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Abstract— Autonomous helicopter aerial refueling is a chal-
lenging problem because of the complex aerodynamic inter-
actions between the helicopter, the tanker and the refueling
hose-drogue system. Methodologies solely relying on model-
based control approaches are unable to directly address the
aerodynamic interactions, whereas pure data-driven methods
such as reinforcement learning (RL) often do not provide
safety guarantees. Therefore, in this paper, we propose a novel
residual RL control methodology that works in conjunction
with a model-based outer-loop position controller. Further, we
incorporate a safe RL algorithm that assures probabilistic safety
guarantees by imposing appropriate constraints. This algorithm
leverages the primal-dual formulation of a constrained optimal
control problem to solve a sequence of RL problems that ulti-
mately guarantees a probabilistic safety assurance requirement.
The RL agent is trained in a simulation platform that consists
of a reduced-order helicopter model and a state-dependent
control mixer that appropriately delegates the control authority
between the outer-loop controller and the RL controller. Once
trained, the RL agent is deployed on a physics-based high-
fidelity helicopter model without additional parameter tuning.
These high-fidelity simulations reveal that the application of the
proposed methodology yields a mean 2-norm error of 0.25m at
the time of docking, which outperforms a purely model-based
controller by 24%.

I. INTRODUCTION

Helicopter Air-to-Air Refueling (HAAR) is the process of
refueling a helicopter in-air using a fixed-wing tanker. HAAR
is considered a particularly challenging flight maneuver
because of (1) the limited time to dock with the drogue,
(2) strict safety constraints, (3) complex interactions between
the tanker-air wake-helicopter during docking maneuver and
(4) the unpredictable nature of the drogue motion. Since
HAAR requires a substantial pilot workload, there is a need
to develop pilot-assisted or autonomous control strategies
that improve performance and safety during refueling.

The standard fully autonomous control architecture for
helicopters consists of an inner-loop controller for regulating
attitude and altitude, with an outer-loop control for regulating
the so-called zero dynamics of lateral/ longitudinal position
[1]. The trajectories for these are generated either using
heuristic methods (e.g. tau guidance [2]) or optimization-
based trajectory generation [3]. Expanding on these ideas,
complex maneuvers such as formation-flying [4] and coop-
erative slung-load carrying [5] have been demonstrated with
the aid of advanced control schemes. More recently, con-
trol methodologies have been developed for contact-based
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maneuvers such as landing [1], [6]. In spite of these devel-
opments in control strategies toward enabling autonomous
missions for helicopters, to the best of our knowledge,
autonomous HAAR remains an unexplored problem.

Realizing autonomy for complex safety-critical maneuvers
(such as HAAR, landing, etc.) requires careful trajectory
planning, high-quality sensing and estimation, along with so-
phisticated feedback control design strategies. Consequently,
there has been increasing interest in applying model predic-
tive control (MPC) for helicopter control problems [6], [7],
which necessitates accurate control-oriented models of the
physical phenomena. For the multi-body aerodynamic inter-
actions between the tanker, receiver (helicopter) and refuel-
ing system, generating appropriate control-oriented models
is challenging. On the other hand, recently there have been
advances in simulation models for capturing the aerodynamic
interactions during aerial refueling [8]. These models, while
not suitable for model-based controller design, can be used
to design data-driven control strategies such as reinforcement
learning (RL) for HAAR. Evaluating this potential is the key
motivation for this study.

RL-based controllers have been successfully used in prior
literature for controlling unmanned aerial vehicles such as
quad-rotors and helicopters. For example, a learning algo-
rithm that minimizes computational time during training was
proposed for quad-rotors [9]. Building on this work, [10]
has shown that RL algorithms can be trained to fly quad-
rotors in unpredictable environments. The applicability of RL
algorithms for autonomous helicopters has been explored in
[11]. However, one of the key drawbacks in standard RL
control is that safety guarantees cannot be enforced once the
RL agent is incorporated into the loop [12].

