ cd1, |q̇d| ≤ cd2 with cd1, cd2 ∈ R+.
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Fig. 3. Example profiles of the training data set D consisting of p and τ̃ .
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Fig. 4. The fidelity of the learned GP model via the predicted variance, where
the gray region represents the 95% confidence intervals.

Assumption 2. The variable feedback gains Kp and Kd are
continuous and bounded by

kp1 ≤ Kp(σp) ≤ kp2,

kd1 ≤ Kd(σd) ≤ kd2

∀q, q̇ ∈ R with kp1, kp2, kd1, kd2 ∈ R+ some constants.
Assumption 3 [4]. The second control goal expressed by (4)

in Sec. II restricts the use of high feedback gains, i.e., if∣∣∣∣∂ψ(q)∂q

∣∣∣
q≡q∗

∣∣∣∣ ≤ ζ

∣∣∣∣∂T (q − ψ(q), d)

∂q

∣∣∣
q≡q∗

∣∣∣∣−1

(10)

then the constraint (4) holds.
Consider the system (3) and a GP model trained by the data

set D with (9). The control torque τ given by

τ = M̂ q̈d + D̂q̇d + ĝ(q) + µ(τ̃ |pd,D)︸ ︷︷ ︸
τff

−Kd(σd)ė−Kp(σp)e︸ ︷︷ ︸
τfb

(11)

with pd := [qd, q̇d]
T and e := [e, ė]T , which is composed of a

feedback control term τfb ∈ R and a feedforward control term
τff ∈ R containing the learned GP torque µ(τ̃ |pd,D) and the
prior model knowledge (8) [see Fig. 1]. To explain the stability
and convergence of the system (3) under the control law (11),
we adopt a Lyapunov function candidate [16]

V (e) =
1

2
M̂ ė2 +

∫
0

e

zKp(σp(z))dz + ϵM̂eė (12)

where ϵ ∈ R+ is a small coefficient, and z ∈ R is an integral
variable. To show that (12) is positive-definite and bounded, we
use Property 1, Assumption 2 and make some transformations
to obtain that there exist constants c1, c2 ∈ R+ such that

c1∥e∥ ≤ V (e) ≤ c2∥e∥. (13)
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Fig. 5. Control results by the proposed GP controller, the PII controller with
high gains, and the 1st and 10th iterations of the ILC controller.
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Fig. 6. Control results of the proposed GP controller under the change of the
desired trajectory qd to show generalization.

With Lemma 1, there exist constants c3, ε ∈ R+ to get

P{V̇ (e) ≤ −c3V (e) + ε} ≥ δ. (14)

Now, applying [17, Lemma 2] to the results of (13) and (14),
one gets that the closed-loop system (3) with (11) is stable in
the sense that the tracking error e is UUB and exponentially
converges to a ball with a given probability δ.

Remark 3. Assumption 3 shows that the inherent mechanical
behavior of AA-VSAs can be preserved by using a low-gain
controller. Thus, the control gains Kp and Kd should be kept
low. As we assume that there is no prior knowledge about the
gravity term g(q), the feedforward action τff in (11) does not
depend on q so does not affect Assumption 3.

IV. EXPERIMENTAL STUDIES

This section implements the GP controller (11) to a qbmove
Advanced actuator with load [see Fig. 2], in which the control
torque τ is transferred into the position input r as discussed in
Remark 2. The qbmove Advanced actuator is a bidirectional
AA-VSA that reaches the best performance in the qbmove
family [12], where its compliant mechanism is implemented by
two motors connected at the output shaft by nonlinear springs,

and its actuation torque τ in (3) is explicitly expressed by

τ = −kθ1 sinh(a1(q − r − d))− kθ2 sinh(a2(q − r + d))
(15)

where a1 = 8.9995, a2 = 8.9989, kθ1 = 0.0026, and kθ2 =
0.0011 are elastic parameters from the data sheet.