However, in contact-critical systems that use RL, it is
essential to guarantee safety irrespective of the operating
conditions and the training methodology. One method of en-
couraging safe behavior of the RL agent is by incorporating
explicit safety constraints, which require that certain safety
criteria are met with a minimum guaranteed probability. Such
constraints can be in the form of lower bounds on the value
functions or additional safety-related value functions [13]. A
safe RL strategy that exploits the well-known primal-dual
algorithm is developed in [14], and proven to be effective in
systems with multiple safety constraints. Finally, combining
RL with model-based control methods can often guarantee
a minimum baseline performance [15].

Motivated by the need for combining model-based con-
trol approaches and meeting safety requirements in HAAR,
this paper presents a novel residual reinforcement learning
methodology that combines the safe-RL scheme in [14] with

2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
June 28-30, 2023. Seattle, Washington, USA

978-1-6654-7633-1/23/$31.00 ©2023 IEEE 263



a model-based baseline controller [1]. The nominal docking
trajectory is planned prior to the execution of the maneuver
based on the predicted drogue motion. The RL agent is
then designed to adjust this nominally planned trajectory
through corrections based on the current measurements of
the drogue and the helicopter states. Next, we propose a safe-
RL strategy that guarantees safety while executing path fol-
lowing/docking maneuvers. To reduce training time, the RL
agent is trained on a reduced-order model. Although training
the agent on the reduced-order model and deploying it on a
full-scale helicopter simulation results in some degradation
in performance, the training effort is reduced significantly.

II. HELICOPTER AIR-TO-AIR REFUELING

Fig. 1: Schematic of HAAR. O, OH , OD correspond to the North-East-
Down, helicopter and drogue coordinate frames, respectively. The velocity
components, the rates of rotation and the Euler angles in the helicopter coor-
dinate frame are (uH ,vH ,wH ), (pH ,qH ,rH ) and (φ ,θ ,ψ), respectively. The
velocity of the drogue is uD,vD,wD. (X ,Y,Z), (XP,YP,ZP) and (XD,YD,ZD)
are the positions of the helicopter, the probe and the drogue, respectively.

A schematic illustrating the HAAR problem is shown in
Fig. 1. Let t0 (nominally set to 0) be the time at the initiation
of the maneuver, when the helicopter, the probe and the
drogue are at states x f 0, xp0 and xD0. The goal is to guide
the helicopter autonomously such that at the time of docking
T , the helicopter probe docks with the drogue. The (time-
varying) drogue state is described by xD(t). Furthermore, to
guarantee safety, the helicopter states must remain within a
safe set S during the maneuver, i.e.

x f (t0) = x f 0 Initial helicopter state
xp(t) = x f (t)+G(x f (t)) Probe state trajectory

||xD(T )−xp(T )|| ≤ ε Docking criterion
x f (t) ∈ S ∀t ∈ [t0,T ] Safety constraint

(1)

where t, x f , xD and xp are time, fuselage state, drogue state
and probe state, respectively. G maps the relative state of the
probe with respect to the fuselage state.

The helicopter dynamics are given generically by ẋ(t) =
f(x(t),u(t),d(t)), where d(t) is the disturbance caused by the
aerodynamic interactions and x f (t) is a sub-state of x(t). The
drogue is nominally moving at the speed of the tanker but is
influenced by the local aerodynamics of the tanker, receiver,
and atmosphere, i.e., xD(t) = xD(t0)+VT ·(t− t0)+δa where
VT and δa correspond to the velocity vector of the tanker and
the variation due to local aerodynamics, respectively.

Next, we present a brief description of the helicopter
dynamics, the drogue kinematics, the trajectory generator and
the helicopter control architecture.

III. MATHEMATICAL MODELING AND BASELINE
CONTROL DESIGN

A. Helicopter dynamic model

In this paper, we use a UH-60A Black Hawk model
developed by [16]. The dynamics, in general, are given
by ẋ = f(x,u) and y = g(x,u) where y is the measure-
ment used in the controller (a subset of states of rigid
body dynamics). The state vector x is defined by x =[
xT

f ,x
T
r ,xT

t ,xT
e
]T

where x f =
[
u,v,w, p,q,r,φ ,θ ,ψ,X ,Y,Z

]T ,
xr =

[
β0,β1s,β1c,βd , β̇0, β̇1s, β̇1c, β̇d ,λ0,λ1s,λ1c

]T
, xt = λ0T R

and xe =
[
Ω,χ f ,Qe

]T . x f denotes 12 fuselage rigid body
states, xr denotes 8 blade flapping states and 3 inflow states
of the main rotor, xt denotes the tail rotor inflow state and
xe denotes 3 engine states. The control input is given by
u =

[
ulat ,ulong,ucol ,uped ,utht

]T , which consists of lateral,
longitudinal, and collective joystick input to the main rotor,
pedal input to the tail rotor and throttle input to the engine.
The fuselage input u f =

[
ulat ,ulong,ucol ,uped

]T is comprised
of the input channels governing the fuselage motion.

B. Drogue kinematic model

Physics-based drogue dynamical models have been devel-
oped to capture the motion of the drogue when subjected
to steady wind and turbulence [17]. Furthermore, several
models have been proposed in prior literature to capture
the so-called bow-wave effect during refueling [8]. However,
these models capture bow-wave effects from fixed-wing
aircraft, which may not accurately model helicopter-drogue
interaction. Therefore, as an exemplar study here we use a
simplified kinematic model that mimics the bow-wave effect
on the dynamics of the drogue.

For the purposes of this paper, the velocity component
of the drogue in the North direction is the tanker velocity
uT 0 (110knots or 56.6m/s). The relative position between
the probe and the drogue in the North direction Xe(t) is
defined as Xe(t) = XD(t)−Xp(t). Starting at (XD0,YD0,ZD0),
the North-East-Down coordinates of the drogue are given by

XD(t) = XD0 +uT 0 · t
YD(t) = YD0 + ky1 + ky2 · tanh

(
ky3 ·Xe(t)+ ky4

)
ZD(t) = ZD0 + cz1 · sin(cz2 · t + cz3)

(2)

where t is time, ZD0 is the mean downward coordinate
of the drogue. The coefficients cz1, cz2, cz3, ky1, ky2 and
ky3 are chosen appropriately to capture the magnitude of
the coupling and region of influence of the bow-wave. The
motion of the drogue in the East direction mimics the bow-
wave effect, while the motion in the Down direction mimics
the effect of the tanker air wake.
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(a) Baseline control architecture for full-scale helicopter [1]. (b) Proposed control architecture with the RL control scheme.

Fig. 2: Control architectures for autonomous HAAR.

C. Trajectory generation

Before the execution of the maneuver, a time-optimal path
planner solves a time-optimal optimization problem given by

{x∗d(·),u∗
f (·),T ∗}= argmin

T,x f ,u f

∫ T

t0
1 dt

s.t ẋ f (t) = F(x f (t),u f (t)),
xp(t) = x f (t)+G(x f (t)),
||x̂D(T )−xP(T )|| ≤ ε,
u f ,min ≤ u f (t)≤ u f ,max,
x f ,min ≤ x f (t)≤ x f ,max

(3)

where x̂D, t and T correspond to the estimated drogue mo-
tion, time and final time, respectively. This generated docking
trajectory x∗d(·) provides the nominal reference commands
for the outer-loop controller (Fig. 2a).

D. Helicopter control architecture

Fig. 2a shows the baseline control architecture of the
helicopter, consisting of an outer-loop and an inner-loop
controller. We refer the reader to [1] for details of this con-
trol architecture. The inner-loop consists of the well-known
(scheduled) linear dynamic inversion (LDI) controller, that
takes command inputs uOL = [φc,θc, Żc, ψ̇c]

T from the outer-
loop controller. φc, θc, Żc, and ψ̇c denote the commanded
roll angle and pitch angle, the vertical velocity and the rate
of yaw angle, respectively. The outer-loop commands uOL
are generated by the outer-loop controller, which is based
on dynamic inversion of the longitudinal and lateral position
dynamics (assuming sufficiently fast inner loop stabilization)
with the reference trajectory x∗d(·). The outer-loop controller
is designed based only on the dynamics related to the
horizontal motion given by

Ẍ =−g

(
tan(θ −θtrim)cosψ +

tan(φ −φtrim)

cos(θ −θtrim)
sinψ

)

Ÿ =−g

(
tan(θ −θtrim)sinψ −

tan(φ −φtrim)

cos(θ −θtrim)
cosψ

) (4)

where θ , φ and ψ correspond to the Euler angles (pitch, roll
and yaw) of the helicopter. θtrim and φtrim refer to the trim
attitudes. Note that the control commands to velocity in the
Down direction Żc and yaw rate ψ̇c are supplied from the
optimal trajectory described previously (Section III-C).