The training data set D contains q, q̇, and τ̃ , in which q is
obtained by the actuator encoder, and q̇ is estimated through the
low-pass filtering of the measured q. As the prior knowledge
of the model (3) is unavailable, set M̂ = 0.001, D̂ = 0, and
ĝ = 0 in (9). Then, the uncertainty τ̃ is calculable by (9) and
(15). Note that the model uncertainty caused by the inaccuracy
of (15) can be included in the lumped uncertainty τun and
learned by the GP model. The data collection is sampled at
a frequency of 1 kHz, the data number N is set to be 2000,
and the hyperparameters Λ = [0.5 0 ; 0 2.30] and ϕ = 0.0085.
Note that choosing N needs to consider the modeling error
∆, GP input dimension n, and computational burden. After
n is fixed, N should be chosen carefully as a small N may
lead to a large ∆, while a large N may also increase ∆ as
optimizing the length-scale parameter ϕ of GPs becomes
computationally intractable [18]. Fig. 3 illustrates D under
the above input signal r. The fidelity of the learned GP model
via the predict+ed variance is verified in Fig. 4, and hence, the
GP prediction mean µ(τ̃ |pd,D) can be used to compensate for
the unknown part in (3) in the GP controller (11).

The feedback gains of the proposed controller are parameter-
ized as Kp(σp) = 100σp +0.004 and Kd(σd) = 20σd +0.001.
The open-loop stiffness ∂T (q−ψ(q),d)

∂q in (4) is calculated as
0.033 N.m/rad by (15) and the rule in [3]. Then, the maximum
stiffness variation ζ in (4) is calculated as 0.005 N.m/rad by
(10) under the proposed controller. Two position-based VSA
controllers are chosen as baselines, including the proportional
integral-integral (PII) and position-based ILC controllers in [4].
The control gains of the PII controller are set higher than those
of the proposed controller to make the tracking performance
comparable, where its maximum stiffness variation ζ becomes
0.04 N.m/rad, much higher than that of the proposed controller.
The ILC controller with the iteration number being set as 10 is
compared similarly to the above.

To show the tracking and softness preservation abilities of
the proposed controller, the stiffness parameter d is set to 0 rad,
implying the minimum stiffness. We use a desired trajectory

qd(t) = 0.074t5 − 0.393t4 + 0.589t3, t ∈ [0, 2),

which is a smooth path from 0 to 0.7854 rad with the terminal
time tf = 2 s. Control results by the above three controllers are
depicted in Fig. 5. The proposed controller achieves guaranteed
tracking accuracy, but the ILC controller at the first iteration
and the PII controller show much larger tracking errors e than
the proposed controller. Note that the link gravity is considered
in this case, so the tracking accuracy of the PII controller is
not as good as that in [4] without considering link gravity. The
ILC controller performs worse than the GP controller at the
beginning but achieves higher tracking accuracy after several
iterations [see the 10th iteration of ILC in Fig. 5] at the cost of
repeating the control task.
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To evaluate the generalization of the proposed controller,
we keep the experimental setup the same as before but set a
different desired trajectory qd. Control results by the proposed
controller are depicted in Fig. 6, which show high tracking
accuracy without retraining under the change of qd. From
our experiments, the PII controller still shows poor tracking
accuracy even with high feedback gains when qd changes,
resulting in a large stiffness variation ζ; the ILC controller
achieves good tracking accuracy after several iterations, but
it needs to retrain iteratively when qd changes. Experimental
trajectories by the PII and ILC controllers are not depicted
as they are similar to those in Fig. 5. In sharp contrast, the
proposed controller achieves guaranteed tracking accuracy,
preserves the actuator softness due to the low feedback gains,
and possesses favorable generalization.

V. CONCLUSIONS

This paper has developed a machine learning-based tracking
controller that combines GP feedforward and low-gain feed-
back actions for AA-VSAs, where a GP model is applied to
learn the inverse actuator dynamics and provide model fidelity,
and feedback gains are adapted according to model fidelity
to enhance the tracking performance. Experiments on the
qbmove Advanced actuator have validated that the proposed
controller achieves guaranteed tracking accuracy, preserves
mechanical behavior, and has better generalization than state-
of-the-art control approaches. Future work would consider
the time-varying stiffness of AA-VSAs, the extension of the
proposed method to the multi-DoF case, and the combination
of online learning and adaptive control to improve the tracking
performance and applicability [19]–[21].
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