IV. REINFORCEMENT LEARNING METHODOLOGY

The motion of the drogue is unpredictable because of
the complex aerodynamic interactions between the drogue,
the helicopter and the tanker. Furthermore, the drogue and
aerodynamic interaction models developed in prior literature
[8], though useful for simulation, are unsuitable for model-
based control design. Therefore, in this work, we propose an
RL-based scheme to enable the controller to learn to dock
the probe on the drogue.

One approach for designing the RL agent is to grant
complete control to the agent, without the need for any
model-based control augmentation. However, this may result
in a long training time, and further pure RL controllers
do not provide stability guarantees or baseline performance.
Therefore, we propose a residual RL framework that com-
bines the model-based controller (Section IV-A) with an RL
agent as illustrated in Fig. 2b. The RL agent modifies the
control command generated by the outer-loop controller uOL
by adding corrections in the form of uRL. The control mixer
governs the level of control authority granted to each control
law (RL and baseline) by following a state-dependent control
mixing strategy. The resulting control command uc that is
obtained after mixing is sent to the inner-loop controller
for tracking. Since general RL algorithms do not guarantee
safe operation, they are not suitable for this application.
Therefore, we employ a safe-RL framework to assure safety.

Further, considering the time to train, the complexity of
the model and the fact that we cannot avoid crashing the full-
scale helicopter model during training, we employ a reduced-
order helicopter model (as depicted in the blue box in Fig.
2b) to train the RL agent. We note here that the closed-loop
stability of the proposed control architecture is guaranteed
by limiting the maximum allowed corrections generated by
the RL agent, i.e, ∥uRL,i∥ < Mi

RL, where i is the control
channel and Mi

RL is the corresponding bound. The inner and
outer loop controllers are designed with guaranteed stability
nominally, i.e., without the RL agent [1].

A. Residual reinforcement learning

RL is a data-driven framework for the Markov
decision process (MDP) defined by the tuple
(S,A,P(st+1|st ,uRL,t),r(st ,uRL,t)) where S and A correspond
to the set of all possible states and actions, respectively.
P(st+1|st ,uRL,t) is the transition probability of state at time
t + 1 given current state st ∈ S and action uRL,t ∈ A. The
RL agent draws an action uRL ∈ A from a conditional
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distribution (called the policy πµ(uRL|s)) when in st . This
results in a transition to state st+1 ∈ S and the agent receives
a reward r(st ,uRL,t). The policy is parameterized by a vector
µ ∈ Rd , where d is the number of parameters. We can then
define a stochastic optimal control problem

µ
∗ = arg max

µ∈Rd
V (µ) = arg max

µ∈Rd
E

[
∞

∑
t=0

γ
tr(st ,uRL,t)

]
(5)

where γ ∈ [0,1) is the discount factor and V (µ) is the value
function.

In standard RL, the actions of the agent directly corre-
spond to the control input of the plant, whereas in residual
RL, the control input to the plant is the superposition of the
action of the agent and an existing baseline control law [18].
This proposed control architecture is illustrated in Fig. 2b.
The RL controller shown in the red dashed box is combined
with the baseline controller described in Section III-D. Given
the outer-loop control signal uOL and the action of the RL
agent uRL, the control mixer generates the control signal uc
that is sent to the inner-loop LDI controller.

As illustrated in Fig. 2b, the observations of the system
s from the perspective of the RL agent are given by s =
[Xe, Ẋe,Ye,Ẏe,Ze, Że,ψe, ψ̇e]

T where Xe, Ye, Ze correspond to
the relative position in North, East, and Down directions
and ψe corresponds to the relative yaw angle between the
drogue and the probe in the North-East-Down coordinate
frame. The actions executed by the RL agent are defined by
uRL = [∆φ ,∆θ ,∆Ż,∆ψ̇]T . The reward function is given by

r =−(uT
RLAuRL)

1/2−(eT
s Bes)

1/2 +M1I
(
(eT

s Bes)
1/2 ≤ σ1

)
+M2I

(
(eT

s Bes)
1/2 ≤ σ2

)
+M3I

(
(eT

s Bes)
1/2 ≤ σ3

)
(6)

where es = [Xe,Ye,Ze,ψe]
T , A and B are positive definite diag-

onal matrices. This reward function is designed to minimize
the error between the probe and the drogue with minimal
control effort while motivating the agent to improve further
based on the criterion defined by σ(·). M1, M2, M3 create a
cascaded set of rewards that provide positive rewards when
the squared relative distance between the probe and the
drogue is within bounds defined by σi, where σ1 < σ2 < σ3.

B. Safe reinforcement learning

Because of the unconstrained nature of the MDP, RL-
based methods are often not well-suited for risky tasks [19].
This issue can be alleviated by defining a constrained optimal
control problem

µ
⋆ = arg max

µ∈Rd
E

[
∞

∑
t=0

γ
tr(st ,uRL,t) | πµ

]
, (7)

s.t. Ui(µ)≥ ci, for all i = 1, . . . ,m

where Ui(µ) = E

[
∞

∑
t=0

γ
t1(st ∈ Si | πµ)

]
. S is the safety

set described in (1) and m is the number of constraints.
The constants ci are slack variables defined as ci =
(1−δiγ

Ti(1− γ))/(1− γ) where Ti corresponds to the time

window expressed in time steps, for which the safety crite-
rion is required. δi is a probability described by

P(∩Ti
t=0{st ∈ Si} | πµ)≥ 1−δi, (8)

which means that the trajectories generated by the policy
πµ will remain in the safe set Si given in (1) with high
probability 1 − δi [14]. In (7), we wish to find a policy
parameter µ∗ such that the discounted cumulative probability
of state st being in the safety set S is greater than a
specified value ci. Choosing ci in this way guarantees that
the inequality constraint given in (8) is satisfied.

A general approach for solving constrained problems (e.g.,
of the form described in (7)) is by formulating a dual
relaxation [20]. We first construct the Lagrangian associated
with problem (7)

L(µ,λ ) =V (µ)+
m

∑
i=1

λi(Ui(µ)− ci) (9)

where λi ∈ Rm
+ is the multiplier associated with the ith

constraint. Then, the dual function is given by

d(λ ) = max
µ∈Rd

L(µ,λ ) (10)

that leads to the dual problem

D⋆ = arg min
λ∈Rm

+

d(λ ). (11)

The maximization in (10) is equivalent to solving the uncon-
strained RL problem (5) with a reward defined by

rλ (st ,uRL,t) = r(st ,uRL,t)+
m

∑
i=1

λi(1(st ∈ S)−ci(1−γ)). (12)

If we consider the expectation of the discounted cumulative
reward of (12), we observe that it is equivalent to the
Lagrangian given in (9). Therefore, instead of maximizing
the Lagrangian, we can solve the RL problem that maximizes
the expectation of the cumulative reward defined in (12) to
find the policy parameter µ∗.

Considering the ease of implementation (fewer hyper-
parameters to tune) and ability to incorporate continuous
actions, in this study, we employ the deep deterministic
policy gradient (DDPG) algorithm [21], which updates the
primal variable µ to solve the unconstrained RL problem
in (10). Furthermore, as (11) is a convex function, one can
use gradient descent to update the dual variable λ using
λ k+1 = λ k −ηλ (Û(µk)− c) where k is the current step, ηλ

is the gradient descent step size and c is the slack variable.
Û(µk) for finite time is given by Ûi(µk) = ∑

Tf
t=0 1(st ∈ Si)

where Tf is the final time. As shown in [14], the duality gap
between (7) and (11) is almost zero, which guarantees the
possibility of finding an optimal solution for problem (7) by
solving the problem (10) in the dual domain. Algorithm 1
outlines the primal-dual algorithm that is used to train safe-
RL policies [14] where ηµ , µ0, λ 0, N correspond to the
gradient ascent step size, the initial policy parameter, the
initial dual multiplier value and the maximum number of
iterations, respectively.
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Algorithm 1 Stochastic primal-dual for safe policies

Require: µ0,λ 0,Ti,ηµ ,ηλ ,γ,δi
1: while k ≤ N do
2: Simulate a trajectory with the policy πµk(s)
3: Calculate the reward as in (12)
4: Calculate the dual gradient Û(µk)− c
5: Update primal variable µk+1 using DDPG
6: Update dual variable λ k+1 = λ k −ηλ (Û(µk)− c)
7: end while

Control mixer: Since the proposed control architecture
blends control signals from the RL framework and the
model-based control strategy, it is necessary to combine them
appropriately in order to extract the best performance. There-
fore, we employ a state-dependent control mixing strategy
uc = βuRL +(1−β )uOL and β = α1(α2 +α3 tanh(α4Xe(t)+
α5)+α6. β satisfies the inequality, 0.1 ≤ β ≤ 0.9 and the
constants, αi for i = 1, ...,6 are appropriately chosen. The
control mixer assigns a lower β value in the initial stage of
the maneuver, granting more control authority to the outer-
loop controller. However, the effect of bow-wave intensifies
when the probe gets closer to the drogue. As a result, in the
final stage of the operation, β is gradually increased, granting
more control authority to the RL controller compared to the
outer-loop controller.

C. Training in the reduced-order model

In order to train the RL agent, instead of using the full-
scale model, we propose employing a reduced-order heli-
copter model to expedite training and allow some violation of
the safety constraints during training. Note that this reduced
order model is an approximation of dynamics indicated by
the blue box in Fig. 2b, by assuming instantaneous attitude
and altitude dynamics (which is reasonable given the time-
scale separation between the outer-loop dynamics of the
helicopter and the inner loop stabilization). The input to
this reduced-order model is uOL = [φc,θc, Żc, ψ̇c]

T while the
state is described by xs = [X , Ẋ ,Y,Ẏ ,Z,ψ]T . With the above
assumptions, the reduced-order model is described by

Ẍ =−g

(
tan(θc −θtrim)cosψ +

tan(φc −φtrim)

cos(θc −θtrim)
sinψ

)

Ÿ =−g

(
tan(θc −θtrim)sinψ −

tan(φc −φtrim)

cos(θc −θtrim)
cosψ

)
Ż = Żc ψ̇ = ψ̇c

φtrim = gφ (
√

Ẋ2 + Ẏ 2) θtrim = gθ (
√

Ẋ2 + Ẏ 2)

(13)

In this study, the training was performed on a single
computer with specifications: Intel core i7 2.3GHz with
16GB RAM, employing the DDPG algorithm. The details of
the parameters used in the simulation are shown in Table I.
The sample time is 0.1s (typical for such control loops). The
parameters of the agent, the actor and the critic network are
determined heuristically. Tanh is the activation layer for both
actor and critic networks. The diagonal elements of matrix A
in the reward function (6) are chosen so that the minimization

of the input is treated equally. The diagonal elements of the B
matrix in the reward function (6) are chosen so that elements
in es are appropriately scaled. The values of σ(.) generate a
cascaded reward scheme with M(.) being scaling values. The
parameters of the control mixer guarantee a smooth transition
between the initial and final stages of the refueling process.
ηλ ,ηµ and λ0 for the Safe-RL are chosen heuristically. Ti
and Tf are chosen based on the simulation length of the
maneuver, whereas xsa f e is selected based on the fact that
the probe is not allowed to overshoot the drogue. δi is set to
0.01 so that safety is maintained with a probability of 0.99.

TABLE I: RL training details

Group Parameter Value
Agent Actor, critic learning rate 10−3

Discount factor 0.98
Actor network # of hidden layers 3

# of neurons in each layer 128
Critic network # of hidden layers 2

# of neurons in each layer 64
Reward (A11,A22,A33,A44) (10,10,10,10)

(B11,B22,B33,B44) (5,5,10,104)
(σ1,σ2,σ3), (0.1,0.25,0.5)
(M1,M2,M3) (5,5,5)

Control mixer (α1,α2,α3,α4,α5,α6) (0.8,0.5,0.5,-15,-40,0.1)
Safe-RL (Tf ,Ti) (7(s),70 steps)

(ηλ ,ηµ ,λ
0,δi) (10−5,10−3,0,0.01)

Drogue motion (ky1,ky2,ky3,ky4) (0.25,-0.25,-2.2,-5)
Control bounds (M1

RL,M
2
RL,M

3
RL,M

4
RL) (0.25,0.09,0.025,0.1)

V. SIMULATION RESULTS

In this section, we demonstrate the application of the
proposed control architecture in an aerial refueling operation.
The study is carried out in two stages. In stage 1, we illustrate
the performance of the residual RL methodology in which
the agent is trained in the reduced-order model (Section IV-
C) and directly deployed in the full-scale model (Section
III-A). In stage 2, we show the results obtained from the
safe-RL methodology in which the RL agent is trained in the
reduced-order model and deployed in the full-scale model.
A statistical analysis of the performance of the proposed
methodology from 100 docking simulations is given in Table
II. At the start of the maneuver, the initial positions of the
probe and the drogue are given by (0+∆, 0+∆, −1000+∆)m
and (5, 0, -1000)m, respectively in the North-East-Down
coordinate frame where ∆ ∈ [−0.25,0.25]m is randomly
generated. Note that the probe position is offset by (3.96,
1.11, 1.75)m from the center of gravity (CG) of the helicopter
in the helicopter coordinate frame.

A. Performance evaluation of residual RL

1) Reduced-order model simulations: The RL agent is
trained in the reduced-order model in which the average
reward approximately converged to 40 after 4000 iterations.
Then, the obtained policy is implemented in the reduced-
order model to evaluate the performance. The resulting
relative position between the drogue and the probe for a
single sample trajectory is given in Fig. 3. The mean 2-norm
docking error for 100 simulation runs is found to be 0.015m
with a standard deviation of 0.008m and a maximum error
of 0.032m as shown in Table II. Next, the policy learned in
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Fig. 3: Relative position between the drogue and the probe for a typical
docking simulation run on the reduced-order helicopter model. Note that
the scales of the graphs are different for each direction. The zoomed-in
plots depict the docking error at the time of contact. (error 2-norm 0.021m)

the reduced-order helicopter model is ported to the full-scale
helicopter model to evaluate the performance.

TABLE II: The mean, the standard deviation and the maximum values of
2-norm error at the time of docking obtained through 100 simulations for
each case described in Section V-A, V-B and model-based control in [1].

Case Mean Std. Max
error(m) Dev.(m) error(m)

RL on reduced-order model 0.015 0.008 0.032
(Sec.V-A.1)

RL on full-scale model 0.246 0.214 1.334
(Sec.V-A.2)

Model-based control [1] 0.324 0.117 0.551
Safe-RL on reduced-order model 0.071 0.005 0.080

(Sec.V-B.1)
Safe-RL on full-scale model 0.307 0.279 1.140

(Sec.V-B.2)

2) Full-scale model simulations: The policy learned in the
reduced-order model is implemented in the full-scale model.
The resulting relative position between the drogue and the
probe for a single sample trajectory is given in Fig. 4. In

Fig. 4: Relative position between the drogue and the probe for a typical
docking simulation run on the full-scale helicopter model. Note that the
scales of the graphs are different for each direction. The zoomed-in plots
show the docking error at the time of contact (error 2-norm 0.41m).

comparison, the relative positions in the North directions
share similar trends despite the discrepancies between the
Down and the East direction as shown in Fig. 3 and 4. The
key contributing factor to this discrepancy is the mismatch
between the reduced-order model used for training and the
full-scale helicopter model. Note that the time-to-contact is

different in the two cases due to the behavioral difference
between the two models. The mean 2-norm docking error for
100 simulation runs is found to be 0.246m with a standard
deviation of 0.214m and maximum error of 1.334m as shown
in Table II. It is evident that the proposed methodology
outperforms a purely model-based controller by 24% in 2-
norm mean error. Furthermore, there is a possibility that the
drogue overshoots the probe since the motion of the probe
in the North direction is not constrained. One method of
preventing this is to impose a safety constraint on the position
of the helicopter’s center of gravity (CG).

B. Stage 2: Performance evaluation of safe residual RL

1) Reduced-order model simulations: In stage 2, we in-
vestigate the ability of the control algorithm to accommodate
safety constraints. The position of the probe is dependent on
the attitudes (φ , θ , ψ) of the helicopter since it is a static
function of the helicopter state (1). One way to ensure a
safe docking maneuver is by enforcing safety constraints on
the coordinates of the CG of the helicopter. Therefore, we
present a case in which we guide the CG of the helicopter
towards a point in space that has similar motion characteris-
tics as the drogue while imposing safety bounds on the CG
of the helicopter. In order to enforce the safety constraint,
we define the constraint Xe(t) ≥ xsa f e ∀t ≤ Tf where xsa f e
is set to 0 and Tf is the maneuver time. The RL agent
was trained in the reduced-order model employing the safe-
RL algorithm described in Algorithm 1 where the average
reward converged to 105 after 10000 iterations. Furthermore,
λx converged to 0.135 which is used when simulating both
the reduced-order and the full-scale helicopter models.

Fig. 5: Relative positional information of the trajectories obtained by training
RL agent on the reduced-order model with safety constraint Xe(t) ≥ xsa f e
and deploying on the reduced-order model. The green dashed line represents
the xsa f e. The zoomed-in plot confirms that the safety constraint is not
violated throughout the run.

In Fig. 5, we present the relative positional information
of the reduced-order helicopter simulation in North, East
and Down directions for a single sample trajectory. Clearly,
the helicopter motion is contained within the safe region.
Although the time taken to dock is less than 7 seconds, we
plot the trajectory to emphasize that the safety constraint
is met throughout the run. The mean docking error for
100 simulation runs is found to be 0.071m with a standard
deviation of 0.05m as shown in Table II.
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2) Full-scale model simulations: The RL agent trained
in the reduced-order model is deployed on the full-scale
helicopter model. As illustrated by Fig. 6, the full-scale
helicopter model overshoots xsa f e in the relative position
in the North direction which violates the safety constraint.
This is mainly due to the nonlinearities present in the full-
scale helicopter model. Since the residual RL controller never
experiences these nonlinearities during training, it fails to
perform the safe maneuver with high precision.

Fig. 6: Relative positional information of the trajectories obtained by training
RL agent in the reduced-order model with safety constraint Xe(t) ≥ xsa f e
and deploying on the full-scale helicopter.

Discussion: Based on the studies above, we observe that
the proposed methodology outperforms the model-based
control method in 2-norm mean error by 24% in the residual
RL method (Section V-A.2) and 5% in the safe-residual RL
method (Section V-B.2) when deployed on the full-scale
helicopter model. Furthermore, the residual RL controller
meets the docking criterion in the reduced-order model where
the 2-norm error at the time of docking is less than 0.1m
(Table II). Moreover, we notice that the safety constraint is
not violated when the proposed controller is executed in the
reduced-order model which yields an accuracy of 100% in
meeting the safety criterion. On the other hand, we observe
that the proposed method does not meet the safety criterion
or the tight docking criterion when deployed on the full-scale
helicopter model, despite the improved performance over
the model-based controller. This is primarily due to the fact
that the reduced-order model does not accurately represent
the dynamics of the full-scale model. As a result, during
training on the reduced order model, the RL agent does not
experience or learn to respond to the complex nonlinearities
of the full-scale model. This issue may be mitigated by
employing techniques such as domain randomization [22]
and retraining on the full-scale model.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel residual RL control
method that works in conjunction with an outer-loop po-
sition controller. By incorporating safety constraints in the
residual RL controller, we demonstrated that it is capable
of guaranteeing safety, which is essential in autonomous
HAAR. The conducted simulations highlight that the pro-
posed method outperforms sole model-based controllers.
Since the RL agent does not experience nonlinearities in
the full-scale helicopter during training, techniques such as

domain randomization and retraining on the full-scale model
can be utilized to improve the performance.
